
MANAGEMENT CHALLENGES AND TECHNIQUES ON A

LARGE ADA PROJECT

Capt. Richard W. Root, USAF/ESI)

Mr. Gerard LaCroix, Mitre Corporation
Mr. Michael Springman, TRW Systems Integration Group

Abstract

‘I’he Command Center Processing and Display Sys-
tem Replacement (CCPDS-R) is a large U.S. Air Force
Ada application being successfully developed using an
incremental clevelopment and test process. The first
subsystem delivery was made to the Air Force in 13e-
cember 1990, consisting of over 280,000 Ada source lines
of code, operdor display consoles, ancl data processing
equipment. Since contract award in June 1987, a nnm-

Ler of management challenges have been addressed by

the Government procurement agency (Electronic Sys-

tems Division, with support from the MITRE Corpo-

ration and SDAS contractor) and the clevelopi ng con-

tractor (TRW S%vstems Integration Group). This paper

rikcusses management actions taken to adclress key is-

sues, such as:

1.

2.

3.

4.

5.

How to obtain visibility into true software develop-

ment progress.

How to run an efiicient formal test program as

new increments of capability are produced and in-

tegrated.

How to achieve and maintain software productivity

that is higher than industry averages for real time

systems.

How to buildin quality throughout the incremental

development process.

How to retain and motivate the software staff on a

multiyear development project.

Various aspects of the incremental development ap-

proach, features of the Ada language and support envi-

ronrnen t, and characteristics of the message-based AdN

design are discussed as they relate to the above is-

sues. Topics include the use of cJesign walkthrouglw;

formal demonstrations of functionality; top-dvwn inte-

gration; early development of the architectural and s,vs-

tem service suftwme base; delivery of operational capa-

bility via series of tested software builds; softwart! maJl-

agcrnent metrics; t mcles bet ween C!P [J utilization nocl

throughput; creation of software tools to aid the de-

velopment process; standardized task-to-task comnluni-

calions; reuse 0[design, code, and people; lltJw-duwn

of award fees; timely commitment to requirements and

design assumptions and the content of incrernentrd for-

mal tests; management of concurrent developments; and

minimization of breakage as new functional increments

are incorporalecl.

13ackgronnd

System Description. CCPIIS-R provides mis-

sile warning information within the Cheyenne Mountnin

Complex (CMC) for the North American Aerospace De-

fense (N ORAD) Command. CCPl)S-R, processes and

displays Integrated Tactical Warning/Attack Assess-

ment (’l’W/AA) data for the National Command Au-

thorities and allies. Satellite sensors and strategically lo-

cated ground-based sensors transmit messages to the In-

tegrated TW/AA System notifying the National Cou\-

mand Authorities of any attack on the United States or

its allies. CCP DS-R serves as the central warning sys-

tcm for any attacks and gives the National Cmumrmcl

Authorities the information necessary to make the ap-

propriate retaliatory decisions. CCPDS-R processes the

sensor messages and displays the results on geogrrtpbic

and tabular formats.

‘1991 ACM 0-89791-445-7/91/1000-0387

387

http://crossmark.crossref.org/dialog/?doi=10.1145%2F126551.126590&domain=pdf&date_stamp=1991-12-01

A
1-
1
1
I
I
I
I
I
I +

OTHER ● INTEL
WA!3?41Nt3 “ SPACE DEFENSE
INDICATORS ● AIFi DEFENSE

---”--l=q==’””; [-”m
I

i-.. -..-. .-.. -..-. .-.. -..-...
~
I

~ &—I
i OPCC

I
I
I

I

II

I 11- !$g&W;M~ a
ANMCC

I TSRMIN4LS

I

—J
?

I
NMCC

I

I

I

I

—----_JI

----- ----- ----- —---- ----- ----- —— J

Earl
u MISSILE WARNING & PDS SUBSYSTEMS
m SAC SUSSYSTEM

5 NON-CCPOS-R
~

Figure 1: CCPDS-R System Diagram

futt Air Force Base, with an identical subsystem in-
stalled in the SAC Development Test Facility for soft-
ware maintenance and support. The SAC Subsystem, in
addition to the Missile Warning Subsystem capabilities,
has additional functions for Force Management /Force

Survivability. The third subsystem is the Processing
and Display Subsystem (PDS), which will be placed at
various locations throughout the world in support of

the Joint Chiefs of Staff, Nuclear Capable Commanders-

in-Chief, and Canadian Command Centers. The PDS

performs a subset of the Missile Warning Subsystem’s

processing. Its main function is to display to world-

wide commanders the same information that is being

displayed at the primary correlation centers (CIVIC or

OPCC!).

Development Approach. There have been six

increments (builds) of software for the Missile Warn-

ing Subsystcm. A key objective during the MW de-

velopment has been to maximize the amount of soft-

ware that is reusable for the SAC subsystem and the

PDS. Each increment of software employed a proto-

type and build approach which, in essence, breaks the
overall subsystem development cycle into a series of
smaller, more-easily manageable, development incre-
ments [Royce 1990-1]. This approach is characterized
by three milestones: Preliminary Design Wrdk through
(PDW), Critical Design Waikthrough (CDW), and for-
mal demonstration of the operational build contents.

Using the prototype and build approach (Figure 2),
CCPDS-R software development began significantly
earlier than would have been the case with a more tra-

ditional software development. By the time Of the hlis-

sile Warning Subsystem Critical Design Review (CD R),

over 75% of the code had been designed, integrated, and

informally tested. ‘1’be earliest software developc[l cr.)n-

sisted of the architectural and system services sotlware

base upon which all subsequent applications software

would depend. Thus, integration, which is historicall.v

the riskiest part of software development, has beeu an

388

early and continuing effort on the CCPDS-R. Program.
‘Traditionally, integration does not begin until well after
CDR. As a result, integration problems tend to surface
late in the development when their effects are magnified

by the pressures of schedule and the contention for re-

sources.

Progress Measurement. The Government and

the Contractor have’ instituted several useful tech-

niques for determining software development progress

on CCPDS-R [LaCroix 1991], including:

1!

2.

3. .

4.

5.

6.

Evolving demonstrated prototype code into the op-

erational configuration.

Meaningful design walkthroughs.

Early development of architectural foundation soft-

ware.

Incremental delivery of operational capabilities via

soft ware “builds”.

Formal demonstrations of functional capabilities.

Monthly comprehensive assessment of progress via

software management metrics.

To date, for example, the Missile Warning Sub-

system has had 6 PDWS, 6 CDWS, and 5 formal

demonstration-oriented requirements/design reviews, in

addition to various informal demonstrations. The Gov-

ernment and TRW management receive quantitative

summaries of progress via the regularly collected and

reported software management metrics. Actual ver-

sus planned progress is tracked for software staffing,

software size, development progress (Figure 3), inte-

gration progress , and test progress. Separate account-

ing is maintained for the percentages of the software

which have been designed, coded, standalone tested, in-

tegrated, string tested and documented. Similar metrics

are tracked for test procedures completed and require-

ments verified (Figure 4), Cumulative plots of open and

closed software problem reports and software documen-

tation problem reports are generated monthly. The sta-

tus of all action items resulting from formal meetings

is also updated monthly, along with plots of cost and

schedule variances. Recent examples of progress met-

rics for the PDS Subsystem are included in Figure 4.

Government Role in Development Process

Visibility is a key to determining the real status of

software development efforts. Visibility becomes even

more important when the software being developed is

large, complex, and time-critical, as is the case for the

CCPDS-R Program. The Government’s experience to

date is that there has been much more visibility into

true software development progress for CCPI)S-R than

other current and past programs. This visibility is at-

tributable to several factors.

Requirements Feedback. As discussed earlier,

the CCPDS-R Program employs a prototype and build

approach. By developing a prototype early, code is cle-

signed, integrated, and informally tested prior to any

formal reviews. This gives the Government an early op-

portunity to actually see how the contractor’s design

proposes to meet specific requirements, and provides a

vehicle for immediate feedback to the contractor. This

enables requirement interpretation issues to be surfaced

early, minimizing downstream requirement changes.

Design Wnlkthroughs. The PDW is au hlh-

mal technical design walkthrough that the contractor

conducts to review actual design products (prototypes,

Acla Design Language (ADL), graphic depictions). l’he

CCPDS-R walkthroughs are highly interactive, with the

Government (inc]uding the Users) ancl other program

organizations (e.g., System Engineering, Hardware llht-

gineering, Integrated Logistics) attending and activcl.v

participating. The walkthroughs are a more efrective

vehicle than formal design reviews for attendees to re-

ally understand the design concepts and determine if t he

design products will satisfy the requirements. Dmnon-

strations of prototype components complement the de-

sign presentations and enable the audience to actually

see the design in action. All questions and issues raised

during the walkthroughs are documented and formally

tracked to ensure timely resolution. Once it is agreecl

that the top-level design is complete and will satisfy

the requirements allocated to the build components un-

der review, the contractor continues design and develop-

ment to meet the next milestone, CDW. At the CDW,

again the Government and the contractor review the
detailed design products for the build components, and

observe their proposed operation via demonstrations.

After the PDW is conducted for the final subsystem

build, the formal subsystem-level PDR is conducted.

Because the software top-level design has been exhaus-

tively reviewed at the PDWS, the PDR presentation

concentrates on requirements issues and system-level

design issues, with a summary of what transpired at

the PDWS. The highlight of the PDR is a compre-

hensive formal demonstration of the components protm

typed/developed and integrated to date, which clccmly

shows the PDR attendees how the system is being

implemented. Similarly, the subsystem-level CDR is

389

I PROTOTYPES
I

T.,. ‘RocEss
PROTOIYPING

Pow CDW BUILD PROCESS

TOP-LEVEL
DESIGN DETAILED

DESIGN CODE &
lNTEGRAIE WITH

TURNOVER FOR

I

INFORMAL TEST PREVIOUS BUILD
+ DEMONSTRATION

AND FORMAL
TESTS

● REVIEW OF COMPONENT SPECS = REVIEW OF COMPONENT AND

“ FOCUS ON PROGRAM STRUCTURE UNIT SPECS AND BODIES

“ DEMO BASIC ABILllY TO
COMPILE. LINK, & EXECUTE

● DEMO DETAILEO OPERATION

Figure 2: Prototyping and Build Processes

conducted following the final build CDW, with a for-
mal demonstration again highlighting the activities.
The formal demonstrations enable the Government to
“touch and see” the results of the design. By the time
the CDWS and the formal demonstrations are complete,
most of the code (over 90?70for the MW Subsystem) has
been developed and integrated, and is in a working state
(although not yet completely formally tested).

Early Arcllit ect ure Valiciatio~~ The earliest

builds of software developed by the contractor consisted

of the architectural and system service software base.

This base software is the integration framework for all

the various tasking done in the CCPDS-R Program.

This base, consisting of the Network Architecture Ser-

vices [Royce 1989] and the software architecture skele-

ton, included reusable node managers, process execu-

tives, and task executives. These components permit
. .

apphcatlons developers to concentrate on the function-

ality associated with their respective modules without

having to know the inner workings of the software in-

frastructure and the mechanisms by which Ada tasks

communicate with other Ada tasks. Thus, the internal

integration of all the difFerent tasks that needed to be

accomplished for CCPDS-R was completed early in the

program.

This is a significant problem that most Government

programs currently have in the xrftware requisition pr-

ocess. Typically, a large software-based system consists

of thousands of requirements that the Government spec-

ifies and the contractor refines. The contractor begins

to concentrate on the indi}-idual requirements and fails

to realize the big picture: the integration of all the indiv-

idual requirements into the total system. This is very

evident when you look at Air Force software programs

that eventually purchase new hardware and complctel,y

redesign the original software to incorporate minor ml-

ditional tasks or requirements. By the contractor es-

tablishing the architecture early, the Government can

390

TURNED OVER TO SWENC3

~LyAoA PIANNED $&p %“ +,: A

o 10.3 t 8.3 100% o
0 9.0 9.9 ice Y. o

1.5 120. I 130.7 94% 2.8
.5 4s. I 37.5 85%

42 17.0 21.9 77’% .:

6.2 II 200.3 2!6.3 91% 3.8

“ lURNSO OVER + TOTAL KSLOC

%
% tm -- DESIGNEDICODED m

m— da

: 80—
~ 70—
p 20—

2=u+Q’4~-&m
,4”

(. 50—

/

●
~ 40—
T 30— <

● *

E 20— ●

to

Ill lilllll 1111111lllllllllllllll ~11111
20 25 30 35 40 45 50 5 so

CON7NACT MONTH

~’;tiiw
20 25 30 35

CON~ACT MOIWH
I

-

Figure3: Example Development Progress Metrics for PDS

validate and approve the architecture, including growth

and flexibility considerations, and enable concentration

on implementing and verifying the individual require-

ments. The integration, which is usually the most com-

plex portion of a software program, is accomplished ear-

lier and incrementally, lowering the risk of downstream

integration problems (see Figure 5).

This solid architecture foundation has provided the

Government with software that exhibits high quality

and reliability (i.e., meantime between critical failures).

Even though the contractor is still completing devel-

opment, reliability testing conducted by the contractor

predicts a software reliability in excess of 10,000 hours.

This reliability is attributable not only to the early

robust architecture builds, but also to the tools that the

contractor has developed to generate code which would

otherwise be labor-intensive and repetitive, and hence

prone to human error. For example, the CC! PI) S-R Pro-

gram uses a variety of tools to generate compilable Ada

code from ASCII and pseudo-English data inputs. The

principal tools (Figure 6) consist of 30,000 Source Lines

of Code, and are used to generate over 300,000 oper-

ational source lines of code or database records. This

is an expansion factor of 10 to 1. Verifying the proper

operation of the tools that generate the code products

is easier, less time consuming and less error prone than

manual verification of all of the tool generated code it-

self.

Software Test Approach. The CCF’ DS-R form-d

software test program was defined early, involving ex-

tensive, coordinated effort by the Government and the

contractor to devise a comprehensive, efficient test con-

cept that complemented the incremental development

process [Springman 1989]. The resulting test progrmn is

multi-level, including Standalone Tests (SATS) for CSC-

level requirements verification, Engineering String Tests

(ESTS) for integrated CSCI requirements verification,

391

I Reauirernents Verification Planned/ Cornrdetecf I

TEST PHASE NAS PGSV PDCO TAS Pco ‘QI?R; TOTAL

Previously Verified

(Reused CSCIS) 237 0 0 221 0 0 ~ 58

Build PI SAT o 69 66 0 25 0 160

EST1 o 21 101 0 6 0 128

EsT2/FQT
n , u , , , 1

0 158 314 3 53 12 540

TOTAL 237 I 248 481 I 224 I 84 12 1286

Figu~e 4: PDS Software Requirements Verification Metrics

and Formal Qualification Test (FQT) for verification of

requirements usnng the full system software and harcl-

ware configuration. For the MW Subsystem, there was

a formal SAT phase and a formal EST phase associated

with each major incremental software build, with a sin-

gle I?QT at the end.

The Government’s role in the test program is criti-

cal. The C70vernment must witness all formal require-

ment verification activities, accomplished per approved

test plans and procedures. Government test reviewers

must interact closely with contractor test engineers to

ensure that procedure problems and requirement issues

are resolved in as timely a manner as possible. Oth-

erwise, the ongoing incremental development and test

schedules may be severeIy impacted, creating an unde-

sirable “bow wave” of deferred test cases. Because the

testing is incremental, with about 80?Z0 of the require-

ments verifred during SAT and EST phases, the number

of requirements to be formally verified at FQT is kept

to a level that is manageable by both Government and

the contractor.

Management Metrics. In addition to the for-

mal reviews and demonstrations, the productivity or

progress of the program has been monitored by monthly

quantitative software metrics reports [Andres 1990]. AS

described earlier, these reports track a number of is-

sues/resolutions over the entire program. The Govern-

ment has used the metrics report to provide insight into

difficulties the contractor is encountering. A specific

example occurred when the communications portion of

the software was exceeding performance budgets after

completion of development and turnover to the integra-

tion group. The metrics showed that additional man-

power was being allocated to this portion of code ancl

that the performance parameters were showing exces-

sive resource utilization. It signallecl the Government

to closely monitor the contractor’s actions to resolve the

problem, and to suggest alternative actions themselves.

As new metrics or ways to report metrics are dis-

covered, both the Government and the contractor Ilavp

tailored the standard metrics reporting to incorporate

improvements. This ensures that the metrics set re-

mains as useful for management purposes as possible.

Contractor Role in Development Process

Manageable Software Increments. The contrac-

tor has the difficult task of developing a large. complex

program, verifying it against the Governltlen~’s spec-

ifications, successfully passing all reviews and audits,

and delivering the entire program to the Government’s

satisfaction. By specifying incremental builds ol’ so(t-

ware, the application developers and testers focus on

smaller, more manageable sets of requirements. After

initial development was completed, the three milestones

(PllW, CDW, formal demonstration) became the pri-

mary means of solidifying the Government requirements

and the developed code. The primary purpose of each

of the three milestones was to enable the Government to

“touch and see” the working software, review the design,

and assess its satisfaction of the Government’s require-

ments in a working-level environment. This allowed the

Government to confirm/modify the requirements that

were being addressed, clear up any unresolved issues or

disconnects, and provide a focus for both the Govern-

ment and the contractor for future builfls and clevelop-

ments. This process was the major mcrms to conlmu-

nicate design progress and results to the Govern merit,,

ensuring that the development was addressing the re-

quirements and needs of the program.

Robust Architecture Fcmndntion Conlpo-

nents. The early development of the architec-

tural/system service software ensured its early avail-

ability for use by the applications programmers, and

its continuous, repetitious use contributed to its inher-

ent reliability. The software team was formed aroun~l

a highly knowledgeable team of Ada experts and soft-

ware architects, augmented by experienced applications

developers organized into manageable skill groups. The

392

% SOFTWARE
DESIGNED
COOED AND
INTEGRATED

~no

CCPDS-R

100

80
TRADITIONAL

DEMOS

60

BEGINS
40

20

10 29 30 40
MONTHS

50

f t t t
SSR PDR coil FQT

Figure 5: CCPDS-R Software Development and Integration Approach

team of Ada experts and software architects has been hence higher productivity. On the CCPDS-R Program,

responsible for the more difficult software code, i.e., the

architect u~al/syst em service software. This code effec-

tively isolates the applications developers from the com-

plex Ada constructs of tasking, rendezvous, time-slicing,

prioritization, etc. The net result is code appropriate to

the technical abilities of the individuals and hence re-

duced errors.

By establishing the architecture early, standard de-

velopment procedures were implemented. These include

sttmda.rd ways for developers to interface their appli-

cations modules with the reusable architectural soft-

ware components, standard ways for writing applica-

tions code using templates at both the appjicatiou “pro-

cess” and “task” levels, and standard style guidelines.

This results not only in fewer errors (3.5 per 1,000

Source Lines of Code versus 5-12 per 1,000 Source Lines

of Code industry-wide) but also in high maintainability

[Royce 1990]. The result is less labor to fix problems and

about 2/3 of the software errors have required less than

one day to Rx. (It should be noted that the CCPDS-R

software is still being maintained in the contractor’s de-

velopment environment. The Government has not yet

assumed maintenance responsibility.)

Using Metrics as Problem Indicators. The

software metrics provide clear indications concerning

specific problems that need to be addressed. Fur ex-

ample, as the development of the C~CPDS-R software

progressed, the metrics showed that the performance

margins were being exceeded, signaling to mauagcment

that action was required. The choices were t wofuld: (l)

optimize the software to make it more efficient or (Z) Hp-

grade the processors. Optimizing the software is lalx)r-

intensive and reduces productivity. Nevertheless, on a

few occasions software optimization efforts were under-

taken to speed response times and increase throughput.

On other occasions, the decision was made to upgrade

393

4 FILES
(16K LINES OF DATA) .—~

Bi*?Es
250 FILES

(QLOBAL INTERFACES ~
& OTHER RECORDS)

-“%*:;LE -

137 FILES
(9K LINES OF DATA) ~

ms~g”.

25K LINES OF DATA

–=1,,:3?”s

-M:::~:=::::,’=E ,

100 FILES ~

Figure 6: Tool-Generated Code/Databases

the processors because of two factors, First, the soft-

ware could be ported to the upgraded processors with

virtually no changes and hence no labor expenditure.

Second, the upgraded processors could be purchased at

about the same cost as the originally planned proces-

sors due to continuing advances in processor technol-

ogy. In either case, the metrics flagged management

early enough so that the performance problems could

be addressed with minimal financial or schedule impact

to the program.

Another problem identified from the metrics report

was the growth in requirements, resulting in decreased

benefit of the incremental testing methodology. This be-

came apparent when the number of requirements that

would have to be formally tested at FQT (which is a

short two week period) kept growing to an unmanage-

able level. To correct this, management decided to move

requirements to newly created formal Stand Alone Test

and Engineering String Test phases to reduce the num-

ber of requirements to be verified at FQT.

Using Metrics for Productivity Tracking. The

metrics reports readily show where progress is or is not

being made, and enables management to continuously

track team productivity. This program is experiencing

software productivity y in the range of 7 to 14 Ada Source

Lines of Code per staff-day, depending on the snbsys-

tem. Productivity y ranges are a function of how the code

is counted, which is complicated by differences in ~hc

amount of effort required to produce new code, nlocl-

ify previously developed code, reuse existing code, aml

generate new code using automated tools. The com-

putation is further obfuscated by the lack of industry

standards for counting code (the numerator of the pro-

ductivity equation) or for what labor to include (the

denominator).

The approach taken on CC! PDS-R to compute pro-

ductivity is:

394

1!

2.

3.

Weight new code and modified code equdls’ (only

lines of code actually generated or modified are

counted).

Weight reused and tool generated code based upon

the relative effort required to generate it when

compared to the effort required to generate new

code. This results in a multiplicative factor rang-

ing generally between .3 and .8 for reused and tool-

generated code.

Count Source Lines of Code by totalling carriage

returns in Ada Specifications and semi-colons in

Ada bodies; do not count “Comment” lines. De-

sign and coding standards dictate that enumerated

type, record type, and subprogram declarations

be declared with a single type/field/parameter per

line. This provides a more realistic accounting of

the engineering effort associated with defining com-

plex and/or voluminous data types.

Applying this approach to the Missile Warning Sub-

system code yields a weighted software productivity

of a.pproxirtlat,ely 7 Ada SLOC per stalF-rla,y, which is

about 4070 higher than the usually quoted industry fig-

ure of 5 Ada SLOC per staff-day. The major factors

contributing to this relatively higher productivity are

reuse of code and use of 1001s to generate code. III fact,

on the CCPDS-R Program, 35~0 of the developed anti

tool-generated code is being reused from one subsystem

to the next, and 40’ZO of the over one million total de-

veloped SLOC is being generated by means of tools,

The productivity rates for the PDS and SAC sub-

systems are projected to be substantially higher than

for the MW subsystem because of the reusability of

the software among subsystems, the maturity of the

code generation tools, and the experience of the Gov-

ernment/contractor team with Ada anti the tools. The

weighted productivity for PDS is projected at 14 Ada

SLOC per staff-day, with SAC projected at 10 per staff-

day.

Recent experience with the SAC software at the

SAC Preliminary Design Review shows the value of the

reusable software, flexible architecture, and incremental

development approach. Over 75~0 of the SAC Subsys-

tem software, which is estimated to be a total of 420,000

Ada SLOC, was integrated in less than 2 months for the

highly successful formal SAC Subsystem Demonstration

conducted at PDR.

Staff Retention. CCPllS-R was one of the first

major Ada projects undertaken by the Government

team and the contractor. Management on both sides

was acutely aware that true software successes on large

programs were few and far between, with a major reason

being excessive personnel turnover as the program pro-

gressed. To incentivize people to stay with the program,

especially the top performers, the contractor is flowing

down half of any award fee received from the Govern-

ment directly to the contractor empIoyees working the

program. l’he award fee potential, the attraction of the

application, the opportunity to work on a well-managed

Ada program, and a desire to be associated with a suc-

cess have all been factors in the contractor’s ability to

motivate and retain staff.

Summary

When comparing the CCPDS-R Program to other

programs which have had successful software develop-

ments (such as the Berlin Radar Program), certain sim-

ilarities stand out. These include the quality of the

documentation and test program, the close professional

working relationship between the corrt,ractor and Gov-

ernment teams, knowledge by both of the .joh to be rlIJne

and how to go about doing it, and continuity of key per-

sonnel. Such are the characteristics of a good, well-run
program,

Two additional factors contribute to make the

CCPDS-R Program an exceptional program:

1.

2.

The use of a flexible architecture characterized hy

reusable architectural components, standard task-

to-task communications, and standard applications

process and task templates.

The use of an incremental Ada software devel-

opment process model consisting of operational

code prototypes, frequent design walkthroughs, in-

cremental builds and testing, and demonstration-

oriented design reviews.

The use of a message-based design relieves the ap-

plications developers from the burden of creating soft-

ware for task-to-task communications; early intcgmtion

of the architectural/system service software and ap-

plications shells allow for their reliable use and reuse

throughout the development cycle: rmcl continuity of

knowledgeable staff, primarily within the corttrrictor

organization but also on the C~overnment acquisition

terun, ensures incorporation of lessons learned f(Jr sub-

sequent development activities.

In conclusion, the CC PllS-R software development t

approach is working. Performance, schedule, and cost

objectives are being met. The success enjoyed to da~e

has been clue to a combination of the capabilities pro-

vided by Ada technology the software development ap-

proach, and the dedication and expertise of the Gov-

ernment and contractor personnel. The constant com-

munication between the Government personnel and the

contractor personnel can not be emphasized enough. By

having this constant interchange of information, both

parties come away with a clear understanding of the

job.

This software development approach has resulted in an

environment characterized by a high degree of visibility

into true software development progress, high software

reliability, and high software productivity. The CCPDS-

R Program is a model for others to follow.

Biographies

CAPTAIN RICHARD W. ROOT is the Software

Chief Engineer for the CCPDS-R Program, U. S. Air

Force. Electronic Systems Division, Hanscom Air Force

!lase, ‘i~n.wachusetts. Capt. Root is responsible for the

entire system software (over 1,000,000 Ada Source Lines

of C!ode) including the design’s technical approach, ar-

chitecture integrity, system performance, and reusabil-

ity. Prior to this position he was a lead engineer working

on the B-l B aircraft responsible for aviation electron-

ics, flight software, survivability and vulnerability as-

sessment, and all future modifications to the aircraft.

He received a BS in Electrical Engineering (Computer

Engineering) from the University of Wyoming in 1985

and is currently working on an MS in the same field.

GERARD LACROIX is the Project Leader of the

CCPDS-R Program, MITRE Corporation, Bedford,

Massachusetts. He is responsible for the overall MITRE

system engineering support to the program. Prior to

.?une 1987, he was a member of the MITRB Software

Center and one of its fonnders. In 28 years at MITRE,

he has worked on a wide variety of strategic and tacti-

cal Command, Control, and Communications (C3) sys-

tems, including BUIC, AWACS, NADGE, Seek Dawn,

Igloo White, MC!E, GSTDN, and TDRSS. He received

an MS degree in Electrical Engineering from Carnegie

Institute of Technology in 1963 and a BS degree from

Lowell Technological Institute in 1962.

MICHAEL SPRINGMAN is TRW’s Deputy Program

Manager for CCPDS-R, responsible for all software ac-

tivities. He has been involved with the program since

its inception. His prior experience during 15 years at

TRW includes all aspects of the system/software devel-

opment cycle for a variety of C3 and avionics systems.

He received an MS in Applied Mathematics/Computer

Science from the University of Coloraclo in 1975 and

a BA in Mathematics/Physics from Southwest (MN)

State University in 1973.

References

[Andres 1990] Andres, D. H., ‘softw-

are Project Management Using Effective I’recess

Metrics: ‘I’he CCPDS-R Experience”, AFC.EA Mi[-

itary\Governrnent Computing Conference on .Yo~!.-

umre .&%girzeering, Washington, D. C., Jrmuary 1990.

[LaCroix 1991] LaCroix, G. R., “Experience with an In-

cremental Ada Development in Terms of Progress

Measurement, Built-In Quality, and Productiv-

ity”, Analytical Methods in Sofiwar~ Engineering

Economics Conference, .MITRE .Econonzic A nalywh

Center, McClean, VA, 29-30 April 1991.

[Royce 1989] Royce, W. E., “Reliable, Reusable Ada

Components for Constructing Large, Distributed

Mnlti-Task Networks: Network Architecture Ser-

vices (NAS)”, TRI-Ada ’89 Proceedings, Pittsburgh,

October 1989.

[Royce 1990-1] Royce, W. E., “TRW’S Ada E’roccss

Model For Incremental Development of Large Soft,-

ware Systems”, Proceeding~ of l%th international

Conference on Software Engineering, Nice, France,

26-30 March 1990.

[Royce 1990-2] Royce, W. E., ‘(Pragmatic Software

Quality Metrics for Evolutionary Software Devel-

opment Models”, Trz-Ada ’90 Proceedings, Decem-

ber 1990.

[Springman 1989] Springman, M. C., “Incremental

Software Test Approach For DOD-STD-2167A Ada

Projects”, T.RI-Ada ’89 Proceedings, Pittsburgh, oc-

tober 1989.

396

