
DEBUGGING OF OPTIMIZED ADA CODE

Peter Dencker

Alays GmbH &Co. KG

Am Riippurrer Schlof3 7

D-75oO Karlaruhe 51

Germany +49 721883025

Introduction. Modern RISC architectures call for

highly optimizing compilers which fully exploit the spe-

cific features of RISC architectures - a great number of

registers and deeply nested instruction pipelines.

It sounds like an anachronism, but all programming

environments still recommend turning off the optimiza-

tion in the compiler in order to debug a source program

in source level terms. This is comparable to the recom-

mendation to throw away the life belt when really going

to sea after training on land with the belt.

Optimization make life more difficult for the debugger

in two respects. On one hand they modify the pro-

gram’s control flow and on the other hand they vary

the addressing path to objects of the program. Thus

one object may exist in different regiatem throughout

its lifetime.

Ada is the first widespread high level programming lan-

guage [1] which precisely defines the effect optimization

may have or may not have on the compilation pro-

cess. This removes the odor of hacking from the use

of optimization (mYou can turn it off if something goes

wrong”). L. Weber, for example, still describes opti-

mization in this sense [2]. Nowadays, the default for

some powerful Ada Compilem is such that even during

the development phase programs are compiled with the

optimization turned on. This increases the demand for

debuggers of optimized Ada code.

Up to now there are few publications on “Debugging
of optimized code”. Polle Zellweger [3] describes the

problems encountered with inline procedure expansion

and merging of identical taila of code paths that join for
debugging, and the solutions found in a programming

@’1991 ACM 0-89791-445-7/91/1000-0022 $1.50

environment for the programming language Cedar. The

solutions described there, however, do not consider the

separate compilation of parts of the program which is

an important feature of Ada.

John Hennessy [4] examines the problem of correctness

of object values. It is true that optimizations are to

sustain the functional equivalence between optimized

and non-optimized code; they may, however, alter the

structure and the interim results of a program. The

consequence may be that in some parts of the optimized

program code objects have wrong values with respect
to the original logic of the program. For selected local

and global code reordering, optimization solutions to

the incorrect value problem are given [4]. However,

there ia no information on an implementation of these

solutions.

In this paper we first present the ideal debugger fea-

tures necessary for our reflections. sThen we describe
the effects of selected optimization procedures upon

these ideal features and the resulting problems. They

are accompanied by examples showing parts of sessions

with the Alsys Ada Debugger for MIPS [5, 10]. Finally

we discuss the solutions which we have implemented in

the Alsys Ada System for MIPS.

Ideal Debugger Nfodel. IdeaUy a source-level Ada

Debugger simulates an Ada Machine on which a pro-

gram can be executed step by step, declaration by dec-

Iarationland statement by statement. The Debugger

simulates the Ada Machine by controlled execution of

the object code of the program on a real machine. ‘l7hsrs-
fore it is essential for the simulation that the Debugger

can map the object code of a program to its source code.
Code optimization can render the mapping more dif-

ficult or even impossible. In the following, those essen-

tial properties of the ideal model are enumerated which

are related to code optimization techniques. The next

chapter discusses how code optimization techniques af-

fect these properties and which different properties are

desirable in view of the code optimization techniques.

1 In Ada &~larations are executed like statements.

22

http://crossmark.crossref.org/dialog/?doi=10.1145%2F126551.126554&domain=pdf&date_stamp=1991-12-01

debug (“beispiel-1”): -- start the program beispiel.1

-- under control of the debugger

-->PROGRAM .beispiel_l STARTED AT
-..>>* #~~~~Qj, beispiel-l’BODY. (5,4)
-.. > 1: PROCEDURE beispiel_l IS
--> 2: TYPE ar IS ARRAY (1 . . 10, 1 . . 10) OF float;
--> 3: a : ax;
-- > 4: BEGIN
-- > 5> FOR i IN a’RANGE(l) LOOP
s->----- -------

--> 6: FOR j IN 1 . . 11 LOOP
-- > 7: a (i, j) := 3.14;
-- > 8: END LOOP;
-- > 9: END LOOP;
-- > 10: END beispiel_l;

go; -- continues the execution of the program.

-->>>> Program abandoned due to

-->>>> &andled exception ,constrai.nt-error - raised at:

-->>* #MAINQl beispiel-1’BODY. (5,4).(6,7).(7, 16)
--> 7> a (i, j) := 3.14;

>-- ------------------ . --- -

Ezample 1: The above log of a Debugger sessiondemonstrates the accuracy of source locations with raised exceptions. Here it is the

loop variable j which violates the index constraints of the array a.

The lines starting with “-->* contain the Debugger output. All other lines contain the input commands to the Debugger. The caret

‘-n in a ‘.. .----s line points to the exact source location in the line above, where the program wae stopped. Number tupels like

(5,4) or (6,7) designate source positione in the form (line, colaaud with respect to a compilation unit. A source location ie uniquely
identified by a eource position prefixed with a list of designators for all enclosing declaration regions. The head of the list designates

the specification or the body of a library unit. The elements of the list are separated by points. Anonymous declarative regione, like

for-loops, are designated by their respective start position.

1.

2.

3.

4.

5.

The Debugger may stop the program before any
declaration and any statement. These source loca-

tions are called breakpoints. The Debugger stops

theprogram ata breakpoint only ifthe breakpoint

has been set previously.

The Debugger may stop the program at anysource

location where an exception may be raised (e.g.

division by zero). These source locations are called

triggerpoints.

At each breakpoint ortnggerpoint the complete,

actual program state maybe observed with respect
to its source level logic. I.e., the correct values of

all actual, valid objects are observable.

At each breakpoint ortrigge~oint the values ofall

actual, valid, variable objects may independently

remodified.

At each breakpoint or triggerpoint the modifica-

tionofavalue ofan actual, valid, variable object

haekheexpeetad efktwithr~sp~ct tosource level

logic.

The properties (2) and (3) require that the Debugger

may not only map the object code onto source state-

ments and declarations but also onto source expres-

sions (see example 1). This useful property is still only

found in a few Debuggers for high level programming

languages.

Effect ofselected code optimization techniques

on Debugger properties. The selected code opti-
mization techniques discussed in the following are de-

scribed in the standard compiler construction litera-

ture, e.g. [6]. Their specific implementation for the

Alays Ada System has been published in [7]. The se-

lection has been driven by the code optimization tech-

niques used in the Alsys Ada System.

Elimination of inaccessible code. The optimiza-
tion technique for the eliiinationof inaccessible code

affects property (1) of the ideal Debugger model de-

scribed in the preceding chapter. No code is gener-

ated forstatemente or declarations which are program

logically inaccessible, so the Debugger cannot stop the

program at such places. It may be surprising for a user
not to be able to plawa a breakpoint iaato en umwed sub.

program whose object code has been eliminated com-

pletely. A desired reaction of the Debugger is to inform

the user of this optimization (see example 2).

23

debug (’’beispiel-2”) ;
-->PROGRAM ,beispi.el_2 STARTED AT
-->>* #MAINQl beispiel_2’BODY. (13 ,4)
--> 1: PROCEDURE beispiel-2 IS
--> 2: i : integer;
-- > 3: PROCEDURE unbenutzt IS
-- > 4: BEGIN
-- > 5: i := i + 1;

-- > 6: END ;
-- > ?: PROCEDUEE benutzt IS
--> 8: BEGIN
-- > 9: i := j. + 2;
-- > 10: EXCEPTION WHEN OTHERS => i := O; benutzt;
-- > 11: END ;
-- > 12: BEGIN
-- > 13> i := 902;

>-- ------- ----

-- > 14: benutzt;
-- > 15: END beispiel-2;

set_break(’’9”) ; -- Places breakpoint on statement in line 9.
-->B~ 6 defined

set_break(’’2”) ; -- No object code exists for the declaration in line 2.
-->>>> 112!! does not point at a break location. Next possible breakpoint

-->>>> location is: 1~.beispiel_2’BODy. (13,4)”.

set-break(’’5”) ; -- The object code for line 5 is inaccessible.
-->>>> Error using path ‘t5Ft: The given source location is not
-->>>> accessible in the current program.

Ezample 2: Shmsthe &fferent reactione of the Debugger when setting break~ints.

Elimination ofsuperfluous code. The optimiza-

tion technique for the elimination ofsupetiuous code

affects properties (1) and (3). On property (1) it has

the same effect aathe technique for the eliminationof
inaccessible code. However, because the user knows

that the control flow passes through the source loca-

tion whose object code is superfluous, it is desirable for

the Debugger to indicate a source location “nearby

where the program may be stopped (see example 2).

The reaction ofmany existing Debuggera isunsatisfac-

tory in that the breakpoint is moved implicitly to the
next possible source location where the program may

be stopped, without notifying the user. When single

stepping, it is desirable that the Debugger stops the
program only at declarations or statements for which

object code haabeen generated. Thia assumes that the
user has a general understanding of the effective pro-

gram optimizations.

The evaluation code for unused variable values is su-

perfluous too. Ifsuchcode is eliminated then property

(3) is lost. A desirable reaction of the Debugger in such

asituation isto tell the user that the variable currently

has no value (see example 3).

!Creatment ofcommon subexpressions. The code

optimization technique for common subexpressions [8]

affects properties (2) and (5). This technique causes

a common subexpression to be calculated only once

and causes the code for this calculation to be moved

to a suitable location. This optimization destroys the

uniqueness of the mapping of object code to source

code: All source locations representing the common
subexpression refer to the same object code. Thus,

property (2) is lost. Ifan exception is raised during

the calculation of this common subexpression, the De-

bugger can at best display the list of all source loca-

tions which represent the common subexpression. Ad-

ditionally, thecode of the common subexpression may

be moved by the optimizationta aplac. which is n.t
related to the common subexpression at all. Thus, the

user may get the impression that the exception is raised

“too early” (see example 4). To prevent this situation,

the Debugger should refer to this kind of optimiza-

tion and additionally should display the breakpoints

between which the code of the common subexpression

has been moved, if it reports the exception.

If the code of a common subexpression gets moved

across a breakpoint H towards the program start then

24

debug (’’beispieI_3”) ;
-->pROG~ .beispiel-3 STARTED AT
-->>* #~IN@l beispiel-3’BODY. (2,4)
.- > 1: PROCEDURE beispiel-3 IS
-- > 2> vi : integer := 33;

>-- ------- ----

-- >
-. >
-- >
-- >
-- >
-- >
-- >
-- >
-- >
-- >
-- >
-- >
-- >
-- >
-- >
-- >

3: PROCEDURE pp IS
4: x: integer := vi - 111;
5: Y : integer := 4;

6: BEGIN

7: Y 3;:=

8: x := 1;
9: IFv1>OTHEN

10: x := 2;

11: ELSE

12: x := 4;

13: END IF;

14: VI :- x;

15: END;

16: BEGIN

17: pp ;

18: END beispiel_3;

set_break(’’9”) ;
-->Bw 6 defined

go;
-->B~ 6 >* #MAIN~l pp’3’BoDY. (9,7)
-- > 9> IF V1 > 0 THEN

>-- ------- -..-----

image(’’x”); -- Reads the value of x at the current execution location.

-->>>> Error using path “x’!: The object is dead here

-->>>> and has currently no value.

Ezample9: Access toanriable xwMAhmno comecttiue atthecumti mecution location (Hne9).

property(5) is lost. Themodlfication of thevalue ofa

vsriable from acommon subexpression haa no effect on

the optimized calculation ofthe common subexpression,

even ifit isdone at the breakpoint Hwhich precedes the

calculation of the common subexpression in source level

terms. Property (5) is indirect contradiction to code

optimization technique for common subexpressions. No

weaker property ia known which guarantees the effect

logically expected at source level when modifying the

value ofavariable with the Debugger.

Either we dispense with the optimization of common

subexpressions or we accept the uncertainty that the

modficatio nofavalueofa Variable with the Debugger

may not show the expected effect. Finding solutionsto

thieproblem ia stillanope nresearch topic.

Register allocation. The code optimization tech-

nique of register allocation for objects [9] affects prop-

erties (3) and (4). With this technique many program

objects may be kept in registem during their life time.

The association of program objects to registem is not

unique: An object may live in different registera at dif-

ferent times. The association becomes unique only with

respect to a certain program location. Conversely, a

register may be associated to different objects at the

same time (see example 5). This contradicts property
(4). If the value of such an object is modified then the

values of all other objects sharing the same register get
modified at the same time. A desirable reaction of the

Debugger is to refuse the modification of one of these
objects with a corresponding comment, but to allow an

explicit modification of the involved register (see exam-

ple 6).

Mined subprograms. Mining of subprograms af-
fects properties (1) and (3). Property (1) is affected

insofar as inlining destroya the unique mapping of a
breakpoint to a single object code address. In order to
keep property (1) the Debugger must be able to aeso-
ciate a breakpoint to a correapondmg object code ad-

dress in each incarnation (at a call site) of the Mined
subprogram.

25

. . . Program csel wae started and then stopped at line 5:
.- > 1: PROCEDURE csel IS
-. > 2: a, c, x : integer :=0;
-..> 3: PROCEDURE p (a,c : IN OUT integer; b : boolean) IS
--> 4: BEGIN
--> 5> a := a * a;
-->------------- -

-- >
-- >
-- >
-- >
-- >
-- >
-- >
-- >
-- >
-->
-- >
-- >
-->
.- >
-- >
-- >

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

WHILE b LOOP

IFa=cTHEN

x := x + 2;

c := l/a + a*a;

c :=~ - 1;

ELSE

x :alx- 2;

c := l/a + a*a;

c := c + 1;

END IF;

END LOOP;

c := a * c;

END p;

BEGIN

p (a,c,true);

END csel;
step; -- Executes one statement and stops again.
-->BRRAK 8 STEPPED THROUGH to
--> 6> WHILEb LOOP

>-- --------------

step;

-->>>> Program abandoned due to

-->>>> ~~dled exception .constraint_error - raised at:

-->>* #MAINQl p’3’BODY. (6,7). (9,19)

-->>>> Location is part of a common subexpression:

-->>>> previous break location: .csel ’BODY.p’3’BODY. (6,7)

-->>>> next break location: .csel’BODY.p’3’BODY. (6,7).(7,10)
-- > 9> c := l/a + a*a;
-..>---- ------.. ------- ------- -

Ezarnple 4: Shows the reaction of the Debugger if an exception is raised “ too early”. Instead of reaching the if-statement after the
last step the exception constraint -error is raised. The expression in line 9 is shown as the reason for the exception. Additionally the

user is informed that thb expression is a common subexpression which is calculated between the breakpoints in line 6 and 7. However,

the other source of the cornrnon subexpression in line 13 is not ehown.

Property (3) is affected insofaras inlining may cause
difTerent access paths to the parametem and local ob-
jects at each incarnation of an irdined subprogram. An
incarnationof an inlinedsubprotzram does not need its
own activation record. Thus, in order to reconstruct
the dynamic calling sequence ofsubprograms the code

ofeach incarnation ofan tied subprogram must be

mappabletothe source location ofthesubprogram call.

In order to access the parameters and local objects of

anincamation ofaninlined subprogram, the Debugger
needs amapping ofthese objects to their access paths.

Particularly in view of the automatic inline optimisa-
tion of compilers, it is highly desirable that the De-

bugger user interface treats inlined subprogram calls

Iikenormalcalle. The user shouldn't need to bother
whether a given subprogram is inlined or not.

Debugger tables for optimized Ada code. In

the Alsys Ada System forMIPS five kinds of Debugger

tablesexist:

1. Breakpoint table

It contains a mapping of breakpoints onto relative

object module addresses.

2. Source location table
It contains a mapping of relative object module

addresses onto source locations.

26

3.

4.

5.

Register table

It contains a mapping of Ada objects and source

locations onto registers.

Inline symbol table

For each incarnation of an inlined subprogram it

contains access path descriptions for the parame-

ters and local objects of the subprogram.

Linker table

It contains a mapping of object modules onto ab-

solute addresses.

The four first tables contain information associated to

compilation units. Consequently they are kept in the
Ada program library [1, ~10.4] together with all other

compilation unit specific data. In contrast the linker
table refers to the Ada program as a whole. It is stored
together with the executable object code of the pro-

gram.

To address Ada objects not kept in registers, the Alsys

Ada Debugger uses the same information from the Ada

program library as the compiler. No additional De-

bugger tables are necessary for this information, so un-

necessary information duplication is avoided. However,

the Mine symbol table information needs to be stored

permanently only on behalf of the Debugger. The Com-

piler needs this table only temporarily for the currently

compiled unit.

The information kept in the breakpoint table and the

linker table corresponds to what is offered by most of
the programming environments for high level program-

ming languages. If an exception occurs, the Debuggers

of these environments assume that the object code be-

tween two breakpoints is contiguous. Thus, using in-

terval analysis, they may associate the object code ad-

dress where the exception was raised with a breakpoint.

With this method, neither is the accuracy of the shown

source location of a raised exception as in example 1

achievable, nor is support provided for the user if an

exception is raised within a common subexpression. In

the latter case, taking example 4, the Debugger would

show the line of the while-loop, where no constraint_

error could be raised according to source level logic!

The accuracy of the source location shown and the
support for the user if an exception ia raised within

a common subexpression is achievable with the newly

developed source location table. This table makes no

assumption on the order of the object code between

breakpoints. Together with the linker table, it returns

a source location accurate up to the Ada expression

level for each object code address. Additionally, for
each instruction a note is made showing, whether it is

part of a common subexpression. As source location of
an instruction which is part of a common subexpres-

sion, one of the source locations which represent the

common subexpression is chosen arbitrarily. As shown
by example 4, only this one source location is reported

to the user. The costs of saving all of the associated

source locations to be able to show them to the user

are unjustifiable and stands in no relation to the bene-

fit for the user.

The register table is a newly developed Debugger ta-

ble as well. Besides the mapping of Ada objects and
source locations onto registers this table contains an

entry showing for each object, whether the object ever

lives outside a register.

Measurements with the Alsys Ada System for MIPS

have shown that about half of all objects in the reg-

ister table never live outside of registers. Thus, these

objects have a precise liie-time description. These ob-

jects either have a current value in a known register or

they are dead at the given source location (see example

3). For the other half of these objects the validity of

the object values is certain only as long as the values

are in a register. If the user requests the value of such

an object at an execution location where the value is

not in a register, then (s)he gets the value in the mem-

ory location of the object together with a warning that

the value may be invalid due to code optimization (see

example 7).

The uncertainty originates in the fact that at some

source locations only the dynamic control flow can tell

the validity of an object’s value. In principle a fur-

ther refinement of the life-time information for objects

is possible; however, so far it was found to be too costly

to implement.

Besides the display and modification of values of ob-

jects held in registers, the register table supports the

disassembler of the Debugger in the association of reg-

ister operands with Ada objects in instructions. Ad-

ditionally the disassembler tries to associate address

operands with source locations. Where it succeeds, the

operands are displayed twice separated by a “ =“ char-

acter (see example 5). To the left the operands are

shown in Ada form, to the right in assembler form. The

infomnation in the register table is precise enough for
the disassembler to distinguish the association of a reg-

ister with two different objects within a single instruc-

tion (see example 5, instruction at address 100018C).

ThB form of machine code listing helps the user to map

optirniaed object code to its source code. It supports

the method of code-verification often applied to safety-
critical applications.

Treatment of irdked subprograms. The treat-
ment of inlined subprograms by the Debugger is a cost

27

debug(’’tool9O5”) ;

-->PROGRAM .too1905 STARTEDAT
-->>* #MINOl pa’SPEC. (3,7)
-. > 1: PROCEDURE too1905 IS
-- > 2: PACKAGE pa IS
--> 3> V1 : integer := 3;

>-- ------- -----..-

-->
-- >
-- >
-- >
-->
-- >
-->
-- >
-- >
-- >
-- >
-- >
-- >
-- >
-- >
-- >
-- >
-->
-->

4: v2, V3 : integer;

5: END pa;

6: USE pa;

7: V4 : integer := 4;

8: PROCEDURE put (i : integer) IS BEGIN pa.vl := i; END;

9: PROCEDURE pp IS

10: v: integer :=pa.vl - 111;

11: BEGIN

12: v :=V+.I;

13: put (v);

14: END ;

15: BEGIN

16: PP :
17: VI :=V4 - Vl;

18: V2 :=v4 - v1;

19: V3 :=V4 - Vl;

20: V4 :=v1+v2+v3+ (v4-vi);

21: pp ;
22: END too1905;

show_machine_code(address(l’17”)); -- disassembles from line 17

-->.too1905’BODY. (17,4):
-->10000184 0 sub vl.,v4,vl = $14,$15,$14
-->10000188 4 Sw v1,-64($30) = $14,-64 ($30)

-->(18,4):
-->1oooO18C o sub v2,v4,v1 = $15,$15,$14
-->10000190 4 Sw v2,-68($30) = $15,-68($30)

-->(19,4):

-->10000194 0 Sw {v2 ,v3} , -72($30) = $15, -72($30)
-->(20,4):
-->10000198 0 add $14,v1,{v2,v3}= $14,$14,$15
-->1O()()O19C 4 add $13,$14,{v2,v3} = $13,$14,$15
-->10000 lAo 8 add v4,$13,{v2,v3} = $15,$13,$15

-->1OOOO1A4 12 Sw v4,-76($30) = $15,-76($30)

-->(21,4):

-->1OOOO1A8 O jal ENTRY .too1905’BODY.pp’9= 100001C4

Ezample 5: The Ada objects@ and V3 are aasigned to the same register 15 in the cede for mu... lines 19 and 20. ln the disassembled

code this is shown by {v2, V3 }. The dkesembler of the Debugger tries to associate the operands of each instruction with Ada objects

respectively source locations. Where it succeeds, the operands are displayed twice separated by a” =“ character. To the left the operands

areshown inAdaform, totheright inaaeemblerform.

28

set_break(’’tool9O5.2O”) ; -- Sets breakpoint in the same program

-- as in example 5.

-->BREAK 6 defined

go;
-->B~ 6 >* #MAIN@l too1905’BODY. (20,4)
-- > 20> V4 :=VI+V2+V3+ (v4-vi);

>-- ------ ..----

assign(’’pa.v2!’ ,905);
-->>>> Assig~ent to object denoted by ‘tpa.v2° rejected. The object is

-->>>> currently held in a register shared by the following objects:

-->>>> .too1905’BODY.pa’SPEC.v2

-->>>> .too1905’BODY.pa’SPEC.v3

put-line(string(register-of(’’pa.v2”))); -- Shows the register of v2.
-->R15

image(’’pa.v2°);
-- > -107

assign(r15, ’f905”); -- Assignment to register is allowed.

image(’~pa.v2’J);
-. > 905

image(’’pa.v3”) ;
-- > 905

image(r15,typ=>’’integer’~) ; -- Interprets register contents as of

-- the given type.

-- By default they are displayed as

-- address values with base 16.
-- > 905

Ezarnple 6: Modification of an Ada object V2 from the program of example 5, which is associated to the multiple shared register 15.

problem whichis far from been solved bymost Debug-

gers. It causes a considerable additional effort within

the compiler generated Debugger tables and within the

Debugger implementation. Because of lack of space this

topic is only briefly discussed here.

In order to be able to access the parameters and local

objects ofaninlined subprogram, an additionalsymbol

table for each incarnation of the inlined subprogram is

kept inthe Debugger tables because these objects may

be addressed differently in each incarnation depending

on optimization.

In the Debugger tables, the different incarnations ofan

inlined subprogram must be distinguishable with re-

spect to source locations in order to be able to recon-

struct the dynamic calling sequence of subprograms.

Ifthe user wishes to set abraakpoint into an inlined

subprogram then the Debugger implementation must

takecarethata breakpointisplaced atsllincamations

of the inlined subprogram. Thieis only possible ifall

calls ofa subprogram are enumerable by the Debug-

ger. However, the implementation ofthis enumeration
withinthe Debugger tables and the Debugger was given

Iowerpriority and postponed. In view ofthe automatic

Mining optimization it will be reconsidered.

So far the distinguishability of different incarnations

of inlined subprograms has been implemented in the

Alsys Ada System [10]. Consequently, the user must

explicitly set a breakpoint into each incarnation of an

inlined subprogram in which (s)he wants to stop the

program. The distinguishability is implemented in such
a way that each source location in the breakpoint table

and the source location table is represented by a list of

source positions whose prefix cent sins the source posi-

tions of all enclosing inlined subprogram calls, and the

last element of the list contains a source position within

the innermost inlined subprogram.

Cost of Debugger tables. By applying proper com-

pression techniques, the space for the three Debugger

tables breakpoint table, source location table, and reg-

ister table was reduced to about 6-8% of the total space

required for a single compilation unit in the Ada pro-

gram library. The inline symbol table for a compilation

unit make up for another 3-4%. The share of the linker

table with about 1% of the object code size of a program

is almost negligible.

The compilation of the PIWG benchmarks [11] into an

empty Ada program library showed the following per-

centage results with respect to the total Ada program

library size:

29

show ; -- Shows the source at the current execution location.
-- > 15: BEGIN
-- > 16: PP ;
-- > 17: VI :=V4 - VI;
-- > 18: V2 :=v4 - v1;
..> 19: V3 :=V4 - Vl;
-- > 20> V4 :=v1+v2+v3+(v4 -vi);

>-- ------- -.---

-- > 21: PP ;
-- > 22: END too1905;

put_line(etring(access_to(’’pa.vl”))); -- Returns the accessibility

-- of the object pa.vl at the current execution location.

-->IN.REGISTER

image(’’pa.vl”) ; -- Returns (the image of) the value of pa.vl.
-- > 111

etep; -- Executes one statement and stops again.
-->B~ 14 STEPPED THROUGH to
-- > 21> PP ;

>-- ------- ----

put-line(string(access-to (“pa.vl’’)));
-->IN_MEMIJRy_iJR_N()_VALuE

image(’’pa.vl”) ;
-->>>> The value ‘t 111” of object ‘!pa.vl!~

-->>>> may be invalid due to code optimization.

Ezample ‘7: Shows the reaction of the Debugger on a ueer request for the value of object pa.vl at a source location (Line 20) where

the value of the object lies in a register and at a source location (Line 21) where the value of the object does not lie in a register.

Breakpoint tables 2.7 %

Source location tables 3.5 %

Register tables 1.5 %

Inline symbol tables 3A %

Sum 11.1 %

The self-compilation ofthe Alsys Ada compiler intoan

empty Ada program library showed the following per-

centage results with respect to the total Ada program

Iibrary size:

Breakpoint tables 3.2 %

Source location tables 1.8 %

Register tables 1.4 %

Inlinesymbol tables

Partial sum 6.4 %

The cost of the inline symbol tables for the compiler

was not available but is expected to be in the same

~ge of3-4% as with the PIWG results.

Conclusion. Debugging of optimized Ada code is

possible. Thia has been demonstrated with the devel-

opment of the Alays Ada System for MIPS. However,

the effects of optkization may not and shouldn't be

hidden from the user. Trying to keep uptheideal De-

bugger model would mean hiding the effects ofopti-

mization.

The goal of the debugging of optimized Ada code is

to make transparent the effects of optimization. The

described qualities ofthe Akys Ada System Debugger

contribute to achieve this goal.

The memory requirement for the Debugger tables is

low. For aprogram the size of the Alsys Ada System
compiler this ia in the range ofll% of the total infor-
mation that is stored in an Ada program library.

The problemofkeeping upproperty(5)of theidealDe-

buggermodelwhile atthesame time handling common
subexpressions in the best possible way still remains un-

solved.

30

Acknowledgements. Jakob Schauer contributed sig-

nificantly to the design and implementation of the reg-

ister table. He made the register allocator generate the

contents of the register table. Peter Kleiner contributed

much to the design and implementation of the Debug-

ger tables and their exploitation within the Debugger.

I pemonally want to thank our development team for

their good collaboration on the Debugger issues.

Short Biography. Peter Dencker received his diplo-

ma (masters) in Computer Science from the Univer-

sity of Karlsmhe in 1978. Diploma thesis: A portable

LALR(l) Parser Generating System (PGS). Research

assistent of Computer Science at University of Karla-

ruhe: Language design and compiler construction pro-

jects for the programming languages LIS and Modula-2.

Joined SYSTEAM KG in 1984: Responsible for the

design and implementation of a retargetable debugger
for the SYSTEAM Ada System. PhD thesis (Febru-

ary 1985) on “Generative attributierte Grammatiken”

an extension of attributed grammars to allow for the

generation of stmcture trees in the course of attribu-

tion (better known as “Higher Order Attribute Gram-

mars”). Between 1986 and 1989 SYSTEAM’S team

leader of two European Community funded projects

DESCARTES and Ada-IDAS. As of September 1990

Product and Marketing Manager of Alsys GmbH & Co.

KG (former SYSTEAM KG).

References.

[1]

[2]

[3]

[41

[5]

The Programming Language Ada Reference

Manual,

American National Standards Institute, Inc.

ANS1/MIL-STD-1815 A-1983,

Springer Lecture Notes in Computer Science

155, 1983

Larry Weber

Conversion factors, Systems International, June

1990, pp. 48-50

Polle T. Zellweger

An Interactive High-Level Debugger for Control-

Flow Optimized Programs, Proceedings of the

ACM SIGSOFT/SIGPLAN Software Engineer-

ing Symposium on High-Level Debugging, Sig-

plan Notices Vol. 18, No. 8, August 1983

John Hennessy

Symbolic Debugging of Optimised Code, Trans-

actions on Programming Languages and Sys-

tems, VOI.4, No.3, July 1982, pp. 323-344

Gerry Kane
MIPS R2000 RISC Architecture, Prentice Hall,
Englewood Cliffs, 1987

[6]

[7]

[8]

[9]

[10]

[11]

Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullmann

Compilers - Principles, Techniques, and Tools,

Addison-Wesley Publishing Company, 1986

Rolf Holzapfel, Jakob Schauer, Manfred Daus-

mann

Aleys Ada System, AIM Optimizer Overview,

Alsys Document No. 24/88, 1988

E. Morel, C. Renvoise

Global Optimisation by Suppressing of Partial

Redundancies, Communications of the ACM,

Vol. 22, No. 2, February 1979

James R. Larus, Paul N. Hilfinger

Register Allocation in the SPUR Lisp Compiler,

Proceedings of the ACM SIGPLAN ’86 Sympo-

sium on Compiler Construction, Sigplan Notices

Vol. 21, No. 7, July 1986

Alsys Ada System, User Manual for MIPS

R3000/RIsc/os,

Alsys Document No. 5/84, 1990

Ada Performance Issues, Ada LETTERS, Vol.

10, No. 3, Winter 1990

31

