
THE COSTS RELATED
To

MAKING SOFTWARE REUSABLE

EXPERIENCE FROM A REAL PROJECT

W. K Kmtz CDP
K Men

D. P. Olivier CDP

INTERME’TRK3, INC
San Diego, CA

INTRODUCTION, In the past few years, a great
deal of attention has been given to the topic of
software reuse and how to both design new systems
and make existing products of the software life
cycle reusable [1,2,3]. Unfortunately, many of the
previous discussions have not addressed the costs
associated whh, and the problems encountered in
taking systems, in various states of maturhy, and
proceeding to extract various functions from them
and making those functions reusable. This is of
particular importance in the Department of
Defense (DoD) communhy in which the softsvare
acquisition cycle is long, the associated costs are
high, and the need for reliability is often quhe
exacting. In an effort to better control costs, reuse
of existing systems is being stressed. Increased
emphasis is being given to the use of libraries of
government-owned off-the-shelf software (GOTS)
life cycle components for both new development
and post deployment support and hs associated
operations and maintenance (O&M) phase [4,5].
This paper describes the costs experienced in
incorporating software components into an organ-
ized reusable software development environment
(RSDE).

For the purposes of this discussion, a reusable
software component (RSC) consists of all of the
sofhvare life cycle products related to a particular
functional entity deemed to be reusable. Such an
entity could be at the traditional CSC or CSCI
level or down at the procedure level. The RSC
thus consists in turn of a collection of all of the
products used to specify that enthy such as, but not
restricted to

@1991ACM O-89791-445-7/91 /looo@37 $1.50

● descriptive text abstracts
● requirements
● Wmputer-aided softsvare engineering (CASE)
tool dia~rams
●

●

●

●

●

●

procedure design language (PDL) statements
sourw code
object code
compilation ‘scripts’
test suites (data and condhions)
test drivers

and
● any other associated documentation thought to
be pertinent.

Along with the challenges of preparing sofhvare life
cycle products for reuse is the accompanying need
to provide the prospective user of such products
with a capability to see a demonstration of the
candidate reusable life cycle product. This is a
problem we have addressed in our current work
and have collected some cost statistics associated
with it.

PROJECT BACKGROUND. One of our
government clients develops software for Navy
command, control, communkationsand intelligence
(C31) applications. At any particular point in time
there are at least a half dozen teams of software
engineers developing and testing C31 applications
for this client both at the client’s site and at a
variety of different geographic locations around the
United States. ~ical development consists of
systems ranging from 20,000 to 200,000 lines of
Ada code. Our client’s objective in establishing an
RSDE is to make stable RSCs available to a larger
circle of developers and to provide the capability
for developing systems according to an official
policy known as evolutionary acquisition [6],
candidate software components for the RSDE
come from sotiare which first and foremost is
identified as belonging to the tactical C31
application domain. Among specialized products

437

http://crossmark.crossref.org/dialog/?doi=10.1145%2F126551.126599&domain=pdf&date_stamp=1991-12-01

have parsers capable of processing select message
ypes and tactical decision aids (TD&), specialized
software products that are used to aid the field
commander in the making of immediate decisions
relating to the location of his own or hostile forces.

We have developed an RSDE which is hosted on
SUN Microsystems and derivative workstations, h
consists of an integrated development environment
supported by a sophisticated man-machine
interface (MMI) in which a reusable software lib-
rary (RSL) is a key part. In developing our RSL,
we have developed a specialized series of Prieto-
Diaz [7] facets describing our application domain
as well as key words within each RSC which are a
further refinement of our customer’s needs. We’ve
also provided a capability to demonstrate a number
of the RSCS by providing software test ‘harnesses’
for them. This demonstration capability will figure
in our subsequent discussion below.

Among the activhies relating to the development of
the RSDE included the production of a Reusable
Style Guide (RSG) describing the nominally accept-
able standards of documentation and source coding
style required for RSC product sets.

After examining a number of graphical user
interface (GUI) products, we designed and built
the RSDE user interface making use of the
TeleUSE(tm) GUI builder and the MOTIF envi-
ronment [8] which is consistent with the standard
operating environment (SOE) previously adopted
by the customer’s associated activities. This inter-
face mandated certain standards be followed
consistent with our RSG previously mentioned.
Along with these standards comes the costs
associated with assuring that each candidate RSC
met these standards.

As we have worked with the ideas embodied in the
RSG, they have led us quhe naturally into the next
phase of our work which has been to use our RSG
as a basis in determining the potential reusability of

some existing systems of immediate interest to our
customer and to assess the costs associated with
using our standards to achieve this goal.

TASKS ASSOCIATED WITH REUSE. We have
found that much of the cost associated with reuse
to be related not only to the structure of a software
design and the software architecture produced from
the design, but also quite literally, to the physical

exertion associated with attempting to locate
enough of the pertinent parts and then on the
actual condhion in which the candidate RSC prod-
ucts are found. In only a few cases that we have
examined, did there exist a complete set of life
cycle products available for review, nor did all of
the products examined even remotely resemble the
format required for inclusion in our RSL.

Several examples serve to illustrate this quite well.
In the first case, through a search of a national
reposho~ h was found that there ‘appeared’ to
exist a language translator for a commercially-
based language to Ada. Upon browsing the
narrative te~ h was decided to request the source
code. Several days later the source code appeared
- on 3-1/2” PC-compatible diskettes. Since we had
no machines in our offices which could process
these, we transferred the data to 5-1/4” diskettes
using another machine located off site. Once this
was done the diskettes were then
telecommunkated from one of our office PCs to a
nearby SUN compatible workstation. Now began
the work of trying to compile all of the modules.
After overcoming several differences in Ada
implementations, we encountered a compilation
problem with a very large Ada variant record and
related CASE statement constructs deeply nested.
When we were unsuccessful in compiling this Ada
source code, we returned to the narrative and
made a series of telephone calls and written corres-
pondences in order to locate personnel familiar(?)
with this product. Some 30 days later, we received
a call with an offer to assist. Only then did we find
out that there was a ‘missing’ fiie. Several weeks
later we learn that perhaps this file cannot be
located at all!

In summary, this cost of reuse amounted to in
man-hours as shown in the following table:

Example 1- Cost of Reuse

(-hfaAIll)

1.0 Electronicxanningofnational reposito~lookingforcandidate produci
0.2s Request Product

0.5 Transfer from 3.5 to 5-1/4” media

20 Electronically transfer to SUN Workstation

20 Compilation Efforts

4.5 Miscellaneous long distance telephone call$ written correspondences

10.2S Man-Hrs Total (Thus Far) Across several Months

This effort amounted to the man-hrs of two (2)
professional software engineers for over one (1)
day just to prepare a product to then determine if
h is then reusable for use as a tool in making yet

438

another product reusable. This example illustrated
some of the unanticipated costs of reuse. ‘ho
specific components of such costs are: (1) unantici-
pated obstacle% (2) time lost to productivity (the
cost of ‘opportunity lost’)

ht this case the software to be reused/rehosted had
been in the condition we found it for a number of
years (without the missing file) yet it remained in
this state - with no one who had encountered the
problem having any one at a repository add a
caveat to the documentation. The other cost here
was associated with the lost productivity associated
with an RSC candidate we were planning to con-
vert (and include in the RSL) using this conversion
program. In the case of this reuse effort, the lost
productivity was measured as some eight weeks
during which we could have been using the conver-
sion program (or determining that it did not suh
our needs).

Another example serves to show yet a different set
of problems - even when the software engineer has
what he believes to be complete information. In
this case the software desired for reuse was a
message handling subsystem which operated as a
part of a larger system in a MOTIF user interface
environment. A sofhvare engineer whh another
organization had extracted the subsystem from the
major system in which it is a part. Our customer
had found a great deal of interest in other agencies
for obtaining this subsystem’s functionality, in its
entirety. Our task was to make this subsystem
reusable by first transforming h into a free-standing
product, capable of being demonstrated as a part
of the RSDE. Unlike the previous discussion, this
product was an established subsystem, known to
function correctly within its original host context
and application domain. In this case we were
seeking to make this subsystem reusable and
demonstrably free-standing from the former and
also quite possibly the latter. The man-hours
associated with extracting this subsystem were as
shown in the following table (and include a mini
mal amount of documentation to show ltow to
install the product):

Example 2- Cost of Reuse

(Man-Hm)
4.0 Time needed to get the extracted product ‘up and running’ (on the host

network) upon receipt from extraction. This time included:
● time sp.mt copying files from engineer’s direct.ny

● attempting to run the executable (as instructed by the original ex-

traction engineer), getting an error message
●tcied to follow instructions provided hy the engineer in a README

file.

● Overcame seveml problems relinkin~ primarily because Iinklibraty

had been moved and compressed by system staffwbkb required their

help to fix)
● README instmctiom specified editing an executable file in order

tosetenviromnentvariable (UNIXoperatingsystem processcstypically

require tbme).
● Tried various ttdngs in effort to get environmental variables set

properly. Left it with executable unable to logon to the data bam

management system (DBf@ required.

0.5 Recontacted the extraction engineer, took notes on suggestions

pccwided.

3.0 Rebuilt DBMS tables because they bad been w+ped out in a DSMS

tvasb. Lengthy efforts M! track problems tbmugb SOW= coda. Finally

gotitmnningattercreatingseveral addti-ledmmenmlvedablm

and copying ccmfigfiles into it based on tbe system administmtofs and

extm%ion engineer% recommendation.

20 Attempted to reinstall in mother directory (ultimately umummfuf),

making entry in databaee for m modifying instzdlatiem inetmcdom,

(and writingthiss.mmacy beingrcad kc.). Copied all filestotape for

installation on singular workstation at our offtax.

3.0 Devoted time to removing dependenq on Iibou.a. This involved

stubbing out the error lo.ger module and modi&ingyet anotbersjmem

get-con fig routine.

● created e blenkvemion of table “security’ u8inginfocmation gleaned

from the source rode. Tbk stops the error message “OSOf3 -943’

from appearing wbicb embles w to w the aubsystcm as @free-

standing demonstrable product
....-———. —.

12.5 Total Man-Houm Spent across several weeks

A vital lesson is illustrated here @st because the
product is made free-standing and demonstrable at
the customer’s site does not necessarily lead to the
conclusion that it witl operate in that manner at
other sites. In this case, the unexpected problems
experienced were those associated with the require-
ment that a UNIX environmental variable to be
appropriately set and the removal of a dependency
of a security file access. These items had been
present in the customer’s network environmentand
absent on the single workstation in our offices.
Our offices represent a more realistic environment
more closely akin to that of a potential end user
since, typically, an end user will not necessarily
have all of the external hems present at the origi-
nal host she.

What written documentation existed (with which
this subsystem was accompanied) consisted on a
User’s Manual for a previous version of the soft-
ware. Written using MicroSoft WORD~, they are
currently only available for access on an Apple
Macintosh~.

The documentation issue is a critical one and can
add as much to the cost of reuse as any other
process. This is because of dependencies that need
to be documented often are not since the sofhvare
was probably built without reuse in mind. When
the software is made reusable, it is even more vital

439

that any dependencies be fully documented

As these examples have helped illustrate, one must
consider a widely varying number of possl%le
conditions when considering the costs associated
with reuse. As we’ve shown, the costs we found to
be (some totally unexpected, but typkal of our
efforts in the environment in which we are work-
ing) were

Source Files Incom~atibility. Individual source code
files were not readily accessible from diskettes into
the UNIX environment and had to be transferred
from the diskettes to the workstation through the
use of a UNIX ‘DD’ command which transferred
the entire contents of each diskette as a single file.

Source File Reformatting. An Ada utility program

had to be developed to search through source code

and properly format it into discrete software units.

RSC Abstract Develo~ment. Despite the written

documentation provided with the source code, that

documentation was not organized in a manner

commensurate with the extracted RSCk. Addi-

tional costs had to be budgeted to develop docu-

mentation consistent with the RSG for inclusion in

the RSL.

CASE Diagram Translation, Ahhough

CASE diagrams were provided, they were

unfortunately done using tools not compat-

ible with the CASE tool suite selected for

the RSDE. Although the diagrams could

serve only as electronic drawings, it was

decided to transfer them to the worksta-

tion environment. In order to rehost the

diagrams, (originally created with and

resident on an Apple Macintosh 11~), it

was necessa~ to convert their representa-

tion format from that of the .PICT format

of the Macintosh to the raster format re-

quired for the workstation. This converted
format was then communicated across an

ETHERNET~ interface from the Macin-

tosh to the workstation where the file

resides as a standard UNIX file.

Loss of time value of result due to unex-

pected problems in contacting appropriate

personnel, obtaining appropriate resourc-

es, etc.

Unext)ected couDling brought on by the

sophisticated dependencies created by the

network environments, operating system

process requirements and numerous com-

mercial off-the-shelf (COTS) and GOTS

support products required.

Now the more traditional work identified as a cost

of reuse wuld begin. During this phase of our

analysis, we encountered costs more akin to those

traditionally thought of as a part of reuse of exist-

ing productx

Closure Costs. The magnitude of the closure

required provides a great deal of information as to

the potential reuse value of the RSC. In the case

of source code candidates, too much code makes

the source code candidate cumbersome for reus~

too small a candidate limits the reuse to a highly

specialized function.

Facet Determination and Domain Analvsis. Once

closure was determined, the next step was to

determine which of the facets we had developed

could best be used to categorize the RSC. This

required additional application domain analysis to

determine, within the context of our RSL’S applica-

tion domain, how best to categorize this RSC. We

also assigned several ‘key words’ to our RSL for

this RSC as an additional refinement to the facets.

Document Research. Any of the documentation

provided with the RSC candidates requires at least

cursory examination in order to determine its value,

as well as to gain sufficient knowledge of the

software architecture to facilitate dismantling

products into RSCS.

Documentation Creation. Creation of documenta-

tion, beginning with the RSC abstract, and moving

on into CASE diagrams.

Confi~urationMana~ement, Each RSC’S associated

library units must be carefully tracked from the
time it initially enters the RSL on through the

various versions that are created. Such tracking

requires sufficient sophistication in order that if, for

example, the source code implementation in a

version changes, yet the level of the RSC documen-

tation is still consistent, that only the baseline

version of the documentation is maintained; not yet

another copy of the same documentation.

Some of the optional costs that may be incurred

440

include the following. of the application domain we have been cmtsider-

RSC Testing. Significant costs are incurred if a test ing. We are also considering an independent

suite must be provided in order to assure the research and development (IR&D) effort to auto-

quality of any sofhvare products. mate some of the steps in the domain analysis

process in order to decrease the associated costs

Environmental Demonstration Testing. Under [10].

some conditions it may prove advisable to provide

an on-line test environment to permit the RSL end

user with the opportunity to witness a demon-

stration of the RSC’S capabilities.

THE NEED FOR STANDARDS. Our rehosting

activities have quickly focused our attention on the

need for standards for costing reuse of existing

products in order to more accurately assess the

costs related to our future efforts. We have found

that the most efficient way to effect these stan-

dards, at this stage of our work, is to make use of

a reuse cost estimation form in the form of a

checklist as shown in the following figure.

LESSONS LEARNED. Software reuse, in short,

(and in the words of Boris Belzer), ‘takes bucks

and guts’ [9]. In a word, the barrier to reuse is

financial and managerial. Reusable software

doesn’t get built if no one’s willing to pay the price.

In our work we have learned that (1) many of the

costs relating to making software reusable are

those which need to be considered seriously and as

‘worst case’ scenarios, and not regarded as ‘could

never happen’; (2) our methods are workable but

successful require persistence, detective work and

not a little bit of good luclq (3) often the products

you seek were never conceived with reuse in mind,

they have been buih by persons no longer available

or with a vague recollection of the products; (4) as

an RSDE and its RSL are developed they must be

marketed in order to defer the costs of devel-

opment and amortise them over a community of

users; and (5) incentives for reuse must to be

provided to encmtrage participation in your reuse

‘consortium’ and adherence to your standards for

RSC, [Among ideas we’ve considered is providing

a system of ‘credits’ (to be used for consulting

services and available upon membership in the

consortium), in exchange for use of the consorti-

um’s products and donation of reusable candidate

products.]

FUTURE DIRECTIONS. We feel that we must
extend our work into a larger amount of our

customer’s application domain and user community

in order to determine if our results accurately

reflect the costs typically encountered for software

441

Reuse Software Costing Checklist

Media Format(s) Revd.
I. Electronic Format Products Received

Source Code
Command Files/Scripts
DOD-STD Documentation
CASE Diagrams
Object Code
Executable
Other

[1. Reuse Costs Cost (Estmtd) Actual [ManHrs.]
Data Transfer
Data Reformatting
Document Review
Abstract Preparation
Facet and Key word Preparation
Configuration Management
RSC Testing
RSC Environmental Demonslxati.on

Testincr
Outside R&souree Personnel Con-

sulting(Systems Admin., DBMS,etc)
OTHER [—-- ——— .-— —.- 1

Total Man-Hours

442

BIBLIOGRAPHY

[1] Afkw@ht, T. D.,”GLOBAL ISSUES IN REUSE FROM A REAL PROJECI’”, Ada Europe,
1986 Proceedings.

[2] Allen, K “Sofhvare Reuse Mining, Refining and Designing”, Tri-Ada Proceedings, 1990,
Baltimore, Maryland

[3] Krutz, W.K, “Software Reuse”, seminar presented in four (4) European and Scandinavian cities during
February-March, 1988, Technology Training Corporation (TTC)/State of the Art Limited
(SAL)

[4] Krutz, W. K, “Post Deployment Support For Emlbedded Systems”, Defense Computing, January, 1990.
[5] Krutz, W. K ‘Post Deployment Computer Support”, presentation for the Defense Systems Management

College (DSMC) Management Of Acq~liSitiOn and Logistics Course (MALC), at USAF Space
Division education center, Los Angeles, CA December, 1988, May, 1990, Ap@ 1991.

[6] SECNAVINST 5200 ACQUISITION OF SOFTWARE-INTENSIVE C’ INFORMATION SYSTEMS,
Department of the Navy, 5 January 1988.

[7] Prieto-Diaz, R., “Class@htg Software For Reusability”, IEEE SOFTWARE, January, 1987.
[8] Allen, K, “Comparison of User Interface Builder Products”, INTERMETRICS Independent R&D

Project, March, 1991.
[9] Belzer, Boris, Software Testing Techniques, 2nd edition, copyright 1990, Van Nostrand Rheinhold

Publishers, p433.
[10] Barnes, B. and “Making Reuse Cost-Effective”, IEEE SOFTWARE, January, 1991.

Bollinger, T.

THE AUTHORS

W~m K Krttta is a principal engineer and technical project manager with INTERMETRICS, INC, San Diego California, Currently
Mr. Kmtz is providktg the technical direction for a project team developing a reusable software development environment for use in
command, ccmtro~ communications and intelligence (C31) appficationa. Mr. Krutz has been invotved in a wide variety of reuse activities
in recent yearn including international speaking engagements in Europe and Scandinavia. Mr. Krutz holds a MASTERS degree in
computer science from the Johns Hopkins University and is a member of SigAda, Society for Software Quality (SSQ) and the Data
Processing Management Asamiation (DPMA), as well as being a member of the adjunct faculty on the staff of a number of colleges and
universities in Southern California.

KentAflen has been involved with software reuse projects while working at Intermetrics, Inc. as a senior software engineer. Currentty,
he is developing the C31 Reusable Software System (CRSS), a library of software components for Navy Command, Control,
Communications, and Intelligence software development projects. Tlhis library system provides for the storage and retrieval of reusable

software components for Navy C31systems, and allows engineers to access components through searches based on keywords or Pneto-Diaz
style facet value specifications. Components from the tibraty are evaluated with the aid of demonstrations, online documentation, and
CASE tool diagrams. Tasks for this project include prototype and application development, the development of standards for building

reusable software components, and the definition of administrative and managerial procedures for making reuse a reafity on actual, large-
scde software development projects. Mr. Aflen received his Master’s degree in software engineering in 1988, from National University
in San Diego. He has over eight yearn’ experience developing software for government and scientific applications.

Daniel P. Olivier received an MS in Computer Systems Management from the Naval Postgraduate School in 1983 and a BS in Systems
Engineering from the U.S. Naval Academy in 1977. He is an instructor of masters level project cfasses at National university establishing
a reuse library of common Ada routines for class projects, software metrics, and program development support tools. He is currently
implementing the C31 Reusable Software System (CRSS) Navy software library on Sun workstations using the Motif window manager.
Mr. Otivier has made several presentations on software reuse to professional societies.

4413

