
ar
X

iv
:c

s/
06

12
10

2v
2

 [c
s.

D
B

]
13

 J
an

 2
00

7

The Dichotomy of Conjunctive Queries on Probabilistic
Structures

Nilesh Dalvi and Dan Suciu
University of Washington, Seattle.

ABSTRACT
We show that for every conjunctive query, the complexity of
evaluating it on a probabilistic database is either PTIME or
#P-complete, and we give an algorithm for deciding whether
a given conjunctive query is PTIME or #P-complete. The
dichotomy property is a fundamental result on query eval-
uation on probabilistic databases and it gives a complete
classification of the complexity of conjunctive queries.

1. PROBLEM STATEMENT
Fix a relational vocabulary R1, . . . , Rk, denoted R. A

tuple-independent probabilistic structure is a pair (A, p) where
A = (A, RA1 , . . ., R

A
k) is first order structure and p is a func-

tion that associates to each tuple t in A a rational number
p(t) ∈ [0, 1]. A probabilistic structure (A, p) induces a prob-
ability distribution on the set of substructures B of A by:

p(B) =
k

Y

i=1

(
Y

t∈RB
i

p(t)×
Y

t∈RA
i
−RB

i

(1− p(t))) (1)

where B ⊆ A, more precisely B = (A,RB1 , . . . , B
B
k) is s.t.

RBi ⊆ R
A
i for i = 1, k.

A conjunctive query, q, is a sentence of the form ∃x̄.(ϕ1 ∧
. . .∧ϕm), where each ϕi is a positive atomic predicate R(t),
called a sub-goal, and the tuple t consists of variables and/or
constants. As usual, we drop the existential quantifiers and
the ∧, writing q = ϕ1, ϕ2, . . . , ϕm. A conjunctive property
is a property on structures defined by a conjunctive query
q, and its probability on a probabilistic structure (A, p) is
defined as:

p(q) =
X

B⊆A:B|=q

p(B) (2)

In this paper we study the data complexity of Boolean con-
junctive properties on tuple independent probabilistic struc-
tures. (When clear from the context we blur the distinction
between queries and properties).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

More precisely, for a fixed vocabulary and a Boolean con-
junctive query q we study the following problem:

Evaluation For a given probabilistic structure (A, p), com-
pute the probability p(q).

The complexity is in the size of A and in the size of the
representations of the rational numbers p(t). This problem
is trivially contained in #P, and we show conditions under
which it is in PTIME, and conditions where it is #P-hard.
The class #P [11] is the counting analogue of the class NP.

Theorem 1.1. (Dichotomy Theorem) Given any conjunc-
tive query q, the complexity of Evaluation is either PTIME

or #P-complete.

Background and motivation Dichotomy theorems are
fundamental to our understanding of the structure of con-
junctive queries. A widely studied problem, which can be
viewed as the dual of our problem, is the constraint satisfac-
tion problem (CSP) and is as follows: given a fixed relational
structure, what is the complexity of evaluating conjunctive
queries over the structure? Shaefer [10] has shown that
over binary domains, CSP has a dichotomy into PTIME and
NP-complete. Feder and Vardi [5] have conjectured that a
similar dichotomy holds for arbitrary (non-binary) domains.
Creignou and Hermann [3] showed that the counting ver-
sion of the CSP problem has a dichotomy into PTIME and
#P-complete. The problem we study in this paper seems
different in nature, yet still interesting.

In addition to the pure theoretical interest we also have
a practical motivation. Probabilistic databases are increas-
ingly used to manage a wide range of imprecise data [12, 2].
But general purpose probabilistic database are difficult to
build, because query evaluation is difficult: it is both theo-
retically hard (#P-hard [7, 4]) and plain difficult to under-
stand. All systems reported in the literature have circum-
vented the full query evaluation problem by either severely
restricting the queries [1], or by using a non-scalable (ex-
ponential) evaluation algorithm [6], or by using a weaker
semantics based on intervals [8]. In our own system, Mys-
tiQ [2], we support arbitrary conjunctive queries as follows.
For queries without self-joins, we test if they have a PTIME

plan using the techniques in [9]; if not, then we run a Monte
Carlo simulation algorithm. The query execution times be-
tween the two cases differ by one or two orders of magnitude
(seconds v.s. minutes). The desire to improve MystiQ’s
query performance on arbitrary queries (i.e. with self-joins)
has partially motivated this work.

1

http://arxiv.org/abs/cs/0612102v2

1.1 Overview of Results
We summarize here our main results on the query eval-

uation problem. Some of this discussion is informal and is
intended to introduce the major concepts needed to under-
stand the evaluation of conjunctive queries on probabilistic
structures.

Hierarchical queries: For a conjunctive query q, let
V ars(q) denote its set of variables, and, for x ∈ V ars(q),
let sg(x) be the set of sub-goals that contain x.

Definition 1.2. A conjunctive query is hierarchical if for
any two variables x, y, either sg(x) ∩ sg(y) = ∅, or sg(x) ⊆
sg(y), or sg(y) ⊆ sg(x). We write x ⊑ y whenever sg(x) ⊆
sg(y) and write x ≡ y when sq(x) = sg(y). A conjunctive
property is hierarchical if it is defined by some hierarchical
conjunctive query.

It is easy to check that a conjunctive property is hierarchical
if the minimal conjunctive query defining it is hierarchical.
As an example, the query qhier = R(x), S(x, y) is hierarchi-
cal because sg(x) = {R,S}, sg(y) = {S}. On the other
hand, the query qnon-h = R(x), S(x, y), T (y) is not hierar-
chical because sg(x) = {R,S} and sg(y) = {S, T}.

In prior work [4] we have studied the evaluation problem
under the following restriction: every sub-goal of q refers to
a different relation name. We say that q has no self-joins.
The main result in [4], restated in the terminology used here,
is:

Theorem 1.3. [4] Assume q has no self joins. Then: (1)
If q is hierarchical, then it is in PTIME. (2) If q is not
hierarchical then it is #P-hard.

Moreover, the PTIME algorithm for a hierarchical query is
the following simple recurrence on query’s structure. Call a
variable x maximal if for all y, y ⊒ x implies x ⊒ y. Pick
a maximal variable from each connected component of the
query to obtain the set x1, . . . , xm. Let f0, f1(x1), . . . , fm(xm)
be the connected components of q: f0 contains all constant
sub-goals, and fi(xi) consists of all sub-goals containing xi
for i = 1, m. Then:

p(q) = p(f0) ·
Y

i=1,m

(1−
Y

a∈A

(1− p(fi[a/xi]))) (3)

This formula is a recurrence on the query’s structure (since
each fi[a/xi] is simpler than q) and it is correct because
fi[a/xi] is independent from fj [a

′/xj] whenever i 6= j or
a 6= a′. As an example, for query qhier = R(x), S(x, y),
p(q) = 1−

Q

a∈A(1− p(R(a))(1−
Q

b∈A(1− p(S(a, b))))).
In this paper we study arbitrary conjunctive queries (i.e.

allowing self-joins), which turn out to be significantly more
complex. The starting point is the following extension of
Theorem 1.3 (2) (the proof is in the appendix):

Theorem 1.4. If q is not hierarchical then it is #P-hard.

Thus, from now on we consider only hierarchical conjunctive
queries in this paper, unless otherwise stated.

Inversions: As a first contact with the issues raised by
self-joins, let us consider the following query:

q = R(x), S(x, y), S(x′, y′), T (x′)

We write it as q = f1(x)f2(x
′), where f1(x) = R(x), S(x, y)

and f2(x
′) = S(x′, y′), T (x′). The query is hierarchical, but

it has a self-join because the symbol S occurs twice: as a

consequence f1[a/x] is no longer independent from f2[a/x
′]

(they share common tuples of the form S(a, b)), which pre-
vents us from applying Equation (3) directly. Our approach
here is to define a new query by equating x = x′, f3(x) =
f1(x)f2(x) = R(x), S(x, y), S(x, y′), T (x) which is equiva-
lent to R(x), S(x, y), T (x). We show that the probability
p(q) can be expressed using recurrences over the probabili-
ties of queries of the form f1[a/x1], f2[a

′/x2], f3[a
′′/x3], as

a sum of a few formulas1 in the same style as (3) (see Exam-
ple 3.8). The correctness is based on the fact that fi[a/xi]
and fj [a

′/xj] are independent if i 6= j or a 6= a′.
However, this approach fails when the query has an “in-

version”. Consider:

H0 = R(x), S(x, y), S(x′, y′), T (y′)

This query is hierarchical, but the above approach no longer
works. The reason is that the two sub-goals S(x, y) and
S(x′, y′) unify, while x ❂ y and x′

❁ y′: we call this an
inversion (formal definition is in Sec. 2.2). If we write H0 as
f1(x)f2(y

′) and attempt to apply a recurrence formula, the
queries f1[a/x] and f2[a

′/y′] are no longer independent even
if a 6= a′, because they share the common tuple S(a, a′).

Inversions can occur as a result of a chain of unifications:

Hk =
R(x),S0(x, y),

S0(u1, v1),S1(u1, v1)
S1(u2, v2),. . .

Sk−1(uk, vk),Sk(uk, vk)
Sk(x

′, y′), T (y′)

Here any two consecutive pairs of variables in the sequence
x ❂ y, u1 ≡ v1, u2 ≡ v2, . . . , x

′
❁ y′ unify, and we also call

this an inversion. We prove in the Appendix:

Theorem 1.5. For every k ≥ 0, Hk is #P-hard.

Thus, some hierarchical queries with inversions are #P-hard.
We prove, however, that if q has no inversions, then it is in
PTIME:

Theorem 1.6. If q is hierarchical and has no inversions,
then it is in PTIME.

The PTIME algorithm for inversion-free queries is a sum
of recurrence formulas, each similar in spirit to (3). The
proof is in Sec. 3.2.

Erasers The precise boundary between PTIME and #P-
hard queries is more subtle than simply testing for inver-
sions: some queries with inversion are #P-hard, while others
are in PTIME, as illustrated below:

Example 1.7 Consider the hierarchical query q

q =R(r, x),S(r, x, y), U(a, r), U(r, z), V (r, z)
S(r′, x′, y′), T (r′, y′), V (a, r′)

R(a, b), S(a, b, c), U(a, a)

1This particular example admits an alternative, perhaps
simpler PTIME solution, based on a dynamic programming
algorithm on the domain A. For other, very simple queries,
we are not aware of any algorithm that is simpler than ours
(formula (9), Sec. 3.2), for exampleR(x, y, y, x),R(x, y, x, z),
or R(y, x, y, x, y),R(y, x, y, z, x),R(x, x, y, z, u) (both are in
PTIME because they have no inversions). To appreciate
the difficulties even with such simple queries note that, by
contrast, R(y, x, y, x, y),R(y, y, y, z, x),R(x, x, y, z, u) is #P-
hard. For additional challenging PTIME queries, see Fig. 1.

2

Here a, b, c are constants and the rest are variables. This
query has an inversion between x ❂ y and x′

❁ y′ (when
unifying S(r, x, y) with S(r′, x′, y′)). Because of this inver-
sion, one may be tempted to try to prove that it is #P-hard,
using a reduction fromH0. Our standard construction starts
by equating r = r′ to make q “like” H0: call q

′ the resulting
query (i.e. q′ = q[r/r′]). If one works out the details of the
reduction, one gets stuck by the existence of the following
homomorphism from h : q → q′ that “avoids the inversion”:
it maps the variables r, x, y, z, r′, x′, y′ to a, b, c, r, r, x′, y′ re-
spectively, in particular sending U(r, z), V (r, z) to U(a, r),
V (a, r). Thus, h takes advantage of the two sub-goals U(a, r),
V (a, r) in q′ which did not exists in q, and its image does not
contain the sub-goal S(r, x, y), which is part of the inversion.
We call such a homomorphism an eraser for this inversion:
the formal definition is in Sec. 2.3. Because of this eraser,
we cannot use the inversion to prove that the query is #P-
hard. So far this discussion suggests that erasers are just
a technical annoyance that prevent us from proving hard-
ness of some queries with inversions. But, quite remarkably,
erasers can also be used in the opposite direction, to de-
rive a PTIME algorithm: they are used to cancel out (hence
“erase”) the terms in a certain expansion of p(q) that cor-
respond to inversions and that do not have polynomial size
closed forms. Thus, our final result (proven in Sections 3
and 4) is:

Theorem 1.8 (Dichotomy). Let q be hierarchical.
(1) If q has an inversion without erasers then q is #P-hard.
(2) If all inversions of q have erasers then q is in PTIME.

As a non-trivial application of (1) we show (Fig. 2 in Ap-
pendix A and in Example 4.1) that each of the following
two queries are #P-hard, since each has an inversion be-
tween two isomorphic copies of itself:

q2path = R(x, y), R(y, z)

qmarked-ring = R(x), S(x, y), S(y, x)

In general, the hardness proof is by reduction from the query
Hk, where k is the length of an inversion without an eraser.
The proof is not straightforward. It turns out that not every
eraser-free inversion can be used to show hardness. Instead
we show that if there is an eraser-free inversion then there
is one that admits a reduction from Hk.

The PTIME algorithm in (2) is also not straightforward at
all. It is quite different from the recurrence formula in Theo-
rem 1.6, since we can no longer iterate on the structure of the
query: in Example 1.7, the sub-query of q consisting of the
first two lines is #P-hard (since without the third line there
is no eraser), hence we cannot compute it separately from
the third line. Our algorithm here computes p(q) without
recurrence, and thus is quite different from the inversion-free
PTIME algorithm, but uses the latter as a subroutine.

2. AN EXPANSION FORMULA FOR CON-
JUNCTIVE QUERIES

In this section, we introduce the key terminology and
prove an expansion formula for computing the probability of
conjunctive queries that will be used to device PTIME algo-
rithms for query evaluation. For the remainder of the paper,
all queries are assumed to be hierarchical, as we know that
non-hierarchical queries are #P-hard (Appendix B).

2.1 Coverage
We call an arithmetic predicate a predicate of the form

u = v, u 6= v, or u < v between a variable and a constant
in C, or between two variables2. A restricted arithmetic
predicate is an arithmetic predicate that is either between a
variable and a constant, or between two variables u, v that
co-occur in some sub-goal (equivalently u ⊒ v or u ⊑ v).
From now on, we will allow all conjunctive queries to have
restricted arithmetic predicates.

Definition 2.1. A coverage for a query q is a set of con-
junctive queries C = {qc1, . . . , qcn} such that:

q ≡ qc1 ∨ . . . ∨ qcn

Each query in C is called a cover. A factor of C is a con-
nected component of some qci ∈ C. We denote the set of all
factors in C by F = {f1, . . . , fk}.

We alternatively represent a coverage by the pair (F , C),
where F is a set of factors and C is a set of subsets of
F. Each element of C determines a cover consisting of the
corresponding set of factors from F.

For any query q the set C = {q} is a trivial coverage. We
also define C<(q), which we call the canonical coverage, ob-
tained as follows. Consider all m pairs (u, v) of co-occurring
variables u, v in q, or of a variable u and constant v. For
each such pair choose one of the following predicates: u < v
or u = v or u > v, and add it to q. This results in 3m

queries. Remove the unsatisfiable ones, then remove all re-
dundant ones (i.e. remove qci if there exists another qcj s.t.
qci ⊂ qcj). The resulting set C<(q) = {qc1, . . . , qcn} is the
canonical coverage of q.

Unifiers

Let q, q′ be two queries (not necessarily distinct). We re-
name their variables to ensure that V ars(q)∩V ars(q′) = ∅,
and write qq′ for their conjunction. Let g and g′ be two
sub-goals in q and q′ respectively. The most general unifier,
MGU, of g and g′ (or the MGU of q, q′ when g, g′ are clear
from the context) is a substitution θ for qq′ s.t. (a) θ(g) =
θ(g′), (b) for any other substitution θ′ s.t. θ′(g) = θ′(g′)
there exists ρ s.t. ρ ◦ θ = θ′.

A 1-1 substitution for queries q, q′ is a substitution θ for qq′

such that: (a) for any variable x and constant a θ(x) 6= a,
and (b) for any two distinct variables x, y in q (or in q′),
θ(x) 6= θ(y). The set representation of a 1-1 substitution θ
is the set {(x, y) | x ∈ V ars(q), y ∈ V ars(q′), θ(x) = θ(y)}.

Definition 2.2. An MGU θ for two queries q, q′ is called
strict if it is a 1-1 substitution for qq′.

For a trivial illustration, if q = R(x, x, y, a, z) and q′ =
R(u, v, v, w,w) and their MGU is θ, then θ(x) = θ(y) =
θ(u) = θ(v) = x′, θ(w) = θ(z) = a, and the effect of the
unification is θ(qq′) = R(x′, x′, x′, a, a). This is not strict:
e.g. θ(x) = θ(y) and also θ(z) = a. We want to ensure that
all unifications are strict.

Definition 2.3. (Strict coverage) Let C be a coverage and
F be its factors. We say that C is strict if any MGU between
any two factors f, f ′ ∈ F is strict.

2As usual we require every variable to be range restricted,
i.e. to occur in at least one sub-goal.

3

Example 2.4 Let q = T (x),R(x, x, y), R(u, v, v). The triv-
ial coverage C = {q} is not strict, as the MGU of the two R
sub-goals of q equate x with y and u with v. Alternatively,
consider the following three queries:

qc1 = T (x),R(x, x, x)

qc2 = T (x),R(x, x, y),R(u, u, u), x 6= y

qc3 = T (x),R(x, x, y),R(u, v, v), x 6= y, u 6= v

One can show that q ≡ qc1∨qc2∨qc3, hence C = {qc1, qc2, qc3}
is a coverage for q. The set of factors F consists of the con-
nected components of these queries, which are

f1 = T (x),R(x, x, x) f2 = T (x),R(x, x, y), x 6= y
f3 = R(u, u, u) f4 = R(u, v, v), u 6= v

and C = {{f1}, {f2, f3}, {f2, f4}}. The coverage is strict, as
a unifier cannot equate x with y or u with v in any query
because of the inequalities. Similarly, the canonical coverage
C<(q), which has nine covers containing combinations of x <
y, x = y, or x > y with u < v, u = v, u > v, is also strict.

Lemma 2.5. The canonical coverage C<(q) is always strict.

2.2 Inversions
Fix a strict coverage C for q, with factors F , and define the

following undirected graph G. Its nodes are triples (f, x, y)
with f ∈ F and x, y ∈ V ars(f), and its edges are pairs
((f, x, y), (f ′, x′, y′)) s.t. there exists two sub-goals g, g′ in
f, f ′ respectively whose MGU θ satisfies θ(x) = θ(x′) and
θ(y) = θ(y′). We call an edge in G a unification edge, and a
path a unification path. Recall that for a preorder relation
⊒, the notation x ❂ y means x ⊒ y and x 6⊑ y.

Definition 2.6. (Inversion-free Coverage) An inversion
in C is a unification path from a node (f, x, y) with x ❂ y to
a node (f ′, x′, y′) with x′

❁ y′. An inversion-free coverage
is a strict coverage that does not have an inversion. We say
that q is inversion-free if it has at least one inversion-free
coverage. Otherwise, we say that q has inversion.

Obviously, to check whether C has an inversion it suffices
to look for a path in which all intermediate nodes are of the
form (f ′′, u, v) with u ≡ v, i.e. the ❂ and ❁ are only at
the two ends of the path. The following result says that to
check if a query has an inversion, it is enough to examine
the canonical coverage.

Proposition 2.7. If there exists one coverage of q that
does not contain inversion, then the canonical cover C<(q)
does not contain inversion.

Example 2.8 We illustrate with two examples:
(a) Consider Hk in Theorem 1.5. The trivial coverage
C = {Hk} is strict, and has factors F = {f0, f1, . . . , fk+1}
(each line in the definition of Hk is one factor). The follow-
ing is an inversion: (f0, x, y), (f1, u1, v1), . . . , (fk, uk, vk),
(fk+1, x

′, y′). This is an inversion because x ❂ y and x′
❁

y′. The canonical coverage C< also has an inversion, e.g.
along the factors obtained by adding the predicates x < y,
u1 < v1, . . . , uk < vk, x

′ < y′.
(b) Consider the query q = R(x), S(x, y), S(y, x). The

trivial coverage C = {q} is strict, has one factor F = {q},
and there is an inversion from (q, x, y) to (q, y, x) because
S(x, y) unifies with S(y, x) (recall that we rename the vari-
ables before the unification, i.e. the unifier is between R(x),

S(x, y), S(y, x) and its copy R(x′), S(x′, y′), S(y′, x′)). In

the canonical coverage C< there are three factors, corre-
sponding to x < y, x = y, and y < x, and the inversion
is between x < y and y < x.

2.3 An Expansion Formula for Coverage
Given a conjunctive query q and a probabilistic structure

A = (A,RA1 , . . . , R
A
k), we want to compute the probabil-

ity p(q). Our main tool is a generalized inclusion-exclusion
formula that we apply to the coverage of a query.

Definition 2.9. (Expansion Variables) Let C = (F , C)
be a strict coverage, where F = {f1, · · · , fk} is a set of fac-
tors and C is a set of subsets of F. A set of expansion
variables is a set x̄ = {x̄f1 , · · · , x̄fk} such that

1. x̄fi ⊆ V ars(fi) for 1 ≤ i ≤ k.

2. If x ∈ x̄f and x ❁ y, then y ∈ x̄f .

3. Any MGU of any two factors fi and fj equates an
expansion variable to an expansion variable.

We use (F , C, x̄) to denote a coverage where we have cho-
sen the expansion variables.

Definition 2.10. (Unary coverage) A coverage (F , C, x̄)
is called a unary coverage if for each f ∈ F , x̄f consists of
a single variable rf . We call rf the root variable in f .

By definition of expansion variables, the root variable must
be the maximal element under ❁ order, i.e. must occur in
all the sub-goals of the corresponding factor.

Our first PTIME algorithm (for inversion-free queries) uses
a unary coverage: the discussion in the next few subsec-
tions is much easier to follow if one assumes all coverages
to be unary. Our second PTIME algorithm (for queries with
erasable inversions) uses a coverage in which all variables
are expansion variables, i.e. x̄f = V ars(f): for that reason
our discussion below needs to be more complex.

For f ∈ F , let Af = A|x̄f |, and for ā ∈ Af , let f(ā) denote
the query f [ā/x̄f], i.e., the conjunctive query obtained by
substituting the variables x̄f with ā. The following follows
simply from the definitions:

q =
_

c∈C

^

f∈c

_

ā∈Af

f(ā) (4)

Our next step is to apply the inclusion/exclusion formula
to (4). We need some notations. We call a subset σ ⊆ F a
signature. Given s ⊆ C, its signature is sig(s) =

S

c∈s c.

Definition 2.11. Given a set σ ⊆ F, define

N(C, σ) = (−1)|σ|
X

s⊆C:sig(s)=σ

(−1)|s|

For example, if C = {c1, c2, c3} where c1 = {f1, f2},c2 =
{f2, f3} and c3 = {f1, f3}, then for signature σ = {f1, f2, f3}

we haveN(σ) = (−1)|{f1,f2,f3}|((−1)|{c1,c2}|+(−1)|{c1,c3}|+

(−1)|{c2,c3}| + (−1)|{c1,c2,c3}|) = −2.
Given k sets T̄ = {Tf1 , . . . , Tfk}, where Tfi ⊆ Afi , we

denote its signature sig(T̄) = {f | Tf 6= ∅}, its cardinality
|T̄ | =

P

i
| Tfi |, and denote F(T̄) the query

V

f∈F

V

a∈Tf
f(ā).

4

Definition 2.12. (Expansion) Given a coverage C, de-
fine its expansion as

Exp(C) =
X

T̄

N(C, sig(T̄))(−1)|T̄ |p(F(T̄)) (5)

We prove the following in the appendix, using the inclu-
sion/exclusion formula on (4):

Theorem 2.13. (Expansion Theorem) If C is a coverage
for q, then p(q) = Exp(C).

Of course, Equation (5) is of exponential size. To re-
duce it, our first goal is to express p(F(T̄)) as the product
Q

f

Q

ā∈Tf
p(f(ā)). For that we need to ensure that any two

queries f(ā), ā ∈ Af and f ′(ā′), ā′ ∈ Af ′ are independent,
and this does not hold in general. We will enforce this by
restricting the sets T̄ in Eq. (5) to satisfy some extra condi-
tions, which we call independence predicates. We first illus-
trate independence predicates on a running example, then
present them in the general case. Then we will move to our
second goal: finding a closed form for the sum of products.

2.4 Running Example
We give the basic intuition for independence predicates

using the following example.

Example 2.14 Consider the following query

q = P (x),R(x, y),R(x′, y′), S(x′)

and a coverage C = (F , C, x̄) where F consists of the follow-
ing three queries:

f1 = P (x1), R(x1, y1)

f2 = R(x2, y2), S(x2)

f3 = P (x3), R(x3, y3), S(x3)

and C = {{f1, f2}, {f3}} and the expansion variables are
x̄f1 = {x1}, x̄f2 = {x2}, x̄f3 = {x3}. It is easy to verify
that C defined here is indeed a coverage. (Here f3 is redun-
dant, i.e. {{f1, f2}} is already a coverage. The reason why
we include f3 will become clear later.) The function N on
signatures is as follows: N(C, {f1, f2}) = 1, N(C, {f3}) =
N(C, {f1, f2, f3}) = −1 and N(C, σ) = 0 for all other σ.
Thus, the inclusion-exclusion formula in Theorem 2.13 gives:

p(q) =
X

T̄

N(C, sig(T̄))(−1)|T̄ |p(F(T̄)) (6)

where T̄ is a triplet of sets {T1, T2, T3}, |T̄ | = |T1|+|T2|+|T3|
and F(T̄) = f1(T1)f2(T2)f3(T3). Consider now three sets
T1, T2, T3, and let’s examine the query F(T̄). If T1 ∩ T2 =
T1 ∩T3 = T2 ∩T3 = ∅ then fi(a) is independent from fj(a

′),
for all i 6= j, or for i = j and a 6= a′. In this case p(F(T̄)
is a product

Q

i=1,3

Q

a∈A p(fi(a)). We will ensure that the
sets Ti are disjoint in two steps. First we will show:

p(q) =
X

T̄ |T1∩T2=∅

N(C, sig(T̄))(−1)|T̄ |p(F(T̄)) (7)

Starting from Eq.(6) we note that N(C, sig(T̄)) is 6= 0 for
only three signatures, hence p(q) = p1 + p2 + p3, where

p1 =
P

T1 6=∅,T2 6=∅,T3=∅(−1)
|T̄ |p(F(T̄))

p2 = −
P

T1=T2=∅,T3 6=∅(−1)
|T̄ |p(F(T̄))

p3 = −
P

T1 6=∅,T2 6=∅,T3 6=∅(−1)
|T̄ |p(F(T̄))

Let pI1 and pI3 denote the same sums as p1 and p3, but
where T̄ is restricted to satisfy T1 ∩ T2 = ∅. To prove Equa-
tion (7), all we need is to show is that p1+p3 = pI1+p

I
3. In the

sum defining p3 denote T ′
3 = T3−T1 ∩T2, T

′′
3 = T3∩T1 ∩T2

(hence T3 = T ′
3 ∪ T

′′
3) and T̄

′ = (T1, T2, T
′
3). We have p3 =

= −
X

T̄ ′ | T1 6= ∅, T2 6= ∅
T ′

3
∩ T1 ∩ T2 = ∅

X

T ′′

3
⊆ T1 ∩ T2

T ′

3
∪ T ′′

3
6= ∅

(−1)|T̄ |p(F(T̄))

= −
X

T̄ ′ | T1 6= ∅, T2 6= ∅
T ′

3
∩ T1 ∩ T2 = ∅

(−1)|T̄
′|p(F(T̄ ′))

X

T ′′

3
⊆ T1 ∩ T2

T ′

3
∪ T ′′

3
6= ∅

(−1)|T
′′
3
|

= pI3 + 0 + (pI1 − p1)

The first line simply splits the summation into a sum
where T1, T2, T

′
3 range over subsets of A, and an inner sum

where T ′′
3 ranges over subsets of T1 ∩ T2. The second line

holds because the query F(T̄) = f1(T1)f2(T2)f3(T
′
3)f3(T

′′
3)

is logically equivalent to f1(T1)f2(T2)f3(T
′
3) since ∀a ∈ T ′′

3

f3(a) is f1(a)f2(a) and a is in both T1 and T2. The last line
follows by breaking the sum into three disjoint sums:

1. T1∩T2 = ∅. Then, T ′′
3 is only allowed to be the empty

set and the inner sum is 1. The total contribution of
such terms is exactly equal to pI3.

2. T1∩T2 6= ∅, T
′
3 6= ∅. Then the inner sum,

P

T ′′
3

(−1)|T
′′
3
|

is 0, because T ′′
3 ranges over all subsets of T1 ∩ T2.

3. T1 ∩T2 6= ∅, T
′
3 = ∅. Then the inner sum is -1, because

T ′′
3 ranges over all subsets of T1 ∩ T2 except ∅. The

total contribution is pI1 − p1.

Thus, we have shown Equation (7). Next, we introduce sim-
ilar predicates between T1, T3, and T2, T3. This turns out to
be much simpler: we write T1 as T ′

1∪T
′′
1 where T ′

1 = T1−T3

and T ′′
1 = T1∩T3. Similarly, we write T2 as T

′
2∪T

′′
2 with T ′

2 =
T2 − T3 and T ′′

2 = T2 ∩ T3. The query f1(T1)f2(T2)f3(T3)
is logically equivalent to f1(T

′
1)f2(T

′
2)f3(T3) since both f1

and f2 have a mapping to f3. We now have independence
predicates between T ′

1 and T3 and T ′
2 and T3. We replace T̄

with T̄ ′ = (T ′
1, T

′
2, T

′
3, T

′′
1 , T

′′
2). Denoting ip(T̄ ′) = (T ′

1∩T
′
2 =

T ′′
1 ∩ T

′′
2 = T ′

1 ∩ T
′
3 = T ′

2 ∩ T
′
3 = ∅, T ′′

1 ⊆ T ′
3, T

′′
2 ⊆ T ′

3), we
have:

p(q) =
X

ip(T̄ ′)

N(C, sig(T̄ ′))(−1)|T̄ |p(F(T̄ ′))

=
X

ip(T̄ ′)

N(C, sig(T̄ ′))(−1)|T̄ |
Y

i=1,3

Y

a∈T ′
i

p(fi(a)) (8)

Note that the summation is over five sets T ′
1, T

′
2, T

′
3, T

′′
1 , T

′′
2

but only T ′
1, T

′
2, T

′
3 are used in the compuation of p. The

independence predicate ip allowed us to express p(F(T̄)) as
a product. We will show later how to compute this sum.
First, we need to show how to derive and use independence
predicates in general. ✷

2.5 Independence Predicates
Our goal in this section is to define formally indepen-

dence predicates. For unary coverages, an independence
predicate is simply a statement Ti ∩ Tj 6= ∅, but the non-
unary case requires more formalism. We first introduce a
new relational vocabulary, T consisting of the relation sym-
bols Tf1 , · · · , Tfk of arities |xf1 |, . . . , |xfk | respectively. A

5

structure over this vocabulary is a k-tuple of sets T̄ ; given
a conjunctive query φ over the vocabulary T , T̄ |= φ means
that φ is true on T̄ . For a trivial illustration, assume Tf1 ,
Tf2 to be of arity 1, and φ = Tf1(x), Tf2(x). Then φ states
that Tf1 ∩ Tf2 6= ∅.

Suppose we have have two factors fi and fj and θ is any
1-1 substitution on fi, fj , given in set representation, such
that for all (xi, xj) ∈ θ, xi is an expansion variable of fi and
xj is an expansion variable of fj . Define

θR(fi, fj) = fi, fj ,
^

(xi,xj)∈θ

xi = xj

θT (fi, fj) = Tfi(x̄fi), Tfj (x̄fj),
^

(xi,xj)∈θ

xi = xj

Note that θR(fi, fj) is over the vocabulary R (same as the
original query q), while θT (fi, fj) is over the vocabulary T .
We call them the join query and the join predicate respec-
tively. We call the negation of join predicate, not(θT (fi, fj)),
an independence predicate.

Example 2.15 Consider factors f1 and f2 in Example 2.14,
and let θ = {(x1, x2)}. Then, θ

R(f1, f2) = P (x),R(x, y), S(x),
θT (fi, fj) = T1(x), T2(x), and the independence predicate
not(θT (fi, fj)) says that T1 and T2 are disjoint.

The key property of independence predicates is the fol-
lowing: If Ti, Tj satisfy all independence predicates between
fi and fj , then for all ā ∈ Ti and ā

′ ∈ Tj , fi(ā) and fj(ā
′)

are independent.

2.6 Hierarchical Closure
Recall from Example 2.14 that, in order to introduce an

independence predicate between two sets T1, T2 we needed
to use the join query of their factors, f3(x) = f1(x), f2(x).
In general, the join query between two factors in F is not
necessarily in F (f3 was redundant in Example 2.14). Thus,
we will proceed as follows. Starting from a coverage C we will
add join queries repeatedly until we obtain its hierarchical
closure, denoted C∗, then we will introduce independence
predicates. Computing C∗ is straightforward when C is an
inversion-free coverage (which is the case for our first PTIME

algorithm), but when C has inversions then some join queries
are non-hierarchical and we cannot add them to C∗. We
define next C∗ in the general case. Let C = (F , C, x̄) be any
coverage with a set of expansion variables x̄.

Definition 2.16. Given two factors f1 and f2, with ex-
pansion variables x̄f1 and x̄f2 , and a MGU given by the set
representation θ, the hierarchical unifer θu is the maximal
subset of θ such that:

1. (x, y) ∈ θu ⇒ x ∈ x̄f1 , y ∈ x̄f2

2. If (x, y) ∈ θu and (x′, y′) is such that x ⊑ x′ or y ⊑ y′

and (x′, y′) ∈ θ, then (x′, y′) ∈ θu.

3. The query θRu (f1, f2) is hierarchical.

It can be shown that θu is uniquely determined. If θu is
non-empty, we say that f1 and f2 can be hierarchical joined
using θ and call the query θRu (f1, f2) the hierarchical join of
f1 and f2, and θ

T
u (f1, f2) the hierarchical join predicate.

Example 2.17 Let

f1 = R(r, x), S(r, x, y), U(a, r), U(r, z), V (r, z)

f2 = S(r′, x′, y′), T (r′, y′), V (a, r′)

and θ = {(r, r′), (x, x′), (y, y′)} be the MGU of the two S
sub-goals. Then, the hierarchical unifier is θu = {(r, r′)}. If
we include any of (x, x′) or (y, y′), we will have to include
the other because x ❁ y and x′

❂ y′, and then the join will
not be hierarchical. The hierarchical join for this unifier is

θRu (f1, f2) = R(r, x), S(r, x, y), U(a, r), U(r, z), V (r, z)

S(r, x′, y′), T (r, y′), V (a, r)

and the set of expansion variables of the join is {r}. ✷.

Starting from the factors F , we construct a set H, a function
Factors from H to subsets of F , and a set of expansion
variables x̄h for h ∈ H. This is done inductively as follows:

1. For each f ∈ F , add f to H and let Factors(f) = {f}.

2. For any two queries h1, h2 in H, and any MGU θ
between h1 and h2, let h = θRu (h1, h2) be their hier-
archical join. Then add h to H, define Factors(h) =
Factors(h1) ∪ Factors(h2); define x̄h = θu(x̄h1 ∪ x̄h2).

We need to show that H is finite. This follows from:

Lemma 2.18. Given a fixed relational vocabulary R and a
fixed set of constants C, the number of distinct hierarchical
queries over R and C is finite.

Define F∗ to be the subset of H containing queries that
are either inversion-free or in F .

Definition 2.19. (Hierarchical Closure) Given a cover-
age C = (F , C, x̄), its hierarchical closure is C∗ = (F∗, C∗, x̄∗)
where F∗, x̄∗ are defined above and:

C∗ = {c | c ⊆ F∗,
[

f∈c

Factors(f) ∈ C}

Note that C∗ is indeed a coverage since the set F∗ contains
the set F , the set C∗ contains the set C, and the expansion
variables satisfy the conditions in Def. 2.9. Let ip(C∗) be
the conjunction of not(jp), where jp ranges over all possible
hierarchical join predicates in F∗.

Lemma 2.20. If T |= ip(C∗), then

p(F(q)) =
Y

f∈F∗

Y

a∈Tf

p(f(ā))

Finally, we look at conditions under which we can add the
predicate ip(C∗) over T̄ . We divide the join predicates into
two disjoint sets, trivial and non-trivial. A join predicate
between factors hi and hj is called trivial if the join query
is equivalent to either hi or hj , and is called non-trivial
otherwise. We write ip(C∗) as ipn(C∗) ∧ ipt(C∗), where
ipn(C∗) is the conjunction of not(jp) over all non-trivial
join predicates jp, and ipt(C∗) is the conjunction over all
trivial join predicates.

Definition 2.21. (Eraser) Given a hierarchical join jq =
θRu (fi, fj), an eraser for jp is a set of factors E ⊆ F s.t.:

6

1. ∀q ∈ E, there is a homomorphism from q to jq.

2. ∀σ ⊆ F, N(C, σ ∪ {fi, fj}) = N(C, σ ∪ {fi, fj} ∪ E).

Theorem 2.22. Let q be a query such that every hierar-
chical join query jq = θRu (fi, fj) between two factors in F∗

has an eraser. Then,

p(q) =
X

T̄ |T |=ipn(C∗)

N(C∗, sig(T̄))(−1)|T̄ |p(F(T̄))

The theorem allows us to add all possible non-trivial inde-
pendence predicates over the summation. If the hierarchical
join query jp is inversion-free, then it belongs to F∗ and it
is its own eraser (i.e. E = {jp} satisfies both conditions
above). We can use it to separate Ti from Tj . In particular
if q is inversion-free, then any hierarchical join query has an
eraser, and all sets can be separated. But if jp has an inver-
sion, then jp does not belong to F∗ and we must find some
different query (queries) in F∗ that can be used to separate
Ti from Tj .

Example 2.23 Let’s revisit the query in Example 2.14. We
had q = P (x),R(x, y),R(x′, y′), S(x′). Suppose we start
from the trivial coverage C0 = {q}, with two factors F0 =
{f1, f2} (see notations in Example 2.14), and suppose we
chose a single expansion variable for f1 and f2, namely x1, x2

respectively. Its hierarchical closure adds the join query f3
between f1 and f2. The coverage C∗0 contains the following
covers: {f1, f2}, {f3}, {f1, f3}, {f2, f3} and {f1, f2, f3}.

Thus, we have expressed the probability of a query p(q)
using the sum in Theorem 2.22. This is still exponential in
size, and now we will show how compute a closed form for
that sum. Here we will use different techniques for the two
PTIME algorithm. In the first algorithm (for inversion-free
queries) the coverage is unary, and all independence pred-
icates are of the form Ti ∩ Tj 6= 0: here we derive closed
forms directly. In the second algorithm (for queries with
erasable inversions) the independence predicates are more
complex: in this case we will reduce the sum to the prob-
ability of an inversion-free query φ over the T vocabulary,
thus bootstrapping the first PTIME algorithm.

3. PTIME ALGORITHMS
In this section, we establish one-half of the dichotomy

by proving Theorem 1.8(2). We start by computing simple
sums over functions on sets, then use it to give a PTIME

algorithm for queries without inversion and finally give the
general PTIME algorithm for queries that have erasers for
all inversions.

3.1 Simple Sums
Let A = {1, . . . , N}, ḡ = (g1, . . . , gk) be k functions gi :

A→ R, i = 1, . . . , k, and T̄ = (T1, . . . , Tk) a k-tuple of sub-
sets of A. Denote ḡ(T̄) = g1(T1) · · · gk(Tk), where gi(Ti) =
Q

ā∈Ti
gi(ā). ∅ 6= T̄ abbreviates ∅ 6= T1, . . . , ∅ 6= Tk. Let φ

be a conjunction of statements of the form Ti∩Tj = ∅ or Ti ⊆
Tj , and define: Sφ = {σ | σ ⊆ [k], ∀i, j ∈ σ, φ 6|= Ti ∩ Tj = ∅}
∩ {σ | σ ⊆ [k], ∀i ∈ σ, j 6∈ σ, φ 6|= Ti ⊆ Tj}.

Definition 3.1. Denote the following sums:
M

φ
ḡ =

X

T̄⊆A,φ

ḡ(T̄)

M+

φ
ḡ =

X

∅6=T̄⊆A,φ

ḡ(T̄)

For σ ⊆ [k], denote ḡσ the family of functions (gi)i∈σ.

Proposition 3.2. The following closed forms hold:
M

φ
ḡ =

Y

a∈A

X

σ∈Sφ

Y

i∈σ

gi(ā)

M+

φ
ḡ =

X

σ⊆[k]

(−1)k−|σ|
M

ḡσ

Moreover, the expressions above have sizes O(k2kN) and
O(k22kN) respectively, hence all have an expression size that
is linear in N .

Example 3.3 Consider four functions gi : A → R, i =
1, 2, 3, 4, and suppose we want to compute the following sum:

X

T1∩T2=∅,T2∩T3=∅,T4⊆T2

g1(T1)g2(T2)g3(T3)g4(T4)

In our notation, this is
L

φ
ḡ, where φ is T1∩T2 = ∅∧T2∩T3 =

∅ ∧ T4 ⊆ T2. The set Sφ is {∅, {1}, {2}, {2, 4}, {3}, {1, 3}}.
Thus, the expression for the sum is

Y

a∈A

(1 + g1(a) + g2(a) + g2(a)g4(a) + g3(a) + g1(a)g3(a))

The size of this expression is 8N , where N is the size of A.

3.2 PTIME for Inversion-Free Queries
Let q be an inversion-free query. We give now a PTIME

algorithm for computing q on a probabilistic structure.

Theorem 3.4. If q has no inversions then q has a unary
coverage.

This says that we can choose for each factor f a single root
variable rf s.t. any MGU between two (not necessarily dis-
tinct) factors f, f ′ maps rf to rf ′ : the proof in the Appendix
uses the canonical coverage C<, considers for each factor f
all maximal variables under ⊒, and chooses as root variable
the maximum variable under >. Note that for queries with
inversions Theorem 3.4 fails (recall the queries Hk).

Example 3.5 We illustrate Theorem 3.4 on two queries.

q1 = R(x, y), S(x, y), S(x′, y′), T (y′)

q2 = R(x, y),R(y, x)

In the trivial coverage C = {q1} for q1 the factors are

f1 = R(x, y), S(x, y) f2 = S(x′, y′), T (y′)

We see that rf1 = {y} and rf2 = {y′} satisfy the properties
of Theorem 3.4 (there are two maximal variables for f1, but
we have to pick y because it unifies with y′). For q2, the
trivial coverage C = {q3} does not work since there is a
unifier that unifiers x with y, and exactly one of them can
be the expansion variable. On the other hand, consider the
following coverage:

f1 = R(x1, y1), R(y1, x1), x1 > y1 f2 = R(x, x)

now we can set rf1 = x1 and rf2 = x. ✷

7

Now, let q be a query without inversion and C = (F , C, x̄)
be any unary coverage. Let C∗ = (F∗, C∗, x̄∗) be the hier-
archical closure of C. Theorem 2.22 applied to this unary
coverage gives:

p(q) =
X

T̄ |T |=ipn(C∗)

N(C∗, sig(T̄))(−1)|T̄ |p(F∗(T̄))p(f(ā))

All the sets in T have arity 1, since C∗ is also unary, hence
each join predicate has the form Ti(x), Tj(x) which is equiv-
alent to Ti ∩ Tj 6= ∅, hence ip(C∗) is a conjunction of predi-
cates of the form Ti ∩ Tj = ∅.

So far we have only added the independence predicates
ipn(C∗), i.e. independence predicates between those pairs
hi and hj for which the join query is not equivalent to either
hi and hj . Next, we add independence predicates between
the remaining pairs. We generalize our technique of Exam-
ple 2.14. We replace T̄ with T̄ ′, where T̄ ′ contains all the
sets in T̄ along with some additional sets. For each hi, hj
such that their hierarchical join is equivalent to hj , T̄

′ con-
tains an additional set Ti,j . Denote ipl(C∗) the conjunction
of the following predicates

• A predicate Ti,j ⊆ Tj for all Ti,j , Tj in T̄ ′

• A predicate Ti1,j ∩ Ti2,j = ∅ for all Ti1,j , Ti2,j in T̄ ′

such that there is a predicate Ti1 ∩ Ti2 = ∅ in ip(C∗).

Let ip′(C∗) denote the conjunction of ip(C∗) and ipl(C∗).
Then, we obtain p(q) =

X

T̄ |T |=ip′(C∗)∧ipl(C∗)

N(C∗, sig(T̄))(−1)|T̄ |
Y

f∈F∗

Y

ā∈Tf

p(f(ā))

Corresponding to each Ti ∈ T̄
′, let gi : A → R denote the

function gi(ā) = −p(fi(ā)). Also, corresponding to each
Ti,j ∈ T̄

′, let gi,j denote the function gi,j(ā) = 1.

Theorem 3.6. Let q be inversion-free.

1. The probability of q is given by

p(q) =
X

σ⊆F∗

N(C∗, σ)
M+

ip(C∗)∧ipl(C∗)
ḡσ (9)

where
L+ ranges over all sets of the form T̄ ′.

2. For each f ∈ F∗, f(ā) is an inversion-free query.

We use Proposition 3.2 to write a closed-form expression
for Equation (9) in terms of the probabilities gf (ā) = p(f(ā))
for f ∈ F∗. Since each of these queries is inversion-free, we
recursively apply Equation (9) to compute their probabili-
ties. For any query q, let V (q) denote the maximum number
of distinct variables in any single sub-goal of q. Clearly, for
any factor f , V (f(ā)) < V (f) ≤ V (q) (since ā substitutes a
variable in every sub-goal). Thus, the depth of the recursion
is bounded by V (q).

Corollary 3.7. If q is an inversion-free query, then p(q)

can be expressed as a formula of size O(NV (q)), where N is
the size of the domain. In particular q is in PTIME.

Example 3.8 Continuing our running example from Ex-
ample 2.14, recall that p(q) is given by Equation (8). Let
T̄ ′ = (T1, T2, T3, T1,3, T2,3). Denoting gi(a) = −p(fi(a)),
for i = 1, 2, 3, φ ≡ (T1 ∩ T2 = ∅) and ψ ≡ (T1 ∩ T2 =

∅)∧ (T1∩T3 = ∅)∧ (T2∩T3 = ∅)∧ (T1,3∩T2,3 = ∅)∧ (T1,3 ⊆
T3) ∧ (T2,3 ⊆ T3):

p(q) =
M+

φ
(g1, g2) +

M+
(g3) +

M+

ψ
(g1, g2, g3)

Now apply Prop. 3.2 to each expression, e.g.
L+

ψ (g1, g2, g3) =
L

ψ
(g1, g2, g3) −

L

ψ
(g1, g2) − . . . Each sum in turn has a

closed form. Furthermore, each fi(a) is a query with a sin-
gle variable (y or y′), hence each gi(a) = p(fi(a)) can be
computed inductively.

Appendix A gives example of inversion-free queries, show-
ing several subtleties that were left out from the text.

Queries with Negated Subgoals The PTIME algo-
rithm in this section can be extended to queries with negated
sub-goals.

Definition 3.9. A conjunctive query with negations is a
query q = ∃x̄.(ϕ1 ∧ . . . ∧ ϕk), where each ϕi is either a pos-
itive sub-goal R(t), or a negative sub-goal not(R(t)), or an
arithmetic predicate. The query q is said to be inversion-free
if the conjunctive query obtained by replacing each not(R(t))
sub-goal with R(t) sub-goal is inversion-free.

Definition 3.10. (Inversion-free property) A property φ
is called inversion-free property if it can be expressed as
a Boolean combination of queries {q1, · · · , qm} such that
each qi is a conjunctive query with negation and the query
q1q2 · · · qm is inversion-free.

Theorem 3.11. Let φ be any inversion-free property. Then,
computing p(φ) is in PTIME.

Proof. (Sketch) Consider a single inversion-free conjunc-
tive query with negation. The same recurrence formula in
Theorem 3.6 applies, the only difference is during recursion
we will reach negated constant sub goals: p(not(R(a, b, c)))
is simply 1 − p(R(a, b, c)). For any general φ, use inclu-
sion/exclusion formula to reduce it to conjunctive queries
with negations, each of which is inversion-free.

3.3 Complex Sums
In Section 3.2, we used simple sums to give a PTIME al-

gorithm for inversion-free queries. Here, we show that the
PTIME algorithm can be used to compute closed formulas
for complex sums. We call this the bootstrapping technique.

Bootstrapping: Let ḡ = (g1, . . . , gk) be a family of func-
tions, gi : Ari → R, where the arity of gi is ri. We want
to compute sums of the form sum =

P

S̄|φ ḡ(S̄), where φ

is a complex predicate. We cannot use the summations
of Section 3.1, which only apply when gi are unary. In-
stead, we use a bootstrapping technique to reduce this prob-
lem back to evaluating an inversion-free query on a prob-
abilistic database, and use the PTIME algorithm of Sec-
tion 3.2. The basic principle is that we can reduce the prob-
lem to the evaluation of φ over a probabilistic database. Cre-
ate an probabilistic instance of S , where, assuming k = 1
for simplicity, for each tuple ¯̄a ∈ S, set its probability to
p(ā) = g(ā)/(1 + g(ā)). Then, the probability of φ over
this instance is p(φ) =

P

S

Q

ā∈S p(ā)
Q

ā 6∈S(1 − p(ā)) =
Q

ā
1/(1 + g(ā))

P

S|φ g(S) =
Q

ā
1/(1 + g(ā))sum. Thus,

we can compute sum in PTIME if we can evaluate the query
φ in PTIME.

Theorem 3.12. Let φ be an inversion-free property. Then
P

S̄|φ ḡ(S̄) has a closed form polynomial in domain size.

8

3.4 The General PTIME Algorithm
Let q be a conjunctive query and let C = (F , C) be a

strict coverage for q and let H be the set of hierarchical
unifiers, as defined in Section 2.6. Suppose the following
holds: for every hierarchical join predicate jp = θT (hi, hj)
between two factors in H, the join query jq = θR(fi, fj)
has an eraser. We will show here that q is in PTIME, thus
proving Theorem 1.8(2).

We set the expansion variables x̄ to include all variables,
i.e. x̄f = V ars(f) for all f ∈ F . Let C∗ = (F∗, C∗, x̄∗)
be the hierarchical closure of C. By Theorem 2.22, we have
p(q) = Exp(C∗), where

Exp(C∗) =
X

T̄ |ipn(C∗)

N(C∗, sig(T̄))(−1)|T̄ |p(F∗(T̄))

=
X

σ

N(C∗, σ)
X

T̄ |ipn(C∗),sig(T̄)=σ

(−1)|T̄ |p(F∗(T̄)) (10)

Before we proceed, we illustrate with an example:

Example 3.13 Consider the query q in Example 1.7 Al-
though q has an inversion (between the two S Subgoals) we
have argued in Sec. 1.1 that it is in PTIME. Importantly,
the third line of constants sub goals plays a critical role: if
we removed it, the query becomes #P-hard.
Consider the coverage C = (F , C, x̄), where F is3:

f1 = R(r, x), S(r, x, y), U(a, r), U(r, z), V (r, z), r 6= a

f2 = S(r′, x′, y′), T (r′, y′), V (a, r′), r′ 6= a

f3 = U(a, z′), V (a, z′)

f4 = R(a), S(a, b, c), U(a, a)

and C = {{f1, f2, f4}, {f2, f3, f4}}. We cannot simply take
the root variables r, r′, and z′ as expansion variables and
proceed with the recurrence formula in Th. 3.6, because the
query f12 = f1(r)f2(r) is #P-hard. We must keep all vari-
ables as expansion variables to avoid the inversion. Thus,
the root unifiers H are (recall Example 2.17):

f12 = f1, f2, r = r′

f23 = f2, f3, r
′ = z′

f13 = f1, f3, r = z′

f123 = f1, f2, f3, r = r′ = z′

Out of these, f12 and f123 have inversions, thus F∗(q) =
{f1, f2, f3, f4, f23, f13}. In the expansion Exp(C∗), there are
sets T1, T2, T3, T4, T23, T13 but note that they are not unary,
e.g. T1 has arity 4 as x̄f1 = {r, x, y, z}. The critical question
is how to separate now T1 from T2, since we don’t have
the factor f12. Here we use the fact that there exists a
homomorphism f3 → f12, thus f3 is an eraser between f1
and f2 and will use f3 to separate T1, T2. The definition
of an eraser (Def. 2.21) requires us to check ∀σ, N(C, σ ∪
{f1, f2}) = N(C, σ ∪ {f1, f2, f3}). The only σ that makes
both N ’s non-zero is {f4} (and supersets), and indeed the
two numbers are equal to +1. It is interesting to note that,
if we delete the last line from q, then we have the same set
of factors but a new coverage C′ = {{f1, f2}, {f2, f3, f4}}:
then f3 is no longer an eraser because for σ = ∅ we have
N({f1, f2}) = 1 and N({f1, f2, f3}) = 0. Continuing the
example, we conclude that, with aid from the eraser, we can

3Strictly speaking each constant sub-goal R(a), S(a, b, c),
U(a, a) should be a distinct factor.

now insert all independence predicates. We have to keep in
mind, however, that these predicates are no longer simple
disjointness conditions e.g. the predicate between T1 and T2

is the negation of the query T1(r, x, y, z), T2(r, x
′, y′). ✷

We now focus on each of the inner sums in Equation (10).
We want to reduce it to evaluation of an inversion-free prop-
erty, but there are two problems. First, the predicate ipn(C∗)
over T̄ is not an inversion-free property. Second, we still
need to add the predicates ipt(C∗) to make p(F∗(T̄)) multi-
plicative. To solve these problems, we apply a preprocessing
step on Equation 10, which we call the change of basis. In
this step, we group T̄ that generate the same F∗(T̄) and
sum over these groups.

Example 3.14 Consider a factor f = R1(x, y),R2(y, z).
We look at the set T (x, y, z) corresponding to this factor,
which is a ternary set since x̄f = {x, y, z}. For every T ,
define S0 = πy(T), S

1 = πxy(T) and S2 = πy(T), hence
T = S0

✶ S1
✶ S2 (natural join). Clearly, S0, S1, S2 satisfy

the predicate S0 = πy(S
1) = πy(S

2). Consider the sum
X

T̄

(−1)|T̄ |p(f(T̄)) (11)

We group all T that generate the same S0, S1, S2 and show
that the summation in Eq. 11 is equivalent to the following:

X

S1, S2, S0 |
S0 = πy(S

1) = πy(S
2)

(−1)|S
1|+|S2|+|S0|p(R1(S

1)R2(S
2))

Thus, we have changed the basis of summation from T to
S0, S1, S2. ✷

The change of basis introduces some new predicates between
sets, which we call the link predicates, e.g. predicates of the
form S0 = πy(S

1). But at the same time, as we shall see,
the change of basis simplifies the independence predicates
ip(C∗), making them inversion-free, so that the computation
of Equation (10) can be reduced to evaluation of inversion-
free queries. We now formally define the change of basis.
This consists of the following steps: (1) we change the sum-
mation basis from T̄ to S̄. (2) we translate the ipn(C∗) pred-
icates from T̄ to S̄. (3) we introduce a new set of predicates,
called the link predicates, on S̄. (4) We add the remaining
independence predicates, ipt(C∗), translated from T̄ to S̄,
to S̄.

Consider a factor f ∈ F∗. It is a connected hierarchical
query with the hierarchy relation ⊑ on V ars(f). Given x ∈
V ars(f), let [x] denotes its equivalence class under ⊑ and
let ⌈x⌉ denote {y | y ⊒ x}. Define a hierarchy tree for f
as the tree where nodes are equivalence classes of variables,
and edges are such that their transitive closure is ⊑. For
instance, in Example 3.14, the hierarchy tree of f has nodes
{x}, {y}, {z} with {x} as root and {y}, {z} its children.

Define a new vocabulary, consisting of a relation S
[x]
f for

each f ∈ F∗ and each node [x] in the hierarchy tree of f ,
with arity equal to the size of ⌈x⌉. Let S̄ denote instances of

this vocabulary. The intuition is that S
[x]
f denotes π⌈x⌉(Tf)

in the change of basis from T̄ to S̄. This completes step 1.
Let ipn denote the set of independence predicates on S̄,

translated in a straightforward manner from the indepen-
dence predicates ipn(C∗) on T̄ (details in appendix). This
is step 2.

9

Define a link predicate S
[x]
f = π⌈x⌉(S

[y]
f) for every edge

([x], [y]) in the hierarchy tree of f . Let lp be the set of all
link predicates. This is step 3.

Finally, we add the trivial independence predicates ipt.
For this, we expand the basis of summation from S̄ to S̄′ by
adding the following sets. We add a new set Si,jxi,xj corre-

sponding to each pair S
[xi]
fi

, S
[xj]

fj
such that (i) fi and fj have

a hierarchical join query which is equivalent to fj and (ii)
there are sub-goals gi in hi and gj in hj referring to the same
relation such that V ars(gi) = ⌈xi⌉ and V ars(gj) = ⌈xj⌉.
For each such Si,jxi,xj , ip

t contains the following conjuncts:

S
[xi]
fi
∩ S

[xj]

fj
= ∅, Si,jxi,xj ⊆ S

[xj]

fj
. This describes the step 4.

Finally, we put it all together. We define a function G(S̄′)

on S̄′ as follows. Consider a relation S
[x]
f , and let p be the

number of children of [x] in the hierarchy tree. For a tuple

t in S
[x]
f , let

G(t) = (−1)p+1
Y

g∈sg(f)|V ars(g)=⌈x⌉

p(g(t))

Define G(S̄′) =
Q

t∈S̄′ G(t).

Denote sig(S̄′) the set {f | S
[rf]

f 6= ∅}, where [rf] denotes
the root of the hierarchy tree of f .

Theorem 3.15. With ip
t, ipn, lp, sig and G as defined

above,
X

T̄ |ip(C∗),sig(T̄)=σ

(−1)|T̄ |p(F∗(T̄)) =
X

S̄′|ipn,ipt,lp,sig(S̄′)=σ

G(S̄′)

Finally, we use the bootstrapping principle to reduce the
problem of computing the summation to the evaluation of
the query φ = (ipn ∧ ipt ∧ lp ∧ sig(S̄′) = σ).

Lemma 3.16. The query φ defined above is an inversion-
free property.

By using Theorem 3.12, we get the following:

Theorem 3.17. Suppose for every hierarchical join pred-
icate jp = θT (hi, hj) between two factors in H, the join
query jq = θR(fi, fj) has an eraser. Then, q is PTIME.

4. #P-HARD QUERIES
Here we show the other half of Theorem 1.8, i.e., if q has

an inversion without an eraser, then q is #P-hard.
Let C = (F , C, x̄) be any strict coverage for q, C∗ =

(F∗, C∗, x̄∗) its closure and H the set of hierarchical join
queries over F .

Suppose there are factors h, h′ ∈ H such that the join
query hj = θT (h, h′) has an inversion, but not an eraser.
Among all such hj, we will pick a specific one and use it to
show that q is #P-hard. Note that if there is no such hj,
then the query is in PTIME by Theorem 3.17.

Let the inversion in hj consist of a unification path of
length k from (f, x, y) with x ❁ y to (f ′, x′, y′) with x′

❂ y′.
Then, we will prove the #P-hardness of q using a reduction
from the chain query Hk, which is #P-hard by Theorem 1.5.

Given an instance of Hk, we create an instance of q. The
basic idea is as follows: take the unification path in hj that
has the inversion and completely unify it. We get a non-
hierarchical query (due to the inversion) with two distin-
guished variables x and y (the inversion variables), k + 2

distinguished sub-goals (that participated in the inversion),
plus other sub-goals in the factor. Use the structure of this
query and the contents of the k+2 relations in the instance
ofHk to create an instance for q. We skip the formal descrip-
tion of the reduction, but instead illustrate it on examples.

Example 4.1 Consider q = U(x), V (x, y), V (y, x) and the
coverage C = (F , C) where F = {f} with f = U(x), V (x, y),
V (y, x), x 6= y and C = {{f}}. The coverage has a single
factor and a single cover. The first V sub-goal of factor f
unifies with the second sub-goal of another copy of f to give
an inversion between x ❂ y and their copy y′ ❁ x′. If we
unify the two sub-goals in two copies of f , we get the query:

qu = U(x), V (x, y), V (y, x), U(y)

We have underlined the sub-goals taking part in the inver-
sion. Now we give a reduction from the query H0 = R(x),
S(x, y), S(x′, y′), T (y′). Given any instance of R,S, T for H0

construct an instance of U, V as follows. We map the R,S, T
relations in H0 to the U, V, U underlined sub goals of qu as
follows: for each tuple R(a), create a tuple U(a) with same
probability. For each S(a, b), create V (a, b) with the same
probability. For each T (a), create U(a) with same probabil-
ity. Also, for each S(a, b), create V (b, a) with probability 1
(this corresponds to the non-underlined sub-goal).

There is a natural 1-1 correspondence between the sub-
structures of U, V and the substructures of R,S, T with the
same probability. It can be shown that q is true on a sub-
structure iff the query R(x), S(x, y)∨ S(x′, y′), T (y′) is true
on the corresponding substructure. Thus, we can compute
the probability of the query R(x), S(x, y) ∨ S(x′, y′), T (y′),
and hence, the probability of H0, by applying inclusion-
exclusion.

Next, we show why a hardness reduction fails if the inver-
sion has an eraser.

Example 4.2 We revisit the query q in Example 3.13. There
is an inversion between x ❁ y in f1 and x′

❂ y′ in f2. How-
ever, their hierarchical join, f12 have an eraser. The unified
query consists of qu =
R(r, x), S(r, x, y), U(a, r), U(r, z), V (r, z), V (a, r), T (r, x)
R(a), S(a, b, c), U(a, a)

We construct an instance RSTUV for q from an instance
R′S′T ′ for H0 as in previous example. However, there is
a bad mapping from q to qu, corresponding to the eraser,
which is {r → a, x → b, y → c, x′ → x, y′ → y, z → r},
which avoids the R sub-goal. The effect is that q is true on
a world iff the query S′(x′, y′)T ′(y′) (rather that H0) is true
on the corresponding world. So the reduction from H0 fails.
In fact, we know that this query q is in PTIME.

The final example shows that if there are multiple inver-
sions without erasers, we need to pick one carefully, which
makes the hardness reduction challenging.

Example 4.3 Consider the following variation of the query
in previous example:

q =R(x),S(x, y), U(x, y, a, b), U(z1, z2, x, y), V (z1, z2, x, y)
S(x′, y′), T (y′), V (x′, y′, a, b)

R(a), S(a, b), U(a, b, a, b)

10

Let f1 and f2 denote the factors corresponding to the first
two lines of q. There is an inversion from x ❂ y in f1 to
x′

❁ y′ in f2 via the two S sub-goals, and it does not have
an eraser. But if we unify the two S sub-goals to obtain S,
there is a ”bad mapping” from q to qu that maps x, y to a, b
and z1, z2 to x, y. However, as it turns out, there is another
inversion in q that we can use for hardness. The inversion is
from x ❂ y to z1 ≡ z2 to x′, y′ through the following unifica-
tion path: U(x, y, x, y) unifies with (a copy of) U(z1, z2, x, y)

and V (z1, z2, x, y) unifies with V (x′, y′, a, b). We can show
that this inversion works for the hardness reduction.

By formalizing these ideas, we prove:

Theorem 4.4. Suppose there are h, h′ ∈ H∗(q) such that
their hierarchical join hj has an inversion without an eraser.
Then, q is #P -complete.

5. CONCLUSIONS
We show that every conjunctive query has either PTIME

or #P-complete complexity on a probabilistic structure. As
part of the analysis required to establish this result we have
introduced new notions such as hierarchical queries, inver-
sions, and erasers. Future work may include several re-
search directions: a study whether the hardness results can
be sharpened to counting the number of substructures (i.e.
when all probabilities are 1/2); an analysis of the query
complexity; extensions to richer probabilistic models (e.g.
to probabilistic databases with disjoint and independent tu-
ples [9]); and, finally, studies for making our PTIME algo-
rithm practical for probabilistic database systems.

6. REFERENCES
[1] Daniel Barbará, Hector Garcia-Molina, and Daryl Porter.

The management of probabilistic data. IEEE Trans.
Knowl. Data Eng., 4(5):487–502, 1992.

[2] Jihad Boulos, Nilesh Dalvi, Bhushan Mandhani, Shobhit
Mathur, Chris Re, and Dan Suciu. Mystiq: a system for
finding more answers by using probabilities. In SIGMOD,
pages 891–893, 2005.

[3] Nadia Creignou and Miki Hermann. Complexity of
generalized satisfiability counting problems. Inf. Comput.,
125(1):1–12, 1996.

[4] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, 2004.

[5] Tomas Feder and Moshe Y. Vardi. Monotone monadic snp
and constraint satisfaction. In STOC, pages 612–622, 1993.

[6] Norbert Fuhr and Thomas Rolleke. A probabilistic
relational algebra for the integration of information
retrieval and database systems. ACM Trans. Inf. Syst.,
15(1):32–66, 1997.

[7] Erich Gradel, Yuri Gurevich, and Colin Hirch. The
complexity of query reliability. In PODS, pages 227–234,
1998.

[8] Laks V. S. Lakshmanan, Nicola Leone, Robert Ross, and
V. S. Subrahmanian. Probview: a flexible probabilistic
database system. ACM Trans. Database Syst.,
22(3):419–469, 1997.

[9] Christopher Re, Nilesh Dalvi, and Dan Suciu. Query
evaluation on probabilistic databases. IEEE Data
Engineering Bulletin, 29(1):25–31, 2006.

[10] Thomas J. Schaefer. The complexity of satisfiability
problems. In STOC, pages 216–226, 1978.

[11] L. Valiant. The complexity of enumeration and reliability
problems. SIAM J. Comput., 8:410–421, 1979.

[12] Jennifer Widom. Trio: A system for integrated
management of data, accuracy, and lineage. In CIDR, 2005.

11

APPENDIX

A. EXAMPLES OF INVERSIONS
We illustrate in Fig. 1 several subtleties of inversion-free queries that were left out from the text. Fig. 2 illustrates some

queries with inversions; all are #P-hard.

Query. The trivial coverage Fragment of a strict coverage Comments
is non-strict and has an “inversion” (Unification chain underlined)

R(x)S1(x, y, y)

S1(u, v, w), S2(u, v, w)

S2(x
′, x′, y′), T (y′)

qc1 = R(x), S1(x, y, y), x 6= y,

S1(u, v, v), S2(u, v, v), u 6= v

S2(x
′, x′, y′), T (y′), x′ 6= y′

qc2 = R(x), S1(x, y, y), x 6= y

S1(u, u,w), S2(u, u,w), u 6= w

S2(x
′, x′, y′), T (y′), x′ 6= y′

Illustrates the need for a strict cov-
erage. The unification path form-
ing an inversion in q in the trivial
cover (which is non-strict) is inter-
rupted when we add 6= predicates to
make the cover strict.

R(x1, x2), S(x1, x2, y, y),

S(x1, x1, x2, x2)

S(x′, x′, y′, y′), T (y′)

qc = R(x, x), S(x, x, y, y),

S(x, x, x, x), x 6= y

S(x′, x′, y′, y′), T (y′), x′ 6= y′

= R(x, x), S(x, x, x, x),

S(x′, x′, y′, y′), T (y′), x′ 6= y′

This illustrates the need to minimize
covers. The inversion disappears after
minimizing qc.

R(x1, x2), S(x1, x2, y, y)

S(x1, x2, x1, x2)

S(x′, x′, y′1, y
′
2), T (y′1, y

′
2)

qc1 = R(x, x), S(x, x, y, y), x 6= y

S(x′, x′, y′, y′), T (y′, y′), x′ 6= y′

S(x, x, x, x)

qc2 = R(x, x), S(x, x, x, x),

S(x′, x′, y′, y′), T (y′, y′), x′ 6= y′

This shows that we should not consider
redundant coverages. There is an in-
version in qc1, but this cover is con-
tained in qc2 so it is redundant and
after we remove qc1 from the coverage
there is no more inversion.

Figure 1: Inversion-free queries: all are in PTIME.

B. PROOF OF THEOREM 1.4
Let P be a conjunctive formula and A be a structure. We say that P is decisive w.r.t. A if there exists a function

c : A → V ar(P) s.t. for any homomorphism h : P → A there exists an automorphism i : P → P s.t. denoting h′ = h ◦ i we
have c ◦ h′ = idP . The function c, which we call a choice function, “chooses” for each node u in A a variable x = c(u) in P
such that any homomorphism from P to A maps x to u, up to renaming of variables in P . Let S be a class of structures. We
say that P is decisive w.r.t. S if it is decisive w.r.t. to each structure in S.

In the sequel we will make use of the following two classes of graphs. A 4-partite graph has nodes partitioned into four
classes Vi, i = 1, 2, 3, 4, and edges are subsets of

S3
i=1 Vi×Vi+1. A triangled-graph has a distinguished node v0 and two disjoint

sets of nodes V1, V2 s.t. edges are subsets of ({v0} × V1) ∪ (V1 × V2) ∪ (V2 × {v0}).

Example B.1 The query below checks if a graph has a chain of length 3:

P_3 = E(x,y), E(y,z), E(z,u)

Then P3 is decisive on the set of 4-partite graphs. To see this, the choice function simply chooses to map V1 to x, V2 to y, V3

to z and V4 to u.

Example B.2 The query below checks if the graph has a triangle:

T = E(x,y), E(y,z), E(z,x)

Then T is decisive on the class of triangled graphs. To see this, consider a triangled graph G and define c to map v0 to x,
V1 to y and V2 to z. A homomorphism h : T → G may map x to some other node than v0, but after a proper rotation
(automorphism) we transform h into a homomorphism h ◦ i that is consistent with c.

Note that T is not decisive on the class of all graphs. For example it is not decisive on the complete graph K4.

Our interest in the two queries above and their associated classes of decisive structures comes from the fact that their
complexity is #P-complete:

12

Query Fragment of a strict coverage (inversion underlined) Comments

R(x, y), R(y, z)
qc = R(x, y), R(y, z)

qc = R(x′, y′), R(y′, z′)

Here and the inversion is between y ❂

z and x′
❁ y′ in a copy of itself.

R(x), S1(x, y),

S1(u1, v1), S2(u1, v1)

S2(u2, v2), S2(v2, u2)

qc1 = R(x), S1(x, y), x > y,

S1(u1, v1), S2(u1, v1), u1 > v1

S2(u2, v2), S2(v2, u2), u2 > v2

qc2 = R(x), S1(x, y), x < y,

S1(u1, v1), S2(u1, v1), u1 < v1

S2(u2, v2), S2(v2, u2), u2 < v2

Here x ❂ y, u1 ≡ v1, u2 ≡ v2 and the
inversion path goes twice through each
factor. We call this an open marked
ring.

R(x), S(x, y), S(y, x)

qc1 = R(x), S(x, y), S(y, x), x < y

qc2 = R(x′), S(x′, y′), S(y′, x′), x′ > y′

Here x ❂ y and the inversion is be-
tween x, y and their copy y′, x′. We
call this a marked ring.

R(x), S1(x, y),

S1(u1, v1), S2(u1, v1)

S2(u2, v2), S2(v2, u2)

qc1 = R(x), S(x, y, y), x 6= y,

T (u, v), S(u, v, v), u 6= v,

U(y′), S(x′, y′, x′), x′ 6= y′

qc2 = R(x), S(x, y, y), x 6= y

T (w, v), S(w, v,w), w 6= v,

U(y′), S(x′, y′, x′), x′ 6= y′

Here the inversion path goes twice
through the subgoal S(u, v, w) using
different pairs of variables.

Figure 2: Queries with inversions: all are #P-hard

Proposition B.3. Let P3 be the 3-chain property in Example B.1. The complexity of computing P[P3] on 4-partite graphs
is #P-complete.

Let T be the triangle property in Example B.2. The complexity of computing P[T] on triangled graphs is #P-complete.

Proof. By reduction from the problem of computing the probability of bipartite 2DNF formulas. Let X = {x1, . . . , xm}
and Y = {y1, . . . , yn} be two disjoint sets of Boolean variables, and consider a bipartite 2DNF formula:

Φ =
_

k=1,t

xik ∧ yjk (12)

Construct the following 4-partite graph: V0 = {u}, V1 = X, V2 = Y , V4 = {v}, where u, v are two new nodes. All edges from
u to xi are present and their probability if P[xi]; for each clause xik ∧ yjk in (12) there is an edge (xik , yjk) with probability
1, and all edges (yj , v) are present and have probability P[yj]. Clearly the probability that this graph has a path of length 3
is precisely P[φ]. This proves the hardness of P3. The hardness of T is obtained similarly, by merging u and v into a single
node.

Theorem B.4. Let Q be a conjunctive formula, which is minimal, and let P be subformula. If there exists a class of
structures S s.t. (1) P is decisive on S and (2) P is #P-complete on S, then Q is #P-complete on the class of all structures.

Proof. We reduce the problem of evaluating P on some structure in S to the problem of evaluating Q on an arbitrary
structure. Let A ∈ S, and c : A → V ar(P) be a choice function. We construct a new structure B as follows. First define
H = {h : P → A | c ◦ h = idP } to be the set of homomorphism from P to A that are consistent with the choice function.
Note that H is polynomial in the size of A since P is fixed. Define the new structure B as follows. Its nodes, B are obtained
as follows. First define the set N = {(x, h) | x ∈ V ar(Q), h ∈ H}; next define the equivalence relation (x, h) ≡ (x′, h′) if
(x, h) = (x′, h′), or if x = x′ ∈ V ar(P) and h(x) = h′(x) (i.e. collapse multiple copies of the same variable from P if they
are mapped to the same node in A). The nodes in B are equivalence classes [(x, h)], i.e. B = N/ ≡. The relations in B

are of the form R([(x1, h)], . . . , [(xk, h)]), where R(x1, . . . , xk) appears in Q, and h ∈ H . One can think of B as consisting of
multiple copies of Q, one for each possible way of mapping P into A, but such that all copies of the same P -variable that
are mapped to the same node u ∈ A are merged into a single node. The latter are precisely the nodes of the form [(x, h)] for
x ∈ V ar(P), and we call them the special nodes in B. Thus, the special nodes in B form a substructure that is isomorphic to
some substructure A0 of A, which is large enough to contain the image of all homomorphism from P to A. The probabilities
are as follows. If x1, . . . , xk ∈ V ar(P) then

PB(R([(x1, h)], . . . , [(xk, h)])) = PA(R(h(x1), . . . , h(xk)))

13

; otherwise PB(R([(x1, h)], . . . , [(xk, h)])) = 1. Note that there is a 1-to-1 correspondence between the worlds WA of A and
the worlds WB of B, and P[WA] = P[WB].

Claim 1. Let WA be a world of A s.t. WA |= P . Then, denoting WB the corresponding world of B, we have WB |= Q.
Indeed, let h : P → A be a homomorphism whose image uses only tuples in WA. We can assume w.l.o.g. that it is consistent
with the choice function, i.e. c ◦ h = idP (otherwise simply compose it with the automorphism i), hence h ∈ H . Extended it
to a homomorphism h̄ : Q→ B by defining h̄(x) = [(x, h)]: it clearly only uses tuples in WB.

Claim 2. Let WB be a world of B s.t. WB |= Q. Then, denoting WA the corresponding world of A we have WA |= P .
Let h̄ : Q → B be a homomorphism. If h̄ maps V ar(P) only to the special nodes in B, then we are done; but this may not
necessarily be the case. We will prove instead that there exists some automorphism g : Q→ Q s.t. h̄ ◦ g maps V ar(P) to the
special nodes in B.

Define the function f : B → V ar(Q) to be f([x, h]) = x; one can check that it is a homomorphism from B to Q, and that
all special nodes and only these are mapped to V ar(P). Consider the composition f ◦ h̄ : Q → Q, which is an isomorphism
(since Q is minimal); in particular h̄−1 is functional, i.e. |h̄−1(u)| ≤ 1. Define g = (f ◦ h̄)−1 to be its inverse. Then h̄ ◦ g
maps V ar(P) to the special nodes in B. Indeed, for any variable x ∈ V ar(P), f−1(x) consists only of special nodes, hence
h̄(g(x)) = h̄(h̄−1(f−1(x))) = Dom(h−1) ∩ f−1(x) is a special node.

Theorem B.5. Let P = R1(v̄1), R2(v̄2), R3(v̄3) be a conjunctive property, which is minimal, and for which there exists two
variables x, y s.t. x ∈ v̄1, x ∈ v̄2, x 6∈ v̄3 and y 6∈ v̄1, y ∈ v̄2, y ∈ v̄3. Then there exists a class of structures S s.t. (a) P is
decisive w.r.t. S and (b) P is #P-complete on structures in S. Note that R1, R2, R3 may be any relation names, possibly the
same relation name.

Proof. By reduction from partitioned 2DNF. Consider Eq.(12), and recall that the variables are X = {x1, . . . , xm},
Y = {y1, . . . , yn}. Let U = {u1, u2, . . . , uk} be all the variables occurring in P in addition to x and y, and C be the set of
constants. Define the structure A s.t. A = X ∪ Y ∪ U ∪ C, and the relations are defined as follows:

RA1 = {R1(v̄1[xi/x]) | i = 1,m}

RA2 = {R1(v̄1[xik/x, yjk]/y) | k = 1, t}

RA3 = {R3(v̄3[yj/y]) | j = 1, n}

Thus, the tuples in the first set correspond to the Boolean variables xi, those in the second set correspond to clauses xik ∧yjk ,
and those in the third set correspond to the Boolean variables yj . Note that the three sets defined on the right are disjoint:
if two or more of the relation names R1, R2, R3 are the same, then their interpretation in A consists of the union of the
corresponding right hand definitions above. The tuple probabilities are as follows: those in RA1 are precisely P(xi), those in
RA2 are 1, and those in RA3 are precisely P(yj).

We first show that P is decisive on A. Define the choice function c : A → V ar(P) to be c(xi) = x for i = 1, m, c(yj) = y
for j = 1, n and c(up) = up for p = 1, k. We need to prove that every homomorphism h : P → A is, up to isomorphism,
consistent with the choice function. For that we note that the choice function itself is a homomorphism c : A → P , hence
c◦h : P → P is an automorphism (since P is minimal), and we denote i = (c◦h)−1. We show now that h′ = h◦ i is consistent
with c. Indeed: c ◦ h′ = c ◦ h ◦ (c ◦ h)−1 = idP .

Next we prove that the probability of P being true on A is the same as the probability that Φ is true. There is an obvious
one-to-one correspondence between worlds WA of A and truth assignment for Φ: the tuple in RA1 corresponding to xi occurs
in WA iff xi = true, and similarly for RA3 and the yj ’s. Clearly if the truth assignment makes Φ true, then P is true on
WA: simply pick two variables xi and yj that are both true under the truth assignment, and note that P can be mapped
to the three tuples corresponding to xi, to the clause xi ∧ yj and to yj respectively. Conversely, suppose P is true on WA,
i.e. there exists a homomorphism h : P → A whose image is contained in WA. Since P is decisive on A there exists another
homomorphism h′ : P → A that is consistent with c, i.e. it maps x to some xi and y to some yj . Then Im(h′) consists
of three tuples RA1 (v̄1[xi/x]), R2(v̄2[xik/x, yjk/y]), and R

A
3 (v̄3[yj/y]), and, moreover xik ∧ yjk is a clause in Φ, which is true

under the truth assignment corresponding to WA.

Corollary B.6. Let Q be a non-hierarchical conjunctive query. Then Q is #P-hard.

Proof. Consider the minimal conjunctive query defined by Q. Since Q is non-hierarchical, there must be two variables
x and y such that sg(x) ∩ sg(y) 6= ∅, sg(x) − sg(y) 6= ∅ and sg(y) − sg(x) 6= ∅. Thus, the minimal query must contain a
subformula P = R1(v̄1), R2(v̄2), R3(v̄3) s.t. x ∈ v̄1, x ∈ v̄2, x 6∈ v̄3 and y 6∈ v̄1, y ∈ v̄2, y ∈ v̄3.

It follows from the previous two results that Q is #P-hard.

C. PROOF OF THEOREM 1.5
We will prove here that for every k ≥ 0, Hk is #P-hard. Recall that

Hk =
R(x),S0(x, y),

S0(u1, v1),S1(u1, v1)

14

S1(u2, v2),. . .
Sk−1(uk, vk),Sk(uk, vk)

Sk(x
′, y′), T (y′)

Define queries φ0, · · · , φk+1, where

φ0 = R(x), S0(x, y)

φi = Si−1(u, v), Si(u, v) for 1 ≤ i ≤ k

φk+1 = Sk(x
′, y′), T (y′)

Thus, Hk =
V

i∈[k] φi. For any proper subset S of [k], the query
V

i∈S is in PTIME(this follows from a result we prove later

that every inversion-free query is in PTIME). Using the principle of inclusion-exclusion, to show the hardness of Hk, it is
enough to show the hardness of the query

W

i∈[k] φi is hard, or equivalently, its negation q =
V

i∈[k](NOTφi).

We give a reduction from the problem of computing the probability of bipartite 2DNF formulas. Let X = {x1, . . . , xm}
and Y = {y1, . . . , yn} be two disjoint sets of Boolean variables, and consider a bipartite 2DNF formula:

Φ =
_

h=1,t

xih ∧ yjh (13)

We construct an instance for relations R,S0, · · · , Sk, T . For each variable xi ∈ X, create a tuple R(xi) and assign it a
probability 1/2. For each yi ∈ Y , create a tuple T (yi) and assign it a probability 1/2. For each clause (xih , yjh), and for each
l ∈ [k], create a tuple Sl((xih , yjh) and assign it a probability p1 for l = 0, k and a probability of p2 for 1 ≤ l ≤ k − 1.

Let Ti,j be the number of assignments of Φ such that i clauses have both variables true and j clauses have no variables
true. Thus, (t− i− j) have exactly 1 variable true, where t is the number of clauses.

There is a canonical mapping between the truth assignments of X,Y and worlds of relations S, T where x ∈ X is true iff
S(x) is present and y ∈ Y is true iff T (y) is present.

Consider some fixed assignment where i clauses have both variables true and j clauses have no variables true. Fix relations
R, T accordingly and consider all possible worlds of S1, · · · , Sk such that q is true on the worlds. For each (xih , yjh), consider
all tuples of the form Sl(xih , yjh):

1. If xih and yih are true, the tuples S0(xih , yjh) must be both out, and other edges do not matter. Its probability is
(1− p1)

2

2. If one of them is true, one of the tuples S0(xih , yjh) must be out (depending on which variable is true), and other edges
do not matter. Its probability is (1− p1).

3. If xih and yih are both false, the only requirement is that not all Sl(xih , yjh) are in. Its probability is (1− p21p
k−2
2).

Thus, its total probability of all worlds corresponding to this fixed assignment is

(1/2)|X|+|Y |[(1− p1)
2]i[(1− p21p

k−2
2)]j [(1− p1)]

c−i−j

This can be written as KAiBj , where K = (1/2)|X|+|Y |(1− p)c, A = (1− p1) and B = (1− p21p
k−2
2)/(1− p1).

Thus Pr[q] =
P

i,j:i+j≤t Ti,jK.A
i.Bj

This is a linear equation in variables Ti,j . We put different values of p1, p2 to get different values of A,B and get a system
of linear equations. The coefficient matrix of this set of equations is the Vandemonte matrix which is known to be invertible.
By inverting the matrix, we solve for each Ti,j . Finally, we can compute the number of satisfying assignments of φ using
P

i,j|i+j≤t,j 6=t Ti,j . This gives a polynomial time reduction from the problem of computing Hk to counting the number of

satisfying assignments of a bipartite DNF formula. Hence, Hk is #P-hard.

D. PROOF OF THEOREM 2.7
Consider some probability space. Let U = (U1, · · · , Uk) be a vector consisting of k sets. For each i ∈ [k] and each x ∈ Ui, let

E(i, x) be an event in the probability space. Define E(i) =
W

x∈Ui
E(i, x). Let Q be a CNF formula over events E(1), · · ·E(k),

i.e., let ψ be a set of subsets of [k] and let

Q =
_

S∈ψ

^

i∈S

E(i) (14)

We will derive an expression for Pr[Q] in terms of the probabilities of the events E(i, x). We need some notations. A signature
is simply a subset of [k]. Given a vector of sets S = (S1, · · · , Sk), the signature of S, denoted sig(S), is the set {i | Si 6= ∅}.
E(S) is defined as the event

V

i∈[k]E(i, Si). The size of U is defined as |U | = |U1|+ · · ·+ |Uk|. Also, given vectors S and T ,

we say that S ⊆ T iff for all i ∈ [k], Si ⊆ Ti.
Define the upward closure of ψ as up(ψ) = {sg | sg ⊆ [k], ∃sg0 ∈ ψ s.t. sg0 ⊆ sg}. Define the minimal elements of ψ as

Factors(ψ) = {sg | sg ∈ ψ,∀sg0 ∈ ψ. sg0 ⊆ sg ⇒ sg0 = sg}. For a set of signatures G, let sig(G) = ∪sg∈Gsig(sg). Given a
signature sg, define

N(sg) = (−1)|sg|
X

G|G⊆Factors(ψ),sig(G)=sg

(−1)|G|

Our main result is follows:

15

Theorem D.1. With U , ψ and Q as defined above,

Pr[Q] =
X

S⊆U

N(sig(S))(−1)|S|

We will need the following result later which gives an alternate formula for N(sg).

Lemma D.2. N(sg) =
P

{sg0|sg0⊆sg,sg0 6∈UP (ψ)}(−1)
|sg0|.

In the rest of the section, we prove this theorem.
Let ∗ be an element such that ∗ 6∈ Ui for all i and define U∗

i = Ui ∪ {∗}. Given an element x ∈ U∗
1 × · · · ×U

∗
k , the signature

of x, denoted sig(x), is a subset of [k] given by {i | πi(x) 6= ∗}. Given a vector of sets S = (S1, · · · , Sk) where Si ⊆ Ui, define

Πψ(S) = {x | x ∈ (S1 ∪ {∗}) × · · · (Sk ∪ {∗}), sig(x) ∈ ψ}

Given a vector x ∈ Πψ(U), define E(x) =
V

i∈sig(x) E(i, πi(x)). Then, from Eq (14), it follows that

Q =
_

x∈Πψ(U)

E(x)

Using inclusion-exclusion, we obtain

Pr[Q] =
X

T⊆Πψ(U)

(−1)TPr[
^

x∈T

E(x)] (15)

For a set T ⊆ Πψ(U), define πi(T) = {πi(x) | x ∈ T, πi(x) 6= ∗}. Also, define E(i, S) =
V

s∈S E(i, s). Then,
V

x∈T E(x) =
E(1, π1(T)) ∧ · · · ∧E(k, πk(T)).

In Eq (15, we group the T based on their projection to obtain

Pr[Q] =
X

S1,··· ,Sk

Pr[
^

i∈[k]

E(i, Si)]∗(
X

T⊆Πψ(U),πi(T)=Si

(−1)T) (16)

Let N(S1, · · · , Sk) denote the sum
P

T⊆Πψ(U),πi(T)=Si
(−1)T . Thus,

Pr[Q] =
X

S1,··· ,Sk

N(S1, · · · , Sk)Pr[
^

i∈[k]

E(i, Si)]

The main result of this section is an expression for the quantity N(S1, · · · , Sk). Given a vector S = (S1, · · · , Sk), define the
signature of S, denoted sig(S), as the set {i | Di 6= ∅}.

In an ordered set (X,<), an ideal is a set of the form {x | x ≤ a}, for a fixed element a ∈ X, which we denote by [a].

Lemma D.3. If [A] is an ideal in P(U), then
P

{T |T∈[A]}(−1)
T = 0 if A is nonempty, and is 1 if A is empty. Note that

T ∈ [A] means T ⊆ A.

For S = (S1, · · · , Sk), denote

ND(S) =
X

T⊆Πψ(S)

(−1)|T |

Lemma D.4. N(S) =
P

R⊆S (−1)|S−R|ND(R). Here R = (R1, · · · , Rk) and R ⊆ S means Ri ⊆ Si for all i.

Proof. Direct inclusion-exclusion applied to N(S).

Define up(ψ) = {sg | sg ⊆ [k], ∃sg′ ∈ ψs.t.sg′ ⊆ sg}.

Lemma D.5. 1. If sig(R) ∈ up(ψ), then ND(R) = 0.

2. If sig(R) 6∈ up(ψ), then ND(R) = 1.

Proof. Follows from the fact that sig(R) ∈ up(ψ) iff Πψ(R) 6= ∅ and from the fact that ND(R) sums (−1)|T |, where T
ranges over the ideal defined by Πψ(R).

Hence, N(S) = (−1)|S| P

{R⊆S :sig(R) 6∈up(ψ)}(−1)
R.

Let sg be a signature, i.e. sg ⊆ [k]. Denote the quantity M(S, sg) =
P

R⊆S:sig(R)=sg(−1)
R. Thus, we have:

N(S) = (−1)S∗
X

sg 6∈up(ψ)

M(S, sg)

For a signature sg′ ⊆ [k], denote:

MD(S, sg′) =
X

R⊆S:sig(R)⊆sg′

(−1)R

16

Lemma D.6. M(S, sg) =
P

sg′⊆sg(−1)
|sg − sg′|∗MD(S, sg′)

Proof. Again inclusion/exclusion formula applied to the set sg.

Lemma D.7. 1. If sg′ ∩ sig(S) 6= ∅, then MD(S, sg′) = 0.

2. If sg′ ∩ sig(S) = ∅, then MD(S, sg′) = 1.

Proof. Follows from the fact that the set {R | R ⊆ S, sig(R) ⊆ sg′} is an ideal, and it is nonempty iff sg′ ⊆ sig(S).

Next, we manipulate the expression M(S, sg) as follows. We have M(S, sg) = (−1)sgM ′(S, sg), where:

M ′(S, sg) =
X

sg′⊆sg

(−1)sg
′

MD(S, sg′)

=
X

sg′⊆sg,sg′∩sig(S)=∅

(−1)sg
′

=
X

sg′⊆(sg−sig(S))

(−1)sg
′

This is a sum over the ideal generated by sg − sig(S). This ideal contains only the empty set when sg ⊆ sig(S), hence:

Lemma D.8. 1. If sg ⊆ sig(S), then M(S, sg) = (−1)sg

2. If sg 6⊆ sig(S), then M(S, sg) = 0.

Hence,

N(S) = (−1)S∗
X

sg 6∈up(ψ)

M(S, sg)

= (−1)S∗
X

sg 6∈up(ψ),sg⊆sig(S)

(−1)sg

= (−1)S∗
X

sg⊆sig(S)

(−1)sg − (−1)S∗
X

sg∈up(ψ),sg⊆sig(S)

(−1)sg

= −(−1)S∗
X

sg∈UP (ψ),sg⊆sig(S)

(−1)sg

The last equality holds because we assume sig(S) 6= ∅, hence sg ⊆ sig(S) is a non-empty ideal.

Theorem D.9. N(S) = −(−1)S∗
P

sg∈up(ψ),sg⊆sig(S)(−1)
sg.

Next, assume that up(ψ) is generated by the set ψ = {φ1, · · · , φp}, where each factor φi is a subset of [k]. Then we apply
inclusion exclusion to (N6):

N(S) = −(−1)S
P

G⊆[p](−1)
|G−1| P

∪i∈Gφi⊆sg⊆sig(S)
(−1)sg.

In the inner sum sg ranges over the interval [∪i∈Gφi, sig(S)], hence the sum is (−1)sig(S) when ∪i∈G = sig(S) and 0
otherwise. It follows:

Theorem D.10. N(S) = (−1)S(−1)sig(S)
P

sig(G)=sig(S)(−1)
G.

E. PROOF OF THE DICHOTOMY THEOREM

E.1 Unifiers
In this section, we define a set H(q), called the set of hierarchical unifiers of q, by starting from the factors of q and unifying

them in certain way.

Definition E.1. (Hierarchical join predicate) Let q1 and q2 be two strict hierarchical queries with disjoint sets of variables
and let g1 ∈ subgoals(q1) and g2 ∈ subgoals(q2) be any two sub-goals that are unifiable. Thus, g1 and g2 have same arity, say
a. Let mu : V ars(g1)→ V ars(g2) be the most general unifier of g1 and g2, which is a bijection. Let x1 ⊑ · · · ⊑ xa be all the
variables in g1 and y1 ⊑ · · · ⊑ ya be all the variables in g2. Let w be the largest integer such that mu(xi) ≡ yi for 1 ≤ i ≤ w.
A hierarchical join predicate between q1 and q2 is the set {(xi,mu(xi)) | 1 ≤ i ≤ w}

Definition E.2. (Hierarchical Unifier) Let q1 and q2 be two strict hierarchical queries with disjoint sets of variables and
let jp be some hierarchical join predicate between them. A hierarchical unifier of q1 and q2 is a query obtained by considering

qu ← q1, q2,
^

(xi,xj)∈jp

(xi = xj)

and removing all = predicates by substituting.

17

Lemma E.3. Let qu be a hierarchical unifier of two strict hierarchical queries q1 and q2. Then, qu is a strict hierarchical
query.

Proof. TBD.

The above result justifies the name ”hierarchical unifier”, because such unifiers are always hierarchical. Next we define a
set H(q), called the set of hierarchical unifiers of q, along with a function Factors from H(q) to subsets of F(q). They are
constructed inductively as follows:

1. For each q ∈ F(q), add q to H(q) and let Factors(q) = {q}.

2. If q1, q2 are in H(q), and qu is their hierarchical unifier, add qu to H(q) if it is not logically equivalent to any existing
query in H(q). Also, define Factors(qu) to be Factors(q1) ∪ Factors(q2)

Lemma E.4. The set H(q) is finite.

Proof. All queries in H are hierarchical by Lemma E.3. There are only finitely many hierarchical queries up to equivalence
on a given set of relations and given set of constants. [[Expand this proof]].

E.2 The Polynomial Time Algorithm
Let H∗(q) be the subset of H(q) containing queries which are either inversion-free or in F(q).

E.2.1 Query expansion
Let H∗(q) = {qh1, qh2, · · · , qhk}. Define

ψ = {S | S ⊆ [k], qci ⊆ (
[

i∈S

Factors(qhi)) for some qci ∈ C(q)}

Thus, ψ contains all combinations of hierarchical unifiers that make q true. Let Factors(ψ) be the minimal elements of ψ.

Lemma E.5. With ψ as defined above,

q ≡
_

S∈ψ

^

i∈S

qhi

Proof. The ⇐ direction is obvious from the definition of φ. For the ⇒ direction, consider any mapping η of q into the
database. Consider the factor corresponding to that mapping and the set of its connected components. This set is in in φ
and hence

W

S∈ψ

V

i∈S qhi is true on the database.

We then apply the generalized inclusion-exclusion formula from Sec D to obtain:

Pr[q] =
X

G⊆Factors(ψ)

(−1)|G|+|sig(G)|
X

{T |sig(T)=sig(G)}

(−1)TPr[qh(T)]

where qh(T) = qh1(π1(T)), qh2(π2(T)), · · · , qhk(πk(T)).

Define coeff(sg) = (−1)|sg|
P

G⊆Factors(ψ),sig(G)=sg
(−1)|G|. The sum can alternatively be rewritten as:

Pr[q] =
X

sg⊆[K]

F (sg)

where

F (sg) = coeff(sg)
X

{T |sig(T)=sg}

(−1)|T |Pr[qh(T)]

E.2.2 Adding Independence Predicates
Let x̄1, · · · , x̄k be the set of variables of qh1, · · · , qhk. Define new relational symbols S1, · · · , Sk where the arity of Si equals
|x̄i|. Given any join predicate jp between qhi and qhj , consider the following conjunctive query:

qjp()→ Si(x̄i), Sj(x̄j),
^

(x,y)∈jp

(Si.x = Sj .y)

Given any set T = (T1, · · · , Tk), let qjp(T) be the predicate which is true if qjp is true when evaluated on T , i.e. by setting
Ti to be the instance of Si.

An independence predicate is simply the negation of a join predicate. Let Qip be the set of all independence predicates, i.e.,

Qip = {not(qjp) | qjp ∈ Qjp}.

We divide the join predicates into two disjoint sets, trivial and non-trivial. A join predicate between factors hi and hj
is called trivial if the join query is equivalent to either hi or hj , and is called non-trivial otherwise. We write ip(C∗) as
ipn(C∗) ∧ ipt(C∗), where ipn(C∗) is the conjunction of not(jp) over all non-trivial join predicates jp, and ipt(C∗) is the
conjunction over all trivial join predicates.

18

For a signature sg, let ipn(sg) denote the subset of Qip consisting of independence predicates between all Si and Sj such

that i, j ∈ sg. Let π be a function that maps each signature sg to a set of independence predicates π(sg) ⊆ ipn(sg). Denote:
Let π be any predicate on T , i.e. a query over the relations S1, · · · , Sk. Define

sum(π) =
X

T :π(T)

N(sig(T))(−1)TPr[qh(T)]

Thus, the probability of q is simply sum(∅), where ∅ is the predicate that is identically true. Define ipn to be the
conjunction of all independence predicates between queries in H∗(q), i.e. ipn =

W

jp
not(jp), where jp ranges over all join

predicates between all qi, qj ∈ H
∗(q).

We will prove that when the query satisfies the PTIME conditions, then sum(∅) = sum(ipn).

Definition E.6. (Eraser) Let qhi and qhj be any two strict hierarchical queries in H∗(q) and let qij be their unifier
corresponding to some join predicate jp. An eraser for the unifier qij is a set of queries E ⊆ H∗(q) such that:

1. For all q ∈ E, q → qij

2. For all sg ⊆ [k], N(sg ∪ {i, j}) = N(sg ∪ {i, j} ∪ {k | qhk ∈ E}).

Theorem E.7. Suppose for every qi, qj , qij such that qi, qj ∈ H
∗(q) and qij is a hierarchical unifier of qi and qj , either

qij ∈ H
∗(q) or it has an eraser. Then, sum(∅) = sum(ipn).

We will prove Theorem E.7 in the rest of this section.
Let N be the size of the domain for the database. Let S denote the vocabulary S1, · · · , Sk. Let QN,S(k) be the set of

conjunctive queries of arity k over S that are equivalent on domain of size N . For each q ∈ QN,S(k), define the following

q∗ = ∃x̄.q(x̄) ∧ (
^

{q′|q′∈QN,S(k),q′ contains q}

not(q′(x̄))

Let Q∗
N,S(k) = {q

∗ | q ∈ QN,S(k)} and let Q∗
N,S = ∪k≥0Q

∗
N,S(k). Each of the query in Q∗

N,S is Boolean, hence it contains
only finitely many queries up to equivalence on domains of size N , which we denote {qs∗1, qs

∗
2, · · · , qs

∗
t }. For each qs∗i , qsi

denotes the conjunctive query which is the positive part of qs∗i .
We call each such query a cell. A cell signature is any subset of Q∗

N,S . Given a cell signature csig, it defines the following
query

(
^

q∈csig

q) ∧ (
^

q 6∈csig

not(q))

Given a set T , we say T |= csig if T satisfies the query defined by csig. The cell signatures partition the sets of all T . Thus,
we have

Pr[q] =
X

T

N(sig(T))(−1)TPr[qh(T)]

=
X

csig

X

{T |T |=csig}

N(sig(T))(−1)TPr[qh(T)]

We say that a cell signature csig contains a join predicate if their is a cell qs∗i ∈ csig and a join predicate query qjp such
that qs∗i ⊆ qjp.

Lemma E.8. Let q be the union of all cell signatures that do not contain any join predicate. Then T |= q iff T satisfies all
the independence predicates.

Proof.

To prove Theorem E.7, we only need to show that the total contribution of all cell signatures that contain at least one join
predicate is 0. We will show this by grouping cell signatures into groups of three.

Let F (csig) denote the quantity
P

T |T |=csig N(sig(T))(−1)TPr[qh(T)]. Let qhi, qhj be any two hierarchical queries with

unifier qu corresponding to the join predicate jp. qjp is the join predicate query on the S vocabulary. Let E = {qhl1 , · · · , qhlm}
be its eraser. Thus, there is a mapping h : qhl1 , · · · , qhlm → qu. Let qjp,E = h(Sl1), · · · , h(Slm), qjp.

Let qsm be any query that contains qjp but not qjp,E . Thus, there is a mapping g : qjp to qsm. Let f = h ◦ g and let
qs′m = f(Sl1), · · · , f(Slm), qsm.

Let csig0 be any subset of QS that does not contain qsm and qs′m.

Lemma E.9. With csig0, qsm and qs′m as defined above,

F (csig0 ∪ {qsm}) + F (csig0 ∪ {qs
′
m}) + F (csig0 + {qsm, qs

′
m}) = 0

19

Proof. Consider any T0 that satisfies either of the three cells. Then, T0 satisfies the query qsm (note that qs′m contains
the query qsm). Let Hli be the set of tuples obtained for Sli from qsm(T0) using the mapping f .

Let T ′ be obtained from T0 by removing tuples Hli from Tli for all i in the eraser. Now we fix T ′ and look at all the T
satisfying either of the three cells and which gives rise to the same T ′. Every such T is obtained by adding some subset of
Hli to T

′
li
.

Claim: Every possible T obtained from T ′ by adding some subset of Hli to T
′
li

satisfies one of the three cells.
Further, for a fixed T ′, each T gives rise to the same query qh(T). Thus, when we sum over all such T , we get an ideal

which is 0. Summing over all T ′, we get that the total contribution of the three cells is 0

Lemma E.10. The set of all cell signatures that contain at least one join predicate can be partitioned into groups of three
of the form in Lemma E.9.

Proof. Each triplet is defined by (i) a join predicate qjp with an eraser E, (ii) a pair of queries qsa and qsb where qsa
contains qjp but not qjp,E and qsb is obtained from qsa by attaching E, and (iii) a subset of cells csig0. The triplet is then
given by: csig0 ∪ {qsa}, csig0 ∪ {qsb} and csig0 ∪ {qsa, qsb}.

Now, given any csig containing a join predicate, define qjp, qsa, qsb and csig0 as follows. Order the set of all join predicates
and the set of cells and pick a canonical eraser for each join predicate. Let qjp be the smallest join predicate in csig. Let E
be the canonical eraser for qsi and let qjp,E be the query as described above.

Let qsm be the smallest cell in csig that contains qjp. If qsm does not contain qjp,E , let qsa = qsm and define qsb
appropriately. Note that csig may not contain qsb. If qsm contains qjp,E let qsb = qsm and define qsa appropriately. Again,
csig may not contain qsa. Let csig0 be all the cells in csig except qsa and qsb. This defines the triplet for qsm.

Claim: every cell signature containing a join predicate belongs to a unique triplet.
This follows from Lemma E.11

Lemma E.11. Let qi and qj be two queries with a join predicate qu that has an inversion. Suppose E is an eraser for qu,
such that there is a mapping h : E → qu. Then, for any ql ∈ E, h(ql), qi is hierarchical.

Proof. Suppose on the contrary there is an inversion between R(x), S(x, y) ∈ ql and S(x′, y′), T (y′) in qi such that
h(x) = x′, h(y) = y′, where R(x) is some subgoal that contains x but not y, S(x, y) is some subgoal containing both x and
y, S(x′, y′) is a subgoal containing both x′ and y′ and T (y′) is a subgoal containing y′ but not x′.

There are two cases: the join predicate between qi and qj does not touch variable x′ in qj . Then, no subgoal of qi in qu
contains the variable x′. So, h maps R(x) to some subgoal in qj itself. Thus, qj is not hierarchical, which is a contradiction.

Hence, the join predicate between qi and qj uses the variable x′. It also uses y′ because x′ ⊑ x. Now, since ql and qi have
inversion, there must be an eraser E′ that has a mapping to h(ql), qi. This eraser only uses a portion of the partial unifier of
qi, qj , hence there is a mapping E′ → qu.

E.2.3 Change of Basis
We have

Pr[q] =
X

T :ipn(T)

N(sig(T))(−1)TPr[qh(T)]

For each i, we expand qhi(Ti) into the relations it contains. We group all the T that result in the same qh(T).
Each qhi is a connected hierarchical query. Let ❁ be the hierarchy relation on V ars(qhi). Define a hierarchy tree for qhi

as follows. The nodes of the trees are certain subsets of V ars(qhi). For each subset of the set of subgoals of qhi, there is a
node in the hierarchy tree consisting of the intersection of variables of those subgoals. A node n is a child of n′ if n ⊂ n′ and
there is no n′′ such that n ⊂ n′′ ⊂ n′.

For each node in the hierarchy tree of qhi, we define a new relational symbol whose attributes are the variables in that
node. Let Si = {Si0, S

i
1, · · · } be the set of new relational symbols and let {Xi

0, X
i
0, · · ·} be the corresponding sets of variables.

Consider any vector Ui = (Ui1 , Ui2 , · · ·), where Uij ⊆ AArity(S
i
j). We say that T |= U if for all i, j, Uij is the projection

of Ti on the variables Xi
j . Define Fi(Ui) =

Q

j

Q

g|V ars(g)=Xi
j
Pr[qhi(Uij)] and let F (U) = F1(U1) × · · · × Fk(Uk). Then, if

T |= U and T satisfies all the independence predicates, we have Pr[qh(T) = F (U).
We rewrite Pr[q] as

Pr[q] =
X

U

X

{T |U|=T,ipn(T)}

N(sig(T))(−1)TPr[qh(T)]

The signature of T can be determined by the signature of U in straightforward way, and we write N(sig(T)) as N(sig′(U)).
Also, we write Pr[qh(T)] as F (U). We have

Pr[q] =
X

U

N(sig′(U))F (U)
X

{T |U|=T,ipn(T)}

(−1)T

Next, we note that ipn(T) is independent of T for a given U , and we move the independence predicates to U as follows:
For each independence predicate between sub-goal g1 of qhi1 and sub-goal g2 of qhi2 , we add the independence predicate

20

not(Si1j1 (x̄), S
i2
j1
(x̄)), where Si1j1 is the relation corresponding to V ars(g1) and Si2j2 is the relation corresponding to V ars(g12.

Let ipn(U) be the conjunction of all such predicates. Then,

Pr[q] =
X

{U|ipn(U)}

N(sig′(U))F (U)
X

{T |U|=T}

(−1)T

Not all possible U have a possible T . For instance, if relations Sij1 and Sij2 share a set of variable X, then U must have

πX(Sij1) = πX(Sij2). We use the hierarchy tree to determine when a U has a possible T . For each Sij1 and Sij2 such that Sij1
is a child of Sij2 , define the predicate Sij1 = πX(Sij2 , where X is the set of variables in Sij1 . Let φ be the conjunction of all
such predicates on U .

Lemma E.12. Let f(U ij) be a function which is (−1)|U
i
j | if Sij has even number of children in the hierarchy tree of qhi and

1 otherwise. Then,
P

{T |U|=T}(−1)
|T | =

Q

i,j
f(U ij) if U satisfies φ and 0 otherwise.

Using the above lemma, we get

Pr[q] =
X

{U|ipn(U),φ(U)}

N(sig′(U))f(U)F (U)

=
X

sig

N ′(sig)
X

{U|ipn(U),φ(U),sig(U)=sig}

f(U)F (U)

Next, we add the remaining independence predicates, namely ipt. Consider all pairs Si1j1 and Si2j2 in the query that refer
to the same predicate and which have not been separated using ipn. Fix an ordering on the subgoals of the query, and let

g(U ij) be a function which is (−1)|U
i
j | if there are odd number of subgoal less than Sij that need to be separated from Sij and

1 otherwise. Then,

Pr[q] =
X

sig

N ′(sig)
X

{U|ipn(U),ipt(U),φ(U),sig(U)=sig}

g(U)f(U)F (U)

We observe that computing the inner sum is equivalent to evaluating the query (ipn(U)∧ ipt(U)∧φ(U)∧ sig(U) = sig) on a
probabilistic database with schema Sij and instance U ij and probabilities given by Pr[t ∈ Sij] = g(t)f(t)F (t)/(1+g(t)f(t)F (t)).

Finally, to evaluate (ipn(U) ∧ ipt(U) ∧ φ(U) ∧ sig(U) = sig), we negate ipn and use inclusion-exclusion to represent it
as probabilities of finite number of conjunctive queries (with negated subgoals due to φ. Each such conjunctive query is
inversion-free [[need to give more details here]], because the ipn∧ipt part consists of a bunch of join predicates corresponding
to hierarchical unifiers, and the φ part also contains the same join predicates (but with negated sub-goals). So the resulting
query is inversion-free and can be evaluated in PTIME.

E.3 Hardness Proof
The main result of this section is that if there is a hierarchical unifier that contains an inversion but does not have an eraser,

then the query is #P -hard. This shows that the PTIME condition and the hardness condition complement each other.

Theorem E.13. Let qi, qj ∈ H
∗(q) and let qk be their hierarchical unifier qk such that

1. qk contains an inversion.

2. qk does not have any eraser.

Then, q is #P -complete.

We prove this in the rest of this section. First, we need some definitions and results.

Definition E.14. (Redundent Set of Covers) A set of covers qc1, · · · , qck is strictly redundant if there exists a mapping
h : qc → qc1, · · · , qck, where qc is not among qc1, · · · , qck. A set of covers is redundant if it contains a strictly redundant
subset of covers.

Definition E.15. Let qc0, · · · , qck be a non-redundant set of covers. Let qcs← qc0, · · · , qck and define the cover-set query
to be the minimization of qcs :

qcs′ = minimize(qcs) = qc′0, · · · , qc
′
k

where each qc′i is a subset of subgoals of qci. Denote the inclusions and the projection homomorphisms:

ini : qci → qcs i = 0, 1, · · · , k

in : qcs′ → qcs

pr : qcs→ qcs′

Note that pr ◦ in is the identity mapping on qcs′.

21

Definition E.16. The mappings hi : q → qcs′ obtained by composing h : q → qci (the cover mapping), ini (the ith

inclusion) and pr (the projection) are called canonical mappings.

Lemma E.17. If F is a non-redundant set of covers, then every mapping from q to the cover-set query of F is canonical
upto isomorphism.

Definition E.18. (Extension) Let qh ∈ H(q) be any hierarchical unifier with Factors(qh) = {qf1, · · · , qfk}. Let qc1, · · · , qck
be a multiset of covers such that qci contains the factor qfi. An extension of qh is a query qce′ obtained by minimizing
qce = qc1, · · · , qck, qh. Define the inclusion homomorphism in : qce′ → qce, the ith inclusion homomorphism ini : qci → qce
and the projection homomorphism pr : qce → qce′ in the natural way. Also, define canonical mappings for extensions as we
defined it for cover-sets above.

Now some hardness results.

Lemma E.19. Let C = {qc1, · · · , qck} be a non-redundant set of covers such that their cover-set qcs has an inversion.
Then, q is #P -hard.

Proof. Without loss of generality, we can assume that for any proper subset of C, the cover-set does not have an inversion
(otherwise we replace C with the smaller set and repeat the argument).

Let the inversion in qcs consist of

g0(x), h0(x, y), g1(u1, v1), h1(u1, v1), · · · , gn−1(un−1, vn−1), hn−1(un−1, vn−1), gn(x
′, y′), hn(y

′)

where subgoals hi and gi+1 refer to the same relation. For each qci ∈ C, define the type of qci as the subset of [n] consisting
of all t such that the image of qci under the pr homomorphism contains the subgoals gt, ht.

Claim: for each qci, its type contains at least one t which is not present in any other type.
This follows from the minimality of the set F , because if qci does not contribute any unique t, then we can remove if from

F and still get an inversion in the cover-set query.
[[Next use the inclusion-exclusion on the types, and argue that exactly one conjunct of types is #P-hard (namely, one that

contains all the types. Use this to give a reduction from RSSS..ST query]]

Lemma E.20. Let qh ∈ H(q) be a hierarchical unifier that has an extension qce such that all the mappings from q → qce
are canonical. Then q is #P -hard.

Proof. We use the extension qce to find a non-redundunct set of covers whose cover-set has an inversion.
Let {qc1, · · · , qck} be the set of covers used in the extension of qce. Let h be a mapping that maps each variable that does

not participate in the inversion to a unique contant. Construct a new set of covers F ′ = {qc′1, · · · , qc
′
k} where qc′i = h(qci).

Note that the resulting queries are indeed covers. We will show that F ′ is a non-redundunct set of covers whose cover-set has
an inversion.

It is easy to see that the cover-set of F ′ is precisely the query h(qce). Since h does not touch the variables that participate
in the inversion, h(qce) also contains an inversion, and so does h(qce). To prove that F ′ is non-reduntant, we note that a
non-canonical mapping from some cover qc to the cover-set of F ′ gives a non-canonical mapping from a different cover qc′

(obtained by replacing the new constants back by varaibles) to the extension qce. This is a contradiction, hence all mappings
into the cover-set of F ′ are canonical. So F ′ is non-reduntant.

Lemma E.21. Let qh ∈ H(q) be a hierarchical unifier that does not have an eraser. Then, there is an extension qce such
that all the mappings from q → qce are canonical.

22

	Problem Statement
	Overview of Results

	An Expansion Formula for Conjunctive Queries
	Coverage
	Inversions
	An Expansion Formula for Coverage
	Running Example
	Independence Predicates
	Hierarchical Closure

	PTIME Algorithms
	Simple Sums
	PTIME for Inversion-Free Queries
	Complex Sums
	The General PTIME Algorithm

	#P-Hard Queries
	Conclusions
	References
	Examples of Inversions
	Proof of Theorem 1.4
	Proof of Theorem 1.5
	Proof of Theorem 2.7
	Proof of the Dichotomy Theorem
	Unifiers
	The Polynomial Time Algorithm
	Query expansion
	Adding Independence Predicates
	Change of Basis

	Hardness Proof

