
A More General Model For Handling Missing Information
In Relational DataBases Using A 3-Valued Logic

Kwok-bun Yue
Department of Computer Science

University of Houston - Clear Lake
2700 Bay Area Boulevard
Houston, 'IX 77058.1098

Abstract

Codd proposed the use of two interpretations
of nulls to handle missing information in relational
databases that may lead to a 4-valued logic
[Codd86, Codd87]. In a more general model, three
interpretations of nulls are necessary [Roth, Zani].
Without simplification, this may lead to a 7-valued
logic, which is too complicated to be adopted in
relational databases. For such a model, there is no
satisfactory simplification to a 4-valued logic.
However, by making a straightforward
simplification and using some proposed logical
functions, a 3-valued logic can handle all three
interpretations.

1. Introduction

Currently, there is no Relational Database
Management System that adequately handles
missing data [Gess]. To handle missing
information in a relational database, Date
considered using default values for replacing
missing data [Date86]. Lipski proposed to use a
subset of an attribute domain to represent the
partial knowledge that the actual value of an
attribute is one of the values in the subset [Lips].
By far, the most popular technique is by using null
values. For example, the popular query language
SQL supports the concept of a single null value
[Date87].

In [Codd79, Codd86, Codd87], Codd proposed
the use of two values to represent two possible
interpretations of nulls:

A-mark: the data value is missing and
applicable.

I-mark: the data value is missing and
inapplicable.

Gessert argued that the distinction between
applicable and inapplicable missing data is of great
practical value [Gess]. Based on these two null
values, either a 3-valued logic (3VL) or a 4-valued
logic (4VL) can be developed. In a 3VL, an
additional truth value M is added to represent that
the outcome may be either true or false. [Codd86]
contained a detailed description of implementing
such a 3VL in relational databases.

4VL was proposed and discussed in [Codd86,
Gess, Vass]. An additional truth value, I, is added
to represent the outcome of evaluating logical
expressions involving inapplicable values or
inconsistency. Codd indicated that 4VL is more
precise but the extra complexity of 4VL is not
justified currently [Codd87]. However, he also
suggested that 4'VL should be incorporated in the
future and external specifications of a DBMS
product should permit expansion at a later time
from 3VL to 4VL support without impacting users'
investment in application programming [Codd87].
Gessert claimed that the 4VL he proposed is
intuitively manageable and is thus of practical use
[Gess].

Zaniolo proposed a new interpretation of nulls
to represent a total lack of information, without
knowing whether the data value is applicable or
not [Zani]. Using only one null value for this
interpretation, he then elaborated the set-
theoretical properties based on information theory
and developed efficient strategies for evaluating
queries in the presence of nulls. Lerat and Lipski
argued that non-applicable nulls (i.e. I-mark) are
important and should not be left out [Lera]. Roth
et. al. developed a theory for a more general model
using all three interpretations of nulls and applied
it to nested relations [Roth]. However, they did
not discuss the select operation in detail and, in
particular, did not discuss the effect on the choice

S I G M O D R E C O R D , Vol. 20, No. 3, Sep tember 1991 43

http://crossmark.crossref.org/dialog/?doi=10.1145%2F126482.126487&domain=pdf&date_stamp=1991-09-01

of a 3VL or 4VL system.

In this paper, we discuss the consequence of
using three null values on selecting an n-valued
logic system. Section 2 describes examples
demonstrating the necessity of using three null
values in a more general model. Section 3
analyzes the consequences of using three null
values on the truth values of logical expressions.
Such a model cannot be effectively handled by
4VL. In section 4, we show that a straightforward
simplification will allow us to use a 3VL system.
Together with some logical functions, the
generality of using three null values can be fully
incorporated. Our conclusions are in Section 5.

We will use the notations of A-mark and I-
mark of Codd because of their popularity. Since
the purpose of the paper is to illustrate the effect
of using three null values to general readers, it is
written in an informal style. For a more formal
treatment of Section 2, please refer to [Roth,
Zani].

2. Three Interpretations O f Nul ls

Although both A-mark and I-mark represent
missing data value, a careful analysis reveals that
A-mark and I-mark are actually different from the
point of view of missing information. An I-mark
does not indicate any missing information since we
are sure that the attribute is inapplicable. There
is no uncertainty. On the other hand, an A-mark
indicates a true lack of information since we know
only that the attribute is applicable but we do not
have its value. However, there is another
circumstance of missing information, as illustrated
by the examples below.

Example 1 Consider a simplified relation: r(Name,
Marital_Status, SpouseName). It is assumed that
Marital_Statns can have only two values: S (single,
including divorced or widowed) or M (married).
Mar i ta lS ta tus is always applicable but
SpouseName is inapplicable if Marital_Status is
S. There are three possible interpretations of nulls
as demonstrated in the relation of Figure 1.

Since Kim is single and does not have a
spouse, then ?1 should mean that the attribute
Spouse_Name is inapplicable. Jane is married and
has a spouse so ?2 should mean that SpouseName
is applicable but its value is currently missing.

Similarly, ?3 should also mean applicable but
missing. Since we do not know whether Mary is
married or not, we do not know whether
Spouse_Name is applicable to her or not. Hence,
?4 should mean that the value is missing and it is
not known whether the attribute is applicable or
not. It is a complete lack of information.

Name Marital_Status Spouse_Name
.

t 1 Mary M Joe
t 2 Kim S ?1
t 3 Jane M ?2
t 4 May ?3 ?4

Figure 1 An Instance of a relation r

Example 2 Suppose an employee relation has an
attribute Dept, indicating the department the
employee belongs to. Whereas ordinary employees
must work under a department, it is assumed that
some may not belong to any department and Dept
can be inapplicable. Hence, there are four possible
situations for any employee:

(1) The department the employee is working for
is known.

(2) The employee is not an ordinary employee
and does not work under any department (eg.
the president, VP's, etc).

(3) The employee is an ordinary employee but is
not yet assigned a department (eg. beginning
trainees).

(4) It is not known which department the
employee is working under or whether the
employee is an ordinary employee or not (eg.
special consultants, cousins of the president).

The last three situations correspond to three
different null values for the attribute Dept. []

Therefore, in a more general model of
relational databases, there should be three null
values:

I-mark: the data value is inapplicable.
A-mark: the data value is applicable but

missing.
U-mark: the data value is missing and its

applicability is unknown.

44 S I G M O D R E C O R D , Vol. 20, No. 3, Sep t ember 1991

In [Roth], these values were called unk
(unknown), dne (do not exist) and ni (no
information) respectively. Note that U-mark
represents a complete lack of information since it
is not known whether the data is applicable or not.
With A-mark, at least we know that the data value
is applicable. Furthermore, only U-mark and A-
mark represent missing information. I-mark does
not represent any lack of information -- we know
that the value is in~ipplicable. No more
information is necessary. Refer to [Roth] for a
more formal treatment.

Present hardware does not support the
distinction between null values and ordinary values
[Codd86]. One possible way to support three null
values is to use two additional bits. The
Inapplicable_bit is set to 1 if and only if it is
known that the attribute value is inapplicable. The
Applicable_bit is set to 1 if and only if it is known
that the attribute value is applicable. Hence, if an
attribute has an ordinary value, its Applicablebi t
is set to 1. The three null values can then be
implemented as below:

A-mark: the attribute does not have a normal
value and the Applicablebi t is set.

I-mark: the Inapplicable_bit is set.
U-mark: the attribute does not have value

and both the Applicablebi t and
Inapplicablebit are not set.

The advantage of this implementation is its
relative ease to evaluate logical functions described
in Section 4. Another advantage is that it is
possible to define constraints to automatically set
the bits. For example, in relation r of Figure 1, we
can define a constraint such that a value 'M' in
Marital_Status will set the Applicable_bit of
SpouseName whereas a value 'S' in Marital_status
will set the Inapplicable_bit of SpouseName.

3. M u l t i - V a l u e d L o g i c

Since two null values lead to a 4VL, it may be
tempting to think that, without simplification,
three null values will lead to a 5VL. For example,
the evaluation of the expression X = C, where X
is an attribute and C is a constant, can be:

(1) T:

(2) F:

ff the value of X is applicable and
equal to C,
ff the value of X is applicable and not

equal to C,
(3) I: ff the value of X is I-mark,
(4) Mi: ff the value of X is A-mark; this

represents a meaning of 'may be T or
F', and

(5) M2: ff the value of X is U-mark; this
represents a meaning of 'may be T, F
or I'.

However, the situation is more complicated as
illustrated by the following example.

Example 3 Consider a relation EMP(Name, Dept,
Salary, Rank) where Dept may have all three null
values. The outcome of evaluating the expression
(Dept = 'Account' AND Salary > 20000) OR
(Dept < > 'Account' AND Rank = 7) on the tuple
(Jane, U-mark, 30000, 7) may either be I or T, but
not F. This is because if Dept is actually
inapplicable, then the expression should be
evaluated to I. On the other hand, if Dept is
actually applicable, then one of the sub-expressions
Dept = 'Account' or Dept < > 'Account' must be
true. Since the sub-expressions Salary > 20000
and Rank = 7 are both true for the tuple, the
entire expression should be evaluated to T. Since
F is not possible, we need to have a new truth
value, M3, to represent a meaning of 'may be T or
I ' .

Following similar arguments, the evaluation of
the same expression on the tuple (Kim, U-mark,
10000, 4) may either be I or F, but not T. This is
because the sub-expressions Salary > 20000 and
Rank = 7 are both false now. Hence, we need to
have another new truth value, M4, to represent a
meaning of 'may be F or r . Note that we have
assumed that I is 'more false' than F in the sense
that I AND F is equal to I [Gess]. It is possible to
define I AND F to be F [Codd87]. However, even
so, M 4 is still necessary, as illustrated by the
evaluation of the unintelligent expression (Dept =
'Account') AND (Dept = 'Personnel') on both
tuples in this example. []

That 7 truth values are necessary should not
seem strange. If we consider that the 'basic' values
of a logical expression are t (true), f (false) and i
(inapplicable or inconsistent), then a truth value
can be assigned to every non-empty subset S of the
set {t,f,i} indicating that the actual basic value can
be one of the elements of S. Hence, we have T for
{t}, F for {f}, I for {i}, M 1 for {t,ff}, M 2 for {t,f,i},

S I G M O D R E C O R D , Vol . 20, No. 3, Sep t ember 1991 45

M 3 for {t,i} and M 4 for {f,i}. These exhaust the
possibilities of non-empb subsets of the set {t,f,i}.

A 7-valued logic (7VL) will be too complicated
for users to use or maintain. For example, the
truth tables of the AND or OR logical operators
will have 49 entries. Worse yet, it will be very
difficult, ff not impossible, to define the truth
tables of the operators AND, OR or NOT
according to their 'natural interpretation' (for
example, what should be the value of M 1 OR
M3?). In fact, these operators are not truth-
functional in the 7VL. The truth value of an
expression cannot be determined solely by the
truth values of its sub-expressions joined by these
operators [Resc].

Example 4 Suppose both Dept and Rank allow all
three null values. The expressions (Dept =
'Account'), (Dept = 'Personnel') and (Rank = 7)
should all be evaluated to M 2 (i.e., {t,f,i}) for a
tuple with U-mark as values in both Dept and
Rank. The expression (Dept = 'Account') AND
(Rank = 7) should still be evaluated to M 2.
However, the expression (Dept = 'Account') AND
(Dept = 'Personnel') should be M 4 (i.e., {hi})
since Dept cannot be equal to 'Account' and
'Personnel' at the same time. Since we have shown
two situations where (M 2 AND M2) should be
evaluated to M 2 and M 4 respectively, the AND
operator is not truth-functional. H

Although the truth-functionality problem also
exists in 3VL, it can be tackled much easier
[Codd86, Gess]. On the other hand, it will
significantly increase the complexity of a 7VL and
render the 7VL impractical. Thus, it is necessary
to make simplifications to produce a logic with
fewer truth values.

A first attempt may be to reduce to a
supposedly more precise 4VL. However, we argue
against the use of a 4 V L First, a 4VL is more
complicated and confusing. For example, the truth
tables for the AND operator are different in
[Codd86] and [Gess]. As another example, two
types of negation are suggested in [Gess]. More
importantly, there is no satisfactory way to reduce
the number of truth values to 4 for a system with
three null values.

Note that we ended up with a 7VL because we
have 3 basic values: t, f and i. If we have 4 truth

values, we must keep all three basic values since 2
basic values lead to at most 3 truth values. The
standard 4VL [Codd86, Gess] have the truth values
T, F, I and M (i.e. {i,f~). However, the standard
4VL cannot handle queries with U-mark as values
for some participating attributes since the outcome
should actually be {t,f,i}. Other simplifications to
a 4VL are even more problematic.

4. A 3 - V a l u e d L o g i c

An obvious simplification to 7VL is to allow
only 2 basic values: t and f. This will give only 3
truth values: T for {t}, F for {f} and M for {t,f}.
A simple way to do so is to equate the value i to the
value f in the new 3 V L Hence, T now stands for
true (and thus applicable), whereas F stands for
false or inapplicable.

Example 5 Referring to the relation in Figure 1,
the query "Who has a spouse named Joe?" involves
the logical expression: S p o u s e N a m e = 'Joe'. In
a 7VL, the evaluations of the expression on the
four tuples in the relation r of Figure 1 are:

t 1 = = > T:{t},
t 2 = = > I:{i},
t 3 = = > Mi: {t,f}, and
t 4 = = > M2: {t,f,i}.

In the 3VL, the basic value i is equated to f
and hence the evaluation of the expression on the
tuples are:

t 1 = = > {t}:T,
t 2 = = > { i } - - > {tf}:F,
t 3 = = > {t,f}:M, and
t 4 = = > {t,f,i}--> {t,f,f} = {t,f}: M.

For example, the expression is evaluated to F,
instead of I in the 7VL, for t 2. This is reasonable
since Kim is single and does not have a spouse. In
particular, Kim does not have a spouse named Joe.

As another example, the expression Dept =
'Account' can be used for the query nwho is
working in the Account department?' . If the value
of Dept is I-mark for an employee, then he is not
working in any department, including the Account
department. Hence, it is natural to evaluate the
expression to F. H

We can then define the truth value of the

46 S I G M O D R E C O R D , Vol . 20, No. 3, S e p t e m b e r 1991

equality operator as in Figure 2, where C is a non-
null constant. Note that this definition for the
case of I-mark is not the same as that given by
Codd. Codd suggested that I-mark = C should be
evaluated to M no matter whether C is an 1-mark,
an A-mark or of a non-null value [Codd86]. The
reason he gave is that an I-mark can be updated to
an A-mark and later to a non-null value [Codd86].
In other word, Codd considered I-mark to
repreesent a lack of information and hence
uncertainty. However, as stated earlier, I-mark
actually does not represent any lack of
information. There is no uncertainty about the
value I-mark and thus I-mark = C should not be
M (except when C is U-mark). We should
evaluate an expression based on the current value
of a tuple, not its possible value in the future
update.

expression truth value
.

U-mark = U-mark M
U-mark = I-mark M
U-mark = A-mark M
U-mark = C M
I-mark = I-mark T
I-mark = A-mark F
I-mark = C F
A-mark = A-mark M
A-mark = C M

Figure 2 Truth values of evaluating
the equality operator

expression truth value
.

U-mark > U-mark M
U-mark > I-mark F
U-mark > A-mark M
U-mark > C M
I-mark > I-mark F
I-mark > A-mark F
I-mark > C F
A-mark > A-mark M
A-mark > C M

Figure 3 Truth values of evaluating
the operator >

The truth value of simple expressions using
other relational operators can be defined in a
manner similar to that of the equality operator.
The difference is that only the equality operator

can be defined for I-mark. For example, I-mark >
I-mark has no meaning since I-mark cannot be
ordered. Hence, the operator > is inapplicable in
this case, and in accordance with the idea of
equating the basic value of i to f, the expression
should be evaluated to F. Figure 3 shows the
evaluation of the operator >. Other relational
operators can be defined likewise.

A compound expression consists of expressions
joined by the logical operators AND, OR and
NOT. The evaluation of a compound expression
can be obtained by the truth tables of the
operators given in Figure 4. However, the
operators AND and OR are still not truth-
functional. Although the intended truth value of
both (M O R M) and (M AND M) is M, other
truth values are actually possible. To be more
specific, (M AND M) may be evaluated to F and
(M OR M) to T.

AND T M F OR T M F NOT
.

T T M F T T T T T F
M M ? I F M T ? 2 M M M
F F F F F T M F F T

Figure 4 Truth tables of the operators
AND, OR and NOT

Example 6 The evaluation of the expression
(Dept = 'Account ' AND Salary > 20000) OR
(Dept < > 'Account ' AND Rank = 7) on the tuple
(Jane, A-mark, 30000, 7) should yield T instead of
M since the value of D EP T is applicable and either
D EP T = 'Account' or D E P T < > 'Account ' is
true. The evaluation of (Dept = 'Account') AND
(Dept = 'Personnel') on the same tuple should
yield F instead of M. However, if the value of
Dept is U-mark instead of A-mark, then the first
expression should be evaluated to M, whereas the
second expression should still be F. []

Hence, for the truth tables in Figure 4, ?1
usually stands for M, but may be F in some
uncommon situations. Similarly, ?2 usually stands
for M, but may be T in some uncommon
situations.

Fortunately, these uncommon situations are
quite rare and may occur only when (1) there is an
attribute in the expression that has a value of A-
mark or U-mark, and (2) the attribute appears in

S I G M O D R E C O R D , Vol . 20, No. 3, S e p t e m b e r 1991 47

more than one sub-expression. It may simply
represent programming errors or bad programming
style and should be avoided if possible. Thus, in
most situations, we may simply use the truth tables
to evaluate an expression, taking ?1 and ?2 as M.
In the rare cases that may have doubt, it may be
necessary to check for tautology [Codd86] or
fallacy. Another approach is to restrict the value
of the attributes as sub-expressions are evaluated
[Gran]. A general discussion on the truth
functionality problem can be found in [Zani].

The 3VL system will be adequate so long as (1)
we remember that inapplicable is interpreted as
false for expression evaluation, and (2) we do not
need to find out whether an expression is
applicable. If we need to find out the applicability
of an expression, then we need to provide
additional tests for it.

One approach is to support constants
representing null values. For example, (X = I-
mark) can be used to test whether the attribute X
is inapplicable. The disadvantage of this approach
is that the user may confuse the symbol itself with
its intended meaning. For example, the expression
X = U-mark can be interpreted as (1) X / s a U-
mark, or (2) the outcome of comparing the value
of X to U-mark for equality. According to the
first interpretation, X = U-mark returns true if X
is a U-mark. In the second interpretation,
comparing any values (nulls or non-nulls) to U-
mark always yields a truth value of M. Of course,
the tables for the evaluation of operators in
Figures 2 and 3 are based on the second meaning.

Another approach is to use logical functions.
Logical functions are more structured and higher
in level of abstraction. It is only necessary to think
in terms of concepts such as applicability or
information missing, instead of the three types of
null values. In fact, it may not be necessary for the
users to be aware of the existence of three null
values.

The basic logical functions should include
Non_null, Maybe and Inapplicable. The logical
function N o n n u l l returns T ff and only if its
attribute argument has a non-null value.
Otherwise, it returns F. The logical function
Maybe returns T if and only if its Boolean
argument is evaluated to M. Otherwise, it returns
F.

The logical function Inapplicable returns T if
and only if some attributes in its argument are
inapplicable. It returns F if and only if all
attributes are applicable. Otherwise, it returns M.

(1) If X is an attribute, then
(a) if the value of X

@)

(c)

(d)

is I-mark, then
Inapplicable(X) = T,

if the value of X is U-mark, then
Inapplicable(X) = M,

if the value of X is A-mark, then
Inapplicable(X) = F, and

if X is of a non-null value, then
Inapplicable(X) = F.

(2) If X is a simple expression Y @ Z, where Y
and Z are attributes or non-null constants and
@ is a re la t iona l opera to r , then
Inapplicable(X) = Inapplicable(Y) OR
Inapplicable(Z).

(3) If X is a compound expression E % F, where
E and F are expressions and % is a logical
o p e r a t o r , t h e n I n a p p l i c a b l e (X) =
Inapplicable(E) OR Inapplicable(F).

Other logical functions, such as Applicable,
Not True or Not False can be constructed for ease
of use. These logical functions are adequate to
construct the necessary queries for a system with 3
null values since we can always construct a suitable
expression to obtain the set of tuples that evaluate
any expression to any one of the seven truth
values.

For example, if we want to find out al l tuples
that evaluate the expression E to M 1 (i.e., {t,f}),
then the expression E' = (Maybe(E)) AND (NOT
(Inapplicable(E))) can be used. The set of tuples
that evaluates E' to true is the answer. Figure 5
shows how we can do this for all 7 truth values.
Some examples of using the logical functions
follow.

Example 7 To find out whether the value of X is
U-mark, the expression Maybe(Inapplicable(X)) is
used. To find out the person that has a spouse not
named 'Joe', the expression (NOT (Spouse_Name
= 'Joe')) AND Applicable(Spouse_Name), or
simply (Spouse_Name < > Joe), can be used. []

48 S I G M O D R E C O R D , Vol . 20, No. 3, S e p t e m b e r 1991

Truth value Expression
.

T: (t} E
F: {f} (NOT E) AND (NOT

Inapplicable(E))
I: {i} Inapplicable(E)
Mi: {t,f} (Maybe(E)) AND (NOT

Inapplicable (E))
M2: {t,f,i} Maybe(E) AND Maybe

(Inapplicable(E))
M3: {t,i} E OR Inapplicable(E)
M4: {f,i} NOT E

Figure 5 Expressions for tuples that evaluate
an expression E to a given truth value

It is worthy to note that logical functions may
bring additional possibilities for the truth-
functionality problem and care should be taken to
handle them. For example, Applicable(X) and
Inapplicable(X) will both be evaluated to M if the
value of X is U-mark. However, the expression
Inapplicable(X) AND Applicable(X) should be
evaluated to F, not M.

5. C o n c l u s i o n

In this paper, we have presented a more general
model for handling missing information by using
2three null values. Without simplification, this
leads to a 7VL which is too complicated.
Although there are many proposals for using a
4VL, there is no reasonable simplification from a
7VL to a 4VL that captures the generality of 3
null values. By equating the basic value i to f and
using logical functions such as Inapplicable and
Maybe, a 3VL will be sufficient to capture the
generality of 3 null values.

Acknowledgement

We would like to thank Dr. Sharon Perkins and
Ms. Chlofis Yue for their invaluable suggestions.

Reference

[Codd79] E.F. Codd, RM/T: Extending the
Database Relational Model to Capture More
Meaning. ACM Trans. on Database Systems 4(4),
397-434 (Dec. 1979).

[Codd86] E.F. Codd, Missing Information
(Applicable and Inapplicable) in Relational

Databases. SIGMOD RECORD 15(4), 53-77 (Dec.
1986).

[Codd87] E.F. Codd, More Commentary on
Missing Information in Relational Databases
(Applicable and Inapplicable Information).
SIGMOD RECORD 16(1), 42-47 (Mar. 1987).

[Date86] C.J. Date, Null Values in Database
Management. In Relational Databases: Selected
Writings, Chapter 15, Addison-Wesley, Mass.,
1986.

[Date87] C.J. Date, An Introduction to Database
Systems, Volume 1, Addison-Wesley, Mass., 1987.

[Gess] G.H. Gessert, Four Valued Logic For
Relational Database Systems. SIGMOD RECORD
19(1), 29-35 (Mar. 1990).

[Gran] J. Grant, Null Values in a Relational
Database. Info. Proe. Lett. 6(5), 156-157 (Oct.
1977).

[Koch] R. Kocharekar, Nulls in Relational
Databases: Revisited. SIGMOD RECORD 18(1),
68-73 (Mar 1989).

[Lera]
Nulls.
(1986).

N. Lerat & W. Lipski Jr., Nonapplicable
Theoretical Computer Science 46, 67-82

[Lips] W.L. Lipski Jr., On Semantic Issue
Connected With Incomplete Information
Databases. ACM Trans. on Database Systems
4(3), 262-296 (Sep. 1979).

[Resc] N. Rescher, Many Valued Logic, McGraw-
Hill, New York, 1969.

[Roth] M.A. Roth, H.F. Korth & A. Silberschatz,
Null Values in Nested Databases. Acta
Informatiea 26, 615-642 (1989).

[Vass] Y. Vassiliou, Null Values in Database
Management: A Denotat ional Semantics
Approach. Proe. ACM SIGMOD 1979 Int. Conf.
on Management of Data, Boston, Mass., May 30 -
June 1, 1979, pp162-169.

[Zani] C. Zaniolo, Database Relations with Null
Values. Journal of Computer and System Sciences
28, 142-166 (Feb. 1984).

S I G M O D R E C O R D , Vol. 20, No. 3, Sep tember 1991 49

