
• Is there a metaphor or visualisation which would facilitat e
the designer's expression of design `quality' and interac-
tion with trade-off information generated by the algorithm?

5. REFERENCES

[1] Gupta, A . and Rankin, P.J. . Knowledge assistants for
design optimisation. 1st Artificial Intelligence in Design
Conf., Edinburgh, June 25-27, 1991 .
[2] Rankin, P.J . ., Siemensma, J .M., Analogue circui t
optimization in a graphical environment . Proc. IEEE
ICCAD Conf, Santa Clara, Nov . 1989, pp . 372-375 .
[3] Apperley, M ., Brouwer-Janse, M.D., Kasik, D . Rankin ,
P .J ., & Spence, R. Practical Interfaces to complex world s
(Panel), Proc CHI.Conf Seattle, 1990, pp . 257-260 .
[4] Colgan, L ., Brouwer-Janse, M.D., An analysis of the
circuit design process for a complex engineering applica-
tion . Proc. Interact Conf., 1990, pp . 253-258 .
[5] Colgan, L., Spence, R . Cognitive models of electronic
design . I st Artificial Intelligence in Design Conf.,
Edinburgh, June 25-27, 1991 .

CONTACT INFORMATIO N

Lynne Colgan
Imperial Colleg e
Department of Electrical Engineerin g
Exhibition Road
London SW7 2BT U .K .
Phone : +44 (0)71581441 9
Fax: +44 (0)71823 812 5
E-mail : lynne @ uk .ac .ic .ee.titan

THE DRUID USER INTERFAC I
MANAGEMENT SYSTE M

Eelco Vriezekolk
Eindhoven University of Technolog y

Druid is a user interface management system (UIMS) for
building complex, highly interactive graphical user interfaces
(Uls) . Druid is based on three fundamental principles .

* Druid is platform independent.

Druid is not restricted to any specific window-syste m
or graphical toolkit. This guarantees that Uls develope d
with Druid can be used on all present and future
platforms (whether they are X11-based or not) .

Interfaces adopt the look and feel of the local window -
system. We call this the "chameleon behavior" o f
Druid .

* Simple things must be done in a simple way .

Druid allows for concise and direct interface
descriptions, because the parts of the interface that do
not have the current attention of the UI-designer need
not be specified in detail . This means that even barel y
worked-out specifications can be processed.

This feature does not only make the Druid languag e
easy to use, but also helps rapid prototyping, o r
iterative design . This means that it is possible to tes t
prototypes of a UI with users and to change th e
interface according to their comments .

* Druid will be used by non-programmers .

Persons best equipped to make well-designed
user-interfaces generally are not experience d
programmers . They could, for example, be huma n
factor specialists without a computing scienc e
background. The person constructing the actua l
application generally is a skilled programmer with n o
experience with the ergonomical aspects of UIs .

Druid allows non-programmers to specify comple x
Uls, while the application programmer is creating th e
actual application . Even if these two roles are
combined in the same person, which is still often th e
case, Druid's easy of use will be very useful .

TOOLS OF THE DRUID SYSTEM

Druid uses an object oriented language to specify Uls .
The Druid-compiler translates such a UI-description into
C-code that is still platform-independent . It is onl y
during the linking phase that a platform specific library
is used. This library is called the Druid Intermediate
Toolkit (DIT) .

The function of the DIT is to map calls between the
generated C-code and the specific graphical toolkit . The
DIT will generally be only a small layer . For each
supported graphical toolkit such a DIT must be
constructed .

To facilitate the writing of the Druid-code an interactiv e
graphical editor is being created . We see the editor as an
essential part of the Druid system, although it is not ye t
finished .

A POWERFUL UIMS

In Druid, UIs are built of objects, such as buttons an d
menus . With these objects, both the layout and th e
dialogue of a UI can be specified.

Layout is specified by setting the attributes of objects
(such as position, color, or label) to their desired values .
Most attributes can be changed run-time, and it is
possible to define extra attributes .

Dialogue is specified by event handlers of objects .
With event handlers, objects can react to external mouse
and keyboard events, but it is also possible to add your
own events for communication between objects .
Event handlers can do assignments to attribute s
(adjusting the layout and giving user feedback), cal l
application procedures, and send events to other objects .
Event handlers can contain conditional statements .

SIGCHI Bulletin October 1991

	

51

	

Volume 23, Number 4

http://crossmark.crossref.org/dialog/?doi=10.1145%2F126729.1056056&domain=pdf&date_stamp=1991-10-01


A set of related objects can be grouped into a singl e
compound object, such as a file selection panel . These
compound objects can be reused between different UIs .

All objects can be created and destroyed run-time .
In particular, dynamically creating compound object s
can be very powerful .

The strength of event handlers is an important feature of the
Druid system . Also, Druid UIs can be used on any hard -
ware and software . Although the exact layout will diffe r
from system to system (according to the chameleon
behavior), the functionality will always be the same . The
Druid system will be finished in September 1991 .

CONTACT INFORMATION

E. Vriezekolk
Eindhoven University of Technology
P.O. Box 51 3
5600 MB Eindhoven
The Netherlands
telefax: +3140 43668 5
email : uims@win.tue .n l

TASK PROTOCOL SPECIFICATION :
A WORKSTATION INDEPENDEN T
SPECIFICATION TECHNIQUE FO R
HUMAN-COMPUTER INTERACTIO N

Paul M. Mullins
Youngstown State University
Siegfried Treu
University of Pittsburgh

Methods of specification for human-computer interface s
(HCI) are diverse. Commonly used methods include
(augmented) transition networks, BNF grammars, event-
based descriptions, and the command language gramma r
[Moran81] . The latter is especially useful for its task-based
description of the conceptual model as well as the dialogue .
The Command Language Grammar (CLG) begins with a
task analysis, and proceeds to model the HCI structurall y
through a process of step-wise refinement . The result is a
detailed specification or representation of the system .

Although useful for the design, analysis, and specificatio n
of HCIs, the CLG has not gained the kind of widesprea d
acceptance that might be expected for so versatile a tool .
This is at least partially due to the level of detail require d
for the specification . The task domain must be fully
analyzed and each task then described in increasing detail ,
down to a keystroke level . Once such a specification has
been achieved, it is cumbersome, at best, to work with .
Finally, the representation is specific to a particular
platform, i.e . interaction devices, styles and technique s
become an integral part of the specification .

The proposed specification technique, the Task Protocol
Specification (TPS), is designed to avoid the problems

identified for the CLG . Like the CLG, the TPS is intended
to model the task domain and structure of the HCI, and to
provide a representation of the HCI suitable for analysis
and as an implementation guide. It also shares the capacity
of the CLG to describe the conceptual model for the HCI .
This technique provides the three most prevalent kinds of
models used for HCIs : task, structure, and representation .
However, the TPS avoids the detail provided by the CLG
by designing for an Abstract WorkStation (AWS) [Mullin s
& Treu9l, Mullins9l] rather than a particular environment .
This results in an intermediate-level specification which i s
more suitable for human consumption .

The extended-TPS has five levels which are similar i n
content and development to the six levels of the CLG . The
initial specification, the task level (1) description, and the
subsequent refinement to a semantic level (2) descriptio n
are essentially the same in the two methods . Except th e
TPS results in a specification based on the AWS concept ,
hence providing a description for a family of HCIs ,
whereas the CLG provides a description for a particular
HCI .

The lowest layer (4) of the TPS, the interaction level ,
deviates substantially from its counterpart in the CLG
method . This TPS level is used to describe a basic set o f
system messages and interaction tasks, while the CLG is
concerned with dialogue structure and physical actions o f
the user and the system. The TPS interaction level provide s
a generic description (actually a vehicle for description) o f
interactions intended to support various applications and
user interfaces . By analogy to compiler technology, the
CLG completely specifies the "task" in machine language ,
while the TPS specifies the system in terms of an interme-
diate language . The intermediate language describes an
abstract machine . Design for this machine increases
portability since it represents a family of HCIs on multiple
platforms and promotes conceptual consistency among HCI
instantiations.

The TPS interaction level description details the kinds of
interactions that take place between the application, HCI,
the host system(s), and the components of the HCI. The
description includes any special functionality, the commu-
nication protocol, and the general form of messages used t o
interconnect the modules of the HCI. This part of the
specification is referred to as the Task Interaction Protoco l
(TIP) . The TIP provides a workstation-independen t
language representation of the tasks and describes a means
of communication between the modules which form th e
HCI .

The difference in form and purpose for the TPS interactio n
level specification affects the specification of the syntactic
level (3) which is otherwise a refinement of the semantic
level, as in the CLG . The AWS-physical level (5), an
extension of the TPS, describes an instantiation of a TP S
specification on some platform . The spatial level of the
CLG has no corresponding level in the TPS, since the typ e
of information needed to determine spatial orientation and
layout issues is only available at the higher levels .

SIGCHI Bulletin October 1991

	

52

	

Volume 23, Number 4


