
10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

Modelling Run-Time Arbitration by Latency-Rate Servers in Dataflow Graphs

Maarten H. Wiggers1, Marco J.G. Bekooij2, Gerard J.M. Smit1
1 University of Twente, Enschede, The Netherlands

2 NXP Semiconductors, Eindhoven, The Netherlands
m.h.wiggers@utwente.nl, marco.bekooij@nxp.com, g.j.m.smit@utwente.nl

Abstract

In order to obtain a cost-efficient solution, tasks share re-
sources in a Multi-Processor System-on-Chip. In our archi-
tecture, shared resources are run-time scheduled. We show
how the effects of Latency-Rate servers, which is a class of
run-time schedulers, can be included in a dataflow model.
The resulting dataflow model, which can have an arbitrary
topology, enables us to provide guarantees on the temporal
behaviour of the implementation.

Traditionally, the end-to-end behaviour of multiple
Latency-Rate servers has been analysed with Latency-Rate
analysis, which is a Network Calculus. This paper bridges
a gap between Network Calculi and dataflow analysis tech-
niques, since we show that a class of run-time schedulers
can now be included in dataflow models, or, from a Net-
work Calculus perspective, that restrictions on the topology
of graphs that include run-time scheduling can be removed.

1. Introduction

Decreasing feature sizes have made it possible to im-
plement multiple processing cores on a single chip, result-
ing in so-called Multi-Processor System-on-Chip (MPSoC)
designs. These MPSoCs provide a high data processing
throughput in a cost and energy-efficient way, making them
an ideal match with multi-media applications found in TV-
sets, set-top boxes, and smart-phones.

MPSoCs simultaneous processing of multiple streams of
data. Each stream is processed by a job, where a job is
started or stopped by an external event, e.g. by the end-
user. Jobs often have temporal constraints, such as through-
put and latency, and these temporal constraints can be firm
or soft real-time constraints. In order to reduce costs, jobs
share resources on the MPSoC, i.e. processors, intercon-
nects and memories.

The functional behaviour of a job can often be intuitively
described as a YAPI [8] task graph. YAPI task graphs are
realisations of Kahn process networks [15]. It is shown
in [2] that a YAPI task graph can be modelled as a de-

terministic Dynamic Dataflow (DDF) graph of which per-
formance guarantees can be provided through simulation.
Cyclo-Static Dataflow (CSDF) [5] is an important sub-class
of DDF of which performance guarantees can be provided,
which are independent of the input data, by application of
dataflow analysis techniques [21].

The tasks of a job are assigned to processors of the MP-
SoC, as e.g. shown in Figure 1. In this architecture, the
inter-task communication FIFO buffers are placed in the lo-
cal memory of the tile onto which the data consuming task
is assigned. In this way, latency-sensitive read operations
are kept local to the tile.

Network-on-Chip
R R

stallNI1

DMEM2

NI2

P1

stall
Tile1

bus
P2

Tile2

bus
DMEM1

Figure 1. Example MPSoC architecture.

In this MPSoC there are many shared resources that each
require a scheduler, e.g. the processors, memory ports, and
links in the Network-on-Chip. In such an MPSoC, run-time
scheduling is attractive for e.g. the following reasons, (1)
a high resource utilisation can be obtained even in cases
where there are tasks with a significant variation in their
execution time and/or execution rate, (2) we do not need to
compute and store a schedule for each combination of jobs
that is simultaneously active, and (3) the transition from one
combination of jobs to another is simplified.

Traditionally, dataflow analysis is applied when tasks are
scheduled in a fully static or static order fashion [16, 21].
However, for the mentioned reasons, we apply run-time
scheduling even in cases where the tasks all have the same
fixed communication behaviour, i.e. they can be modelled
with the most restrictive dataflow – Single-Rate Dataflow
(SRDF) [20] – model.

The contribution of this paper is that we show that worst-

11



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

case effects of a class of run-time schedulers can be mod-
elled in a dataflow graph of arbitrary topology, and that
through analysis of the resulting dataflow graph we can
guarantee that the implementation satisfies its temporal con-
straints.

This is achieved by restricting the class of run-time
schedulers to the class of Latency-Rate (LR) servers [22].
LR servers were originally proposed as a modeling
paradigm to model the effect of scheduling on traffic pass-
ing through a chain of heterogeneous routers in a packet-
switched network in which connections provide quality of
service guarantees. Many schedulers have been shown to
be LR servers, e.g. round-robin and variants of round-
robin [22], and priority based schedulers that include a rate-
controller [25].

We will show that the effects of scheduling by anLR
server can be conservatively modelled with two vertices,
which are called actors, in a dataflow graph. However,
traditionally [2, 23, 24] the proof that worst case tempo-
ral behaviour of the implementation can be determined by
analysis of the dataflow graph is based on two conditions,
(1) a one-to-one relation between the implementation and
the dataflow graph, and (2) monotonic execution in time of
the dataflow graph. In this paper we will relax the first
condition, and show that the latter condition holds for a
larger class of dataflow graphs than previously shown by
Poplavko [19].

This paper is structured as follows. First in Section 2 we
briefly present related work. Then in Section 3 we present
the SRDF model that we use in subsequent sections to de-
rive our initial results. We proceed in Section 4 by showing
that single-rate dataflow graphs are temporally monotonic.
In Section 5 we describe the relation between implementa-
tions and their dataflow models. After which, in Section 6
LR servers are introduced. This enables us to present an
SRDF component, in Section 7, of which we show that this
component has an input-output behaviour that is equivalent
to theLR model of a task that is scheduled on anLR server.
In Section 8 we show how the application ofLR servers
improves upon previous work. And in Section 9 we show
that dataflow analysis leads to smaller buffer capacities than
LR analysis. In Section 10 we generalise the results ob-
tained using SRDF and show that these results remain valid
for DDF. Proofs of the various results are placed in the ap-
pendix in order to focus on the main concepts.

2. Related work

Resource sharing has been included in dataflow models
in [4, 2, 24], however only Time Division Multiplex and
Round Robin scheduling are considered, while the class of
LR servers is broader. Furthermore, the models as pro-
posed in [4, 2, 24] are less accurate than the dataflow com-
ponent that is presented in this paper. This is because the
model in [4, 24] models both the time between the enabling
and finish of a task and the throughput by the response time

of a single actor. In order to conservatively model the time
between enabling and finish, the response time needs to be
rounded up to an integer number of pre-emptions. We will
show that this results in an overly pessimistic model of the
throughput. In [2] a more accurate model is presented that
includes a notion of execution sequences which is similar to
a so-called busy period, which is one of the core concepts
of LR servers. We will, however, show that application of
the concept of busy periods leads to a more accurate model.
Furthermore, the approach from [2] relies on simulation of
the dataflow graph, while the approach presented in this pa-
per does not require this.

In contrast with the presented approach, other perfor-
mance analysis approaches that include run-time schedul-
ing, as for instance presented by Jersak [13], Goddard [10],
or Maxiaguine [17], do not allow feedback cycles that in-
fluence the temporal behaviour of the system. Not only do
these cycles exist, because of functional constraints, they
can also model that tasks only start their execution when
sufficient space is available in the output buffers, i.e. back-
pressure. Applying back-pressure has the advantage that the
system does not require means to control the jitter, such as
e.g. traffic shapers, in order to prevent buffer overflow.

The goal of theLR analysis in [22] is to be able to de-
termine whether traffic that is injected into the network ac-
cording to a specific traffic model arrives at its destination
in time, and to determine sufficient buffer capacities such
that no buffer overflow occurs. A limitation ofLR analysis
is that it cannot deal with cycles that influence the tempo-
ral behaviour, while it is well known that flow control, and
in particular local flow control, can significantly reduce the
required buffer capacities [1].

Goyal [11] and Hung [12] have presented approaches
that are similar toLR servers. These approaches are spe-
cial cases of the service curve framework presented by
Agrawal [1], which is a network calculus based on the work
by Cruz [6, 7]. In [1] buffer capacities are derived such
that cycles, which result from flow-control, in a chain of
routers do not influence the temporal behaviour. In contrast
with [1], we will derive the throughput of a graph, with an
arbitrary topology, when buffer capacities are given, this in-
cludes the case that feedback cycles influence the temporal
behaviour.

3. Single-rate dataflow

In this section we introduce Single-Rate Dataflow
(SRDF) graphs [20]. An SRDF graph is a directed graph
G = (V, E, d, r) that consists of a finite set of actorsV ,
and a set of directed edges,E = {(vi, vj)|vi, vj ∈ V }. Ac-
tors synchronise by communicating tokens over edges that
represent queues. The graphG has an initial token place-
mentd : E → N. An actor is enabled to fire when a token
is available on each input edge. The response timer(vi),
r : V → R, is the difference between the finish and start

12



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

time of actorvi. When actorvi finishes, then it produces a
token on each output edge in one atomic action.

For a strongly connected SRDF graph, we can derive
the periodµ of the graph through Maximum Cycle Mean
(MCM) analysis [20, 21]. To determine the MCM, the max-
imum of the cycle means of all simple cycles in the SRDF
graph needs to be determined, where the cycle meanµ(c)
of a cyclec is

µ(c) =

∑
vi∈V (c) r(vi)∑
e∈E(c) d(e)

(1)

whereV (c) is the set of actors traversed by cyclec andE(c)
is the set of edges traversed by cyclec. A simple cycle is
a cycle that traverses actors maximally once. The MCM of
an SRDF graphG is therefore

µ(G) = max
c∈C(G)

µ(c) (2)

whereC(G) is the set of simple cycles of SRDF graphG.
The maximal attainable throughput of the graph relates to
µ−1. In case the run-time of the MCM analysis is problem-
atic, a conservative approximation technique [23, 24] can
be applied.

4. Monotonic execution

In this section we will first define temporal monotonic-
ity of an SRDF graph, and then extend [19] by proving that
every SRDF graph is temporally monotonic. Since existing
analysis techniques [3, 2, 23, 24] rely on temporal mono-
tonicity, in order to guarantee the temporal behaviour of
the implementation, this increases the applicability of these
techniques.

This is an extension of [19], which states that an SRDF
graph is monotonic in the response times, if the SRDF
graphs maintains a first-in first-out (FIFO) ordering of to-
kens. An SRDF graph maintains a FIFO ordering of tokens
if each actor either has a constant response time or a self-
edge with one initial token [9]. This is because the queues
by definition maintain a FIFO ordering of tokens. Temporal
monotonicity is defined as follows.

Definition 1 An SRDF graph is temporally monotonic if (1)
no decrease in response time, (2) increase in number of ini-
tial tokens, or (3) decrease in the difference between actor
enabling time and actor start time leads to a later actor
start time.

No proof was provided in [19] to show that an SRDF
graph is monotonic in the response times, only the obser-
vation that the evolution equations as given in Chapter 2
of [9] are monotonic in the response times. These evolution
equations only hold for SRDF graphs that maintain a FIFO
ordering of tokens. This is because in the evolution equa-
tions the start time of thek’th firing of actorvj depends on

firings k − m, 0 ≤ m ≤ M of actorsvi, whereM is the
maximum number of initial tokens on any edge. If FIFO or-
dering is not maintained, then firingk of actorvj is enabled
by firing q of actorvk, whereq can be larger than, smaller
than, or equal tok.

We, however, present the following more general theo-
rem. This theorem does not require FIFO ordering of tokens
to be maintained in the graph, since the response times do
not depend on the tokens that lead to enabling.

Theorem 1 An SRDF graph is temporally monotonic.

In Appendix A we have included the proof of Theorem 1,
which shows that an SRDF graph is also temporally mono-
tonic without the constraint that FIFO ordering is main-
tained. This is one of the key contributions of this paper.

5. Analysis model and implementation

While traditionally [3, 2, 23, 24] every task is modelled
by one actor, as e.g. in Figure 2, we will in later sections
like to model a task that is scheduled on anLR server with
two actors. However, since in that case there is no longer
a one-to-one relation between the dataflow graph and the
implementation, we can no longer use the traditional ar-
gumentation to obtain the result that worst-case temporal
behaviour of the implementation can be derived from the
dataflow model. In this section, we will show that a cor-
respondence between model and implementation and a suf-
ficient condition exists such that worst-case temporal be-
haviour of the implementation can still be computed with
dataflow analysis techniques.

v2v1 d1

u1 u2

Figure 2. Example of the traditional one-to-
one relation between dataflow graph and task
graph.

We assume that the application is implemented as a
weakly connected directed task graphGA, of which the ver-
tices represent tasks and the edges represent FIFO buffers
with a fixed capacity. A weakly connected graph is a graph
in which for every pair of verticesa andb a path exists from
a to b and/or fromb to a. Tasks only communicate fixed
sized containers over FIFO buffers, where a container can
be full or empty. A task produces one container on each
output FIFO and consumes one container from each input

13



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

v1,2v1,1 v2,1 v2,2

u1 u2

d1

Figure 3. Example of the described one-to-
one relation between component graph and
task graph.

FIFO in every execution. Furthermore, the execution of a
task only starts when a full container is present on every in-
put FIFO buffer and an empty container is present on every
output FIFO buffer. The finish time of each task is at most
the worst case response time later than the enabling time.
And further at most one instance of a task can execute at
any time.

We defineIx to be the set of input FIFO buffers andOx

to be the set of output FIFO buffers both of a taskux. We
further defineaA(m, j) to be the arrival time of thej-th
container in the input FIFOm ∈ Ix andaA(n, j), n ∈ Ox

to be the arrival time of thej-th container in the output FIFO
n both of a taskux in the implementation.

We will now describe a sufficient condition for the SRDF
graph such that this SRDF graph can be used to derive
worst-case container arrival times in the implementation.
Let us assume an SRDF graphGM . We defineC as a par-
titioning of the set of actorsV , i.e. ∀Cx, Cy ∈ C, Cx 6=
Cy ⇒ Cx ∩ Cy = ∅, V = {Ci|Ci ∈ C}. Each element
in C is called a component. Components consume tokens
from component input queues and produce tokens on com-
ponent output queues. A component input queue of compo-
nentCx is an edge(vi, vj) in the SRDF graph that has an
actorvj ∈ Cx as destination and an actorvi /∈ Cx as its
source. A component output queue of componentCx is an
edge(vi, vj) in the SRDF graph that has an actorvi ∈ Cx

as its source and an actorvj /∈ Cx as its destination.
The component graph needs to match with the task

graph, i.e. there should be a one-to-one correspondence be-
tween tasks and components, and between bounded FIFO
buffers in the task graph and pairs of edges in the compo-
nent graph, as e.g. in Figure 3. With a slight abuse of nota-
tion, we defineIx as the set of input queues of component
Cx, andOx as the set of output queues ofCx.

We defineaM (m, j) to be the arrival time of thej-
th token in the component input queuem ∈ Ix and
aM (n, j), n ∈ Ox to be the arrival time of thej-th token
in the component output queuen both of a componentCx

in the SRDF graph.

Definition 2 The token production and consumption be-
haviour of componentCx is conservative with respect to the
container production and consumption behaviour of task
ux, if the following holds

∀m ∈ Ix, aA(m, j) ≤ aM (m, j) ⇒
∀n ∈ Ox, aA(n, j) ≤ aM (n, j)

(3)

The condition that needs to hold for the SRDF graph
such that worst-case container arrival times can be derived
with the SRDF graph is the following.

Theorem 2 If every componentCx is conservative with re-
spect to taskux, i.e. Equation 3 holds, then the worst-case
arrival times of containers in the output FIFO buffers of
every taskux can be computed with dataflow analysis tech-
niques.

A proof of this theorem is provided in Appendix B. An
implication of Theorem 2 is that the execution of one task
in the system can be represented by a component which can
be a collection of dataflow actors as long as the component
is conservative with respect to the task. In the next sections,
we will use this property to model tasks that are scheduled
using anLR server with a component that consists of two
dataflow actors, similar to Figure 3, of which we will show
that this component conservatively models the execution of
a task on anLR server. In the traditional approach as for
example shown in Figure 2 this relationship between model
and implementation was not possible.

6. Latency-rate servers

In this section we introduceLR servers from a dataflow
perspective. Letb(ux, i), b : U × N → R, with U the set of
tasks, be the time at which sufficient containers are available
on all input FIFOs, such that executioni of taskux can start,
and say that executioni of taskux is externally enabled at
b(ux, i). A task is only enabled if its previous execution is
also finished. We defineAx(s, t), A : R × R → N, as the
number of external enablings of taskux within the interval
(s, t]. Further, letf(ux, i), f : U × N → R, be the finish
time of executioni of taskux. And letWx(s, t), W : R ×
R → N be the number of finishes of taskux in the interval
(s, t].

A busy period is defined in [22] as a maximum interval of
time (s, t] for which Equation (4) holds. This means that at
any timeτ in a busy period the number of external enablings
since the start of the busy period,A(s, τ), is at least equal
to the number of finishes at the allocated rateρx ∈ R, as
provided by the boundH(s, τ).

∀τ ∈ (s, t] : Ax(s, τ) ≥ H(s, τ) = ρx · (τ − s) (4)

According to [22], if and only if we can show for a sched-
uler that a nonnegative constantLx ∈ R can be found such

14



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

that Equation (5) holds, then this scheduler is anLR server
for taskux with rateρx. Equation (5) requires that the num-
ber of finishes froms to τ , in a busy period(s, t], is bounded
by Q(s, τ), which is an expression in terms of a latencyLx

and a rateρx. The valueΘ′
x is the minimumLx such that

Equation (5) holds, and is called the latency of the scheduler
under the boundQ.

∀τ ∈ (s, t] : Wx(s, τ) ≥ Q(s, τ)
Q(s, τ) = max(0, ρx · (τ − s − Lx))

(5)

Since the number of finishes is an integer,Wx(s, t) ∈ N,
we obtain a tighter lower bound̆Q on Wx(s, t), by enforc-
ing thatQ̆ ∈ N. This is done by taking the floor ofQ and
we therefore require that a nonnegative constantLx can be
found such that Equation (6) holds. The minimumLx, for
which Equation (6) holds, is defined to be the latencyΘx of
the scheduler for taskux under the bound̆Q.

∀τ ∈ (s, t] : Wx(s, τ) ≥ Q̆(s, τ)

Q̆(s, τ) = max(0, bρx · (τ − s − Lx)c)
(6)

Figure 4 illustrates the relation between the number of
external enablings and the number of finishes. A discussion
on the differences between these definitions and the defini-
tions in [22] is included in Appendix C.

time

fir
in

g
s

Q̆(s, τ)

s + Θ

H(s, τ)

ρ

s

Figure 4. The lines starting at s and s + Θ
both have a slope ρ. The number of external
enablings should be at least H(s, τ) and the
number of finishes should be at least Q̆(s, τ).

7.LR servers in SRDF

In this section we present an SRDF component that con-
servatively models a task that executes on anLR server
by showing that the minimum number of token releases
by this dataflow construct in an interval(s, t] equals the
minimum number of finishes, and therefore the minimum
number of token releases, in the interval(s, t] as defined in
Equation (6).

We will first show that bounding the finish time of an
execution in a busy period with respect to the start of the

busy period, as expressed by Equation (7), is equivalent to
bounding the number of finishes over a time interval that
starts from the start of the busy period, as expressed by
Equation (6). Subsequently we show that bounding the fin-
ish time of an execution, as expressed by Equation (7), is
equivalent to bounding the finish time of an execution in a
busy period with respect to either its external enabling time
or the finish time of the previous execution, as expressed
by Equation (9). Finally we arrive at the main result of this
paper, which is that Equation (9) is equivalent to an SRDF
component that models a task with one input and one output
FIFO that is scheduled on anLR server.

In the following we will only consider a taskux and we
therefore use the shorthand notationb(j) andf(j) to mean
the external enabling time of executionj of taskux and the
finish time of taskux.

Lemma 1 Let executionk be the first execution in a busy
period(s, t] and let executionj occur in the same busy pe-
riod, that is b(k) = s and j ≥ k and b(j) ≤ t. If the
scheduler is anLR server with latencyΘ and rateρ, then
the boundτj on the finish time of executionj as provided
by Equation(7) is equivalent to the bound as provided by
Equation(6).

f(j) ≤ τj = b(k) + Θ +
j − k + 1

ρ
(7)

See Appendix D for a proof of Lemma 1.

Lemma 2 Let executionk be the first execution in a busy
period(s, t] and let executionj occur in the same busy pe-
riod, that is b(k) = s and j ≥ k and b(j) ≤ t. If the
scheduler is anLR server with rateρ, then the boundφj

on the external enabling time of executionj as in Equa-
tion (8) is equivalent to bounding the number of externally
enabled executions as in Equation(4) in every busy period.

b(j) ≤ φj = b(k) +
j − k

ρ
(8)

See Appendix E for a proof of Lemma 2.

Lemma 3 The bound on the finish time of executionj, τj ,
as defined by Equation(7) is equivalent to the boundg(j)
as defined by Equation(9).

g(j) =
{

max(b(j) + Θ, g(j − 1)) + 1
ρ if j > 0

0 otherwise
(9)

See Appendix F for a proof of Lemma 3. A transforma-
tion from Equation (5), which assumes continuous service,
to an Equation similar to Equation (9), has been provided
in [14]. Since we have discretised the service, we obtain a
different expression for the latency of the server. We will

15



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

now present the SRDF component that is equivalent to a
LR model of a task that is scheduled on anLR server. This
is the main contribution of this paper.

Theorem 3 The dataflow construct shown in Figure 5 mod-
els a taskux with one input FIFO and one output FIFO that
executes on anLR server with latencyΘx and allocated
rateρx.

vz

rz = 1
ρx

1

1
(vz , vl)

1
vy

1

(vy , vz)

ry = Θx

(vk , vy)

1

1

1ay(i) az(i) al(i)

Figure 5. A dataflow component that models
a LR server.

See Appendix G for a proof of this theorem.

8. Example

In this section we will show that TDM scheduling is an
LR server, and that this insight leads to a more accurate
analysis than previously applied in [4, 24]. This is because
the model in [4, 24] models both the time between enabling
and finish of the task and the throughput by the response
time of a single actor. In order to conservatively model the
time between enabling and finish of the task, the response
time needs to be rounded up to an integer number of pre-
emptions. We will show that this leads to an overly pes-
simistic model of the throughput.

8.1. TDM is an LR server

Let P be the TDM period,Sx be the time slice allocated
to taskux, Dx,i be the execution time of executioni of task
ux, andDx be the worst-case execution time of taskux. We
will derive in this section an expression for the latency and
rate of a TDM scheduler in terms of the period, time-slice,
and worst-case execution time, such that Equation (5) holds.

The difference between subsequent task finishes is
f(ux, i) − f(ux, i − 1) = Dx,i

P
Sx

in a busy period. This is
because, in a busy period, without resource sharing execu-
tion i of taskux will finish Dx,i time later than the finish of
firing i − 1. However, with TDM scheduling we have that
in every periodP , there is only a time interval of lengthSx

time allocated to taskux.
The guaranteed rateρx at which taskux finishes in

a busy period with TDM scheduling is given by Equa-
tion (10). This is because∀i ∈ N : f(ux, i)−f(ux, i−1) ≤
Dx

P
Sx

, with Dx the worst case execution time ofux. The

guaranteed rateρx is therefore 1
Dx

P
Sx

which can be rewrit-

ten to obtain Equation (10).

vp vc

d2

d3 = 1d1 = 1

1

1

1

1

1

1

1

1

rp = Θp + 1
ρp

rc = Θc + 1
ρc

Figure 6. Previous inclusion of TDM arbitra-
tion.

ρx =
1

Dx

Sx

P
(10)

To derive the latencyΘx we use a result from [4, 24] to
obtain that an exact upper bound on the response time of the
first execution in a busy period is given by Equation (11).

rx = Dx + (P − Sx)
⌈

Dx

Sx

⌉
(11)

We know that the response time of the first execution in
a busy period is smaller than or equal toΘx + 1

ρx
, and that

this is the tightest bound. Therefore it should hold that

Θx +
1
ρx

= Dx + (P − Sx)
⌈

Dx

Sx

⌉
(12)

We will now rewrite 1
ρx

to obtain an expression for the
latency in terms of the period, time-slice and worst-case ex-
ecution time. First we rewrite Equation (10) to obtain

1
ρx

= P
Dx

Sx
(13)

which we can rewrite into

1
ρx

= (P − Sx)
Dx

Sx
+ Dx (14)

After combining Equation (14) with Equation (12), we ob-
tain

Θx = (P − Sx)(
⌈

Dx

Sx

⌉
− Dx

Sx
) (15)

Equation (15) shows that anLx exists such that Equa-
tion (6) holds, which means that TDM is anLR server.

8.2. Improved dataflow analysis results
Figure 6 shows how the effects of TDM arbitration are

included with the approach from [4, 24], while Figure 7
shows how the effects of TDM arbitration are included with
the approach presented in this paper.

The MCM of the SRDF graph in Figure 6 is

µa = max({Θp +
1
ρp

,
Θp + 1

ρp
+ Θc + 1

ρc

d2
, Θc +

1
ρc

})
(16)

16



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

d1 = 1

1

1

r′p = 1
ρp

1

1

1

1

d2

1

1
v′

p

r′′c = Θc

v′′
p v′

c

r′c = 1
ρc

r′′p = Θp

1
1

1
1

v′′
c

d3 = 1

Figure 7. Inclusion of TDM arbitration using
an LR model.

And the MCM of the SRDF graph in Figure 7 is

µb = max({ 1
ρp

,
Θp + 1

ρp
+ Θc + 1

ρc

d2
,

1
ρc

}) (17)

Since by definitionΘp andΘc are non-negative, we have
thatµa ≥ µb. The more accurate model, as shown in Fig-
ure 7, can thus lead to a lower MCM, which corresponds
to a higher throughput, and can therefore guarantee the sat-
isfaction of more stringent throughput constraints for the
same resource requirements in comparison with the model
proposed in [4, 24].

9. Dataflow analysis compared with
LR analysis

In this section we will show an example in which an im-
plementation where tasks only execute when there is out-
put space available, as our applications are implemented,
leads to smaller buffer capacities than an implementation in
which tasks execute as soon as input data is available as the
LR analysis model assumes.

Figure 8(a) shows theLR analysis model and an SRDF
model of a chain of three tasks that operate on a single
stream. Let us assume that inputs arrive strictly periodically,
e.g. from an Analog-to-Digital Converter, which is, for the
sake of simplicity, left out of this example. In theLR anal-
ysis model such a stream is modelled with a(σ, ρ) model,
whereσ equals the maximum burst size andρ equals the
rate. Let us assume thatσ = 1 andρ = 1 accurately model
the input stream. Let us further assume that the worst case
execution timeDx of each taskux is 1.

In the dataflow model as shown in Figure 8(b), we need
to guarantee that the throughput of the graph equals the
throughput of the input stream. Sinceρ = 1, which means
that one token arrives per time unit, it is required that for the
MCM of the graphµ(G) it needs to hold thatµ(G) ≤ 1. If
we further assume thatΘDF

i = ρDF
i = 1, for i = 1, 2, 3,

then it can be verified thatd1 = 4 andd2 = 4 are sufficient
buffer capacities to let the SRDF graph have an MCM of 1.

In the LR analysis model, the maximum number of
tokens in the input queue of thek’th server equalsσ +
ρLR

∑k
j=1 ΘLR

j . This expression is derived using the
boundQ(s, t), which therefore means thatΘLR = ΘDF +

1
ρLR , with ρLR

i = ρDF
i Di this means thatΘLR

i = 2 for
i = 1, 2, 3. The maximum number of tokens in the input
queue of the servers2 is therefored1 = 1 + 1 ∗ 4 = 5 and
the maximum number of tokens in the input queue of the
servers3 is therefored2 = 1 + 1 ∗ 6 = 7. However, the
LR analysis assumes that no space in the output buffer is
required until the task has produced a token. Therefore, we
need to increase each buffer capacity with one token. This
results ind1 = 6 andd2 = 8.

From the expression for the maximum backlog it be-
comes clear that, in theLR analysis, the required buffer
capacity scales with the length of the chain. This does not
occur in the dataflow analysis. In the example the buffer ca-
pacities derived usingLR analysis are larger than the buffer
capacities as derived using dataflow analysis.

An important reason for the difference in buffer capaci-
ties is that our implementations include a local flow-control
mechanism, because tasks only start when sufficient space
is available in their output FIFOs, i.e. if a task rapidly
produces a burst of containers it will eventually be slowed
down because there will be no more empty containers left.
LR analysis cannot model this behaviour, because this is a
cyclic dependency between two tasks that can influence the
temporal behaviour. We note that in this case we can apply
the analysis based on Network Calculus from [1] to come
to the same results as the dataflow analysis. However, this
is only because this is a chain of servers, and the cycles due
to local flow-control do not determine the throughput.

LR analysis cannot leverage the fact that traffic shapers
might be part of the implementation, as e.g. a(σ, ρ)-
regulator [6] or a rate- [26] or credit- [18] based sched-
uler. This is in contrast with [1] where application of traffic
shapers can lead to reduced buffer capacities, since traffic
shapers limit the burstiness of traffic. In dataflow analysis,
traffic shapers are not required to reduce buffer capacities,
since the local flow control mechanism as mentioned in the
previous paragraph already controls the burstiness. How-
ever, traffic shapers are required to enable the local analysis
of priority based schedulers.

10. Generalisation

In this section we will generalise the results obtained
until now to include tasks with multiple input and output
FIFO buffers and with less constrained container consump-
tion and production behaviour than the behaviour as defined
in Section 5. We will generalise two results, (1) we will
show that not only an SRDF graph is temporally monotonic
but also a deterministic Dynamic Dataflow graph (DDF),
and (2) we will show how to model a task with multiple
input and output FIFO buffers that consumes and produces
multiple containers per execution and is executed on anLR

17



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

s1 s2

s1 = (ΘLR
1 , ρLR

1 )

s3

d2d1

s2 = (ΘLR
2 , ρLR

2 ) s3 = (ΘLR
3 , ρLR

3 )

(a) LR analysis model

v1,y

v1,z

v2,z

v2,y

v3,y

v3,z

1

1

d2

d1

1

r1,y = ΘDF
1

r1,z = 1
ρDF
1

r2,z = 1
ρDF
2

r2,y = ΘDF
2

r3,y = ΘDF
3

r3,z = 1
ρDF
3

(b) SRDF model

Figure 8. A chain of tasks that operates on a stream, in which all tasks are scheduled on LR servers,
the dashed arrows do not belong to the models, but show the input and output streams.

server.

This means that jobs, which can be modelled as CSDF
graphs and execute on resources that are scheduled withLR
servers, can be analysed using traditional dataflow analysis
techniques [5, 21]. Jobs that cannot be modelled as CSDF
graphs and need to be modelled as DDF graphs, because of
data dependent consumption and production of containers,
can be analysed through simulation of the DDF graph [2].

10.1. Monotonicity

We can generalise the result from Theorem 1 to conclude
that deterministic DDF graphs as defined in [2] are tempo-
rally monotonic. The start time of a firing of a DDF actor
depends on the token production times on specific edges,
and therefore on finishes of specific firings of specific DDF
actors. For every firing of a DDF actorvx this can be for-
mulated like Equations (18) and (19), where however the
set of actors that determines the enabling time ofvx can
change from firing to firing. The proof of Theorem 1 does
not depend on a fixed set of actors that determines the en-
abling time and is therefore also applicable to DDF graphs.
This means that deterministic DDF graphs are temporally
monotonic.

Also for a DDF graph we can define a component graph
that partitions the DDF graph. If there is a one-to-one rela-
tion between these components and the task graph, and each
component is conservative with respect to the correspond-
ing task, then since DDF graphs are temporally monotonic
we have that token arrival times in the DDF graph are worst-
case container arrival times in the implementation.

10.2. Execution on LR servers

The result of Theorem 3 can be generalised to arrive at
the conclusion that any task, which can be modelled with a
DDF actor and executes on anLR server, can be modelled
as a DDF component.

This is because the result of Theorem 3 deals with the
relation between the external enabling time and the finish
time, and not with the enabling rule and finish rule. The
condition that determines the external enabling of the task
therefore becomes the condition that determines the en-
abling of the latency actor, i.e. actorvy in Figure 5. Further
when the task finishes it produces containers on various out-
put FIFO buffers. Since the finish time is modelled by the
rate actor, i.e. actorvz in Figure 5, this actor will now pro-
duce tokens on the corresponding queues.

Also the worst case execution time of different firings of
a dataflow actor can be different. Since with our definitions
Θx andρx are dependent on the worst case execution time,
this can be modelled by parameterisingΘx andρx, resulting
in Θx(i) andρx(i) in order to make them dependent on the
worst case execution time of firingi.

11. Conclusion

This paper describes a relation between concepts from
the Network Calculus and dataflow domains. We have
shown that Latency-Rate servers, which is a class of run-
time schedulers, can be included in a dataflow model by
an actor that models the rate and an actor that models the
latency. The resulting dataflow model is shown to be mono-
tonic in time, which enabled us to prove that worst case

18



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

temporal behaviour of the implementation can be observed
in the dataflow model.

Currently, we are setting up a design flow that determines
a task to processor binding, scheduler settings, and buffer
capacities such that the application’s temporal constraints
are satisfied. We feel that this work is an important contri-
bution to such a design flow that likely needs to deal with a
heterogeneous set of run-time schedulers.

References

[1] R. Agrawal. Performance Bounds for Flow Control Protocols.IEEE/ACM
Transactions on Networking, 7(3):310–323, June 1999.

[2] M. J. G. Bekooij, S. Parmar, and J. van Meerbergen. Performance Guarantees
by Simulation of Process Networks. InProc. Int’l Workshop on Software and
Compilers for Embedded Systems (SCOPES), 2005.

[3] M. J. G. Bekooijet al. Predictable Embedded Multi-Processor System De-
sign. InProc. Int’l Workshop on Software and Compilers for Embedded Sys-
tems (SCOPES), 2004.

[4] M. J. G. Bekooijet al. Dataflow Analysis for Real-Time Embedded Multipro-
cessor System Design, chapter 15. Dynamic and Robust Streaming Between
Connected CE Devices. Kluwer Academic Publishers, 2005.

[5] G. Bilsenet al. Cyclo-Static Dataflow.IEEE Transactions on Signal Process-
ing, 44(2):397–408, February 1996.

[6] R. L. Cruz. A Calculus for Network Delay, Part I: Network Elements in
Isolation.IEEE Transactions on Information Theory, 37(1):114–131, January
1991.

[7] R. L. Cruz. A Calculus for Network Delay, Part II: Network Analysis.IEEE
Transactions on Information Theory, 37(1):132–141, January 1991.

[8] E. A. de Kock. YAPI: Application Modeling for Signal Processing Systems.
In Proc. Design Automation Conference (DAC), 2000.

[9] F. Bacelli, G. Cohen, G.J. Olsder, and J-P. Quadrat.Synchronization and
Linearity: An Algebra for Discrete Event Systems. Wiley, 1992.

[10] S. Goddard and K. Jeffay. Managing Latency and Buffer Requirements in
Processing Graph Chains.The Computer Journal, 44(6), 2001.

[11] P. Goyalet al. Determining End-to-End Delay Bounds in Heterogeneous
Networks.Multimedia Systems, 5:157–163, 1997.

[12] A. Hung and G. Kesidis. Bandwidth Scheduling for Wide-Area ATM Net-
works Using Virtual Finishing Times.IEEE/ACM Transactions on Network-
ing, 4(1):49–54, February 1996.

[13] M. Jersaket al. Performance Analysis of Complex Embedded Systems.In-
ternational Journal of Embedded Systems, 1(1-2):33–49, 2005.

[14] Y. Jiang. Relationship between Guaranteed Rate Server and Latency Rate
Server.Computer Networks, 43(3):307–315, October 2003.

[15] G. Kahn. The Semantics of a Simple Language for Parallel Programming. In
Information Processing, Stockholm, August 1974.

[16] E. A. Lee and S. Ha. Scheduling Strategies for Multi-Processor Real-Time
DSP. InProc. IEEE Global Telecommunications Conference and Exhibition
(GLOBECOM), November 1989.

[17] A. Maxiaguineet al. Tuning SoC Platforms for Multimedia Processing: Iden-
tifying Limits and Tradeoffs. InProc. Int’l Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), September 2004.

[18] C. Otero Pérezet al. Dynamic and Robust Streaming between Connected CE
Devices, chapter Resource Reservations in Shared Memory Multiprocessor
SoCs. Kluwer Academic Publishers, 2005.

[19] P. Poplavkoet al. Task-Level Timing Models for Guaranteed Performance in
Multiprocessor Networks-on-Chip. InProc. Int’l Conference on Compilers,
Architectures, and Synthesis of Embedded Systems (CASES), November 2003.

[20] R. Reiter. Scheduling Parallel Computations.Journal of the ACM, 15(4):590–
599, October 1968.

[21] S. Sriram and S.S. Bhattacharyya.Embedded Multiprocessors: Scheduling
and Synchronization. Marcel Dekker Inc., 2000.

[22] D. Stiliadis and A. Varma. Latency-Rate Servers: A General Model for Anal-
ysis of Traffic Scheduling Algorithms.IEEE/ACM Transactions on Network-
ing, 6(5):611–624, October 1998.

[23] M. H. Wiggerset al. Efficient Computation of Buffer Capacities for Multi-
Rate Real-Time Systems with Back-Pressure. InProc. Int’l Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), October
2006.

[24] M. H. Wiggerset al. Efficient Computation of Buffer Capacities for Cyclo-
Static Real-Time Systems with Back-Pressure. InProc. IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), April 2007.

[25] H. Zhang. Service Disciplines for Guaranteed Performance Service in Packet-
Switching Networks.Proceedings of the IEEE, 83(10):1374–1396, October
1995.

[26] H. Zhang and D. Ferrari. Rate-Controlled Service Disciplines.Journal of
High-Speed Networks, 3(4), 1994.

A.
Proof of Theorem 1.The enabling time of firingk of

actorvi, l(vi, k), is determined by

l(vi, k) = max({s(vx, k′) + r(vx, k′)|(x, i) ∈ E}) (18)

wheres(vx, k′) is the start time of actorvx andr(vx, k′) is
the response time of actorvx of some firingk′. The start
time of firingk of actorvi is therefore given by

s(vi, k) = l(vi, k) + ε(vi, k) (19)

whereε(vi, k) ≥ 0 is the difference between the enabling
time and the start time of firingk of actorvi.

Since∀b : a′ ≤ a ⇒ max(a′, b) ≤ max(a, b), a de-
crease of the start times or response times of firingk′ of
actorvx, which is a predecessor ofvi, cannot lead to an in-
crease of the enabling time of firingk of an actorvi. Since
the SRDF graph does not maintain FIFO ordering of tokens,
it can occur that a decrease of the start time or response
times of firingk′′ of an actorvx, which is a predecessor of
vi, determines the enabling time ofvx in iterationk. This
can only occur if firingk′′ of vx produces earlier than firing
k′ and thuss(vx, k′′) + r(vx, k′′) < s(vx, k′) + r(vx, k′).
This situation can therefore not lead to a later enabling time
of firing k of actorvi, and therefore also not to a later start
time of firingk of actorvi.

If the number of initial tokensd((vx, vi)) is in-
creased of some edge(vx, vi) to becomed′((vx, vi)), with
d′((vx, vi)) > d((vx, vi)), then the enabling time of firing
k of actorvi becomes dependent on the start time and re-
sponse time of firinĝk, k̂ 6= k′ of actorvx, with s(vx, k̂) +
r(vx, k̂) ≤ s(vx, k) + r(vx, k). This is because firingk is
no longer dependent on thek−d((vx, vi))’th token to arrive
on edge(vx, vi) but on thek − d′((vx, vi))’th token to ar-
rive. Sinced′((vx, vi)) > d((vx, vi)), thek−d′((vx, vi))’th
token arrives no later than thek − d((vx, vi))’th token.

Further if the differenceε(vi, k) between the start time
and enabling time of firingk of actorvi is decreased to be-
comeε′(vi, k), 0 ≤ ε′(vi, k) < ε(vi, k), then this does not
lead to an increase of the start time of firingk of actorvi.

Since for any actorvi and any firingk no decrease of the
response time, increase in the number of initial tokens, or
decrease of the difference between start time and enabling
time leads to a later start time, we conclude that a SRDF
graph is temporally monotonic. �

B.
Proof of Theorem 2. We know that (1) Equation 3

holds, (2) every SRDF graph is temporally monotonic,
and (3) there is a one-to-one correspondence between
the component graph and the task graph. The one-to-one
correspondence combined with the fact that Equation 3
holds, means that for constant response times token arrival
times form a conservative bound on container arrival
times. This is because tokens are produced when the

19



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

actor finishes, while containers are produced before a task
finishes. Furthermore we know that an SRDF graph is
temporally monotonic, which means that no reduction of
the response time of an actor in the component graph leads
to a later start time of an actor in the component graph.
Combining this fact with the facts that the components are
conservative with respect to the tasks and that there is a
one-to-one correspondence between the component graph
and the task graph, leads to the conclusion that token arrival
times in the component graph are conservative container
arrival times in the task graph, and are therefore worst-case
container arrival times. �

C.
BecauseWx(s, t) ∈ N, using the bound̆Q(s, t) leads

to a latencyΘx that is 1
ρ lower than the latencyΘ′

x de-
rived using the boundQ(s, t). This is because when using
Q̆(s, t), we have that̆Qx(s, τ) ≤ n for τ < s + Θx + n+1

ρx
,

while when usingQ(s, t), we have thatQx(s, τ) ≤ n for
τ < s + Θ′

x + n
ρx

. Since at the finish time of some execu-

tion m both bounds are exact, we have thatΘx = Θ′
x − 1

ρx
.

In [22] latencies of a number ofLR servers are derived us-
ing the boundQ(s, t).

Traditionally, the arrival functionA and service function
W are expressed in the amount of time requested from and
provided by theLR server, while we have defined them in
terms of number of enablings and finishes of task execu-
tions. However, in worst-case analysis these two notions
are equivalent. This is because, in worst-case analysis we
can associate the worst case execution time,ET x, which
is the maximum time required by the execution of taskux

when executed in isolation, with every request or provision
of service. If with every arrival and provision of service the
ET x is associated, thenρx would be multiplied byET x

to becomeρ′x = ρx · ET x, while Θx remains the same.
In this case,ρ′x would mean the fraction of time that a re-
quester is allowed to execute on theLR server, i.e. after
Θx time, which corresponds with the traditional notion of
rate. Therefore1

ρ′
x

would mean the fraction with which
the execution time of the requested is stretched due to ex-
ecution on theLR server, excludingΘx. And therefore
ET x

ρ′
x

would be the worst case time required to finish a re-
quest for service, excludingΘx. However, we have that
ET x

ρ′
x

= ET x

ρx·ET x
= 1

ρx
, which means that the definitions as

used in the present discussion are equivalent to the tradition-
ally used definitions. Furthermore the definitions as used in
the present discussion ease the notation in the next section
where we show an SRDF component that models the same
behaviour as anLR server.

D.
Proof of Lemma 1.According to Equation 7, execution

j of actorvx is guaranteed to have finished atτj = b(k) +

Θ + j−k+1
ρ . For Equation 7 to equal Equation 6, it should

hold that starting fromτj the guaranteed number of finishes
is at leastj − k + 1. More formally it should hold that

∀τ ′ ≥ τj : Q̆(b(k), τ ′) ≥ j − k + 1, and (20)

∀τ ′′, b(k) ≤ τ ′′ < τj : Q̆(b(k), τ ′′) < j − k + 1 (21)

Equation (20) holds, because, according to Equation 6,

Q̆(s, τj) = max(0, bρ · (τj − b(k) − Θ)c) (22)

Q̆(s, τj) =

max(0, bρ · (b(k) + Θ +
j − k + 1

ρ
− b(k) − Θ)c) (23)

Q̆(s, τj) = max(0, bρ · (j − k + 1
ρ

)c) (24)

Q̆(s, τj) = max(0, bj − k + 1c) = j − k + 1 (25)

And Equation (21) holds, because forτ ′′ = τj − ε,
0 < ε ≤ τj − b(k), we have that

Q̆(s, τ ′′) = max(0, bρ · (τj − ε − b(k) − Θ)c) (26)

Q̆(s, τ ′′) =

max(0, bρ · (b(k) + Θ +
j − k + 1

ρ
− ε − b(k) − Θ)c)

(27)

Q̆(s, τ ′′) = max(0, bρ · (j − k + 1
ρ

− ε)c) (28)

Q̆(s, τ ′′) = max(0, bj − k + 1 − εc) < j − k + 1 (29)

Furthermore executionk is not guaranteed to have finished
at anyτ̇ for which holds

b(k) < τ̇ < τk = b(k) + Θ +
1
ρ

(30)

Equation (30) is true because forτ̇ = τk − ε, 0 < ε < b(k)
we have that

Q̆(b(k), τk−ε) ≥ max(0, bρ·(b(k)+Θ+
1
ρ
−ε−b(k)−Θ)c)

(31)

Q̆(b(k), τk − ε) ≥ max(0, bρ · (1
ρ
− ε)c) (32)

Q̆(b(k), τk − ε) ≥ max(0, b1 − ρ · εc) = 0 (33)

�

20



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

E.
Proof of Lemma 2.According to Equation (8), execution

j of actorvx is guaranteed to be externally enabled atφj =
b(k)+ j−k

ρ . For the bounds, as provided by Equation (8) and
Equation (4), to be equal, it should hold that starting from
φj the number external enablings is at leastj − k. More
formally, it should hold that

∀φ′ ≥ φj : H(b(k), φ′) ≥ j − k, and (34)

∀φ′′ < φj : H(b(k), φ′′) < j − k (35)

Equation (34) holds, because, according to Equation (4)

H(b(k), φj) = ρ · (φj − b(k)) (36)

H(b(k), φj) = ρ · (b(k) +
j − k

ρ
− b(k) = j − k (37)

And further forφ′′ = φj − ε, 0 < ε ≤ φj − b(k), we have
that

H(b(k), φ′′) = ρ · (φj − ε − b(k)) (38)

H(b(k), φ′′) = ρ · (b(k) +
j − k

ρ
− ε − b(k) = j − k − ρε

(39)
and

j − k − ρε < j − k (40)

�

F.
Proof of Lemma 3.We will first show the correctness

for the first busy period by induction on the number of ex-
ecutions, and subsequently use this result as the base step
to prove this lemma by induction on the number of busy
periods.

Base step – induction on the number of executions:For
the first execution we have that

g(1) = max(b(1) + Θ, g(1 − 1)) +
1
ρ

(41)

and becauseg(1 − 1) = g(0) = 0.

g(1) = b(1) + Θ +
1
ρ

= τ1 (42)

Inductive step – induction on the number of executions:
We assume that for executionj, j ≥ 1 holds thatg(j) = τj ,
and thus that

b(k)+Θ+
j − k + 1

ρ
= max(b(j)+Θ, g(j−1))+

1
ρ

(43)

We will now show that given this assumption also for exe-
cutionj + 1 we haveg(j + 1) = τj+1, and thus that

b(k)+Θ+
(j + 1) − k + 1

ρ
= max(b(j+1)+Θ, g(j))+

1
ρ

(44)

We know from Equation (9) and Equation (8) that

g(j + 1) = max(b(j + 1) + Θ, g(j)) +
1
ρ

(45)

b(j + 1) ≤ φj+1 = b(k) +
(j + 1) − k

ρ
(46)

Given the induction hypothesis from Equation (43), we
know that

g(j) = τj = b(k) + Θ +
j − k + 1

ρ
(47)

We therefore conclude that

b(j + 1) + Θ ≤ φj+1 + Θ =

b(k) + Θ +
j − k + 1

ρ
= τj = g(j) (48)

This results inmax(b(j + 1) + Θ, g(j)) = g(j), and there-
fore Equation (45) results in

g(j + 1) = g(j) +
1
ρ

= τj+1 (49)

We have now shown the equivalence ofg(j) andτj for
the first busy period. This forms the base step for the proof
by induction that this equivalence holds for all busy periods.

Inductive step – induction on the number of busy peri-
ods: We assume thatg(j) = τj for all executions up to and
including busy periodβl starting atb(h), we now show that
given this assumptiong(j) = τj is also true for busy period
βl+1 starting atb(k).

Let k be the first execution in the busy periodβl+1, then
executionk − 1 belonged to the previous busy periodβl

starting atb(h). From Equation (8), we have that

b(k − 1) ≤ φk−1 = b(h) +
(k − 1) − h

ρ
(50)

And since executionk does not belong to busy periodβh,
we have that

b(k) > b(h) +
k − h

ρ
(51)

Furthermore we know from Equation (7) that

τk−1 = b(h) + Θ +
(k − 1) − h + 1

ρ
(52)

τk−1 = b(h) + Θ +
k − h

ρ
(53)

Using Equation (51)

τk−1 < b(k) + Θ (54)

Using the induction hypothesis we obtainτk−1 = g(k− 1),
which leads to

g(k) = max(b(k) + Θ, g(k − 1)) +
1
ρ

(55)

21



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

g(k) = b(k) + Θ +
1
ρ

= τk (56)

The earlier part of this proof,Inductive step – in-
duction on the number of executions, that showed that
g(j + 1) = τj+1, if g(j) = τj , for the first busy period, did
not assume that the executionsj andj + 1 were in the first
busy period and therefore holds for any busy period.�

G.
Proof of Theorem 3.Letay(i) be the arrival time of token

i on edge(vk, vy), letaz(i) be the arrival time of tokeni on
the edge(vy, vz), and letal(i) be the arrival time of token
i on the edge(vz, vl), see Figure 5. From Figure 5 we can
derive that

az(i) = ay(i) + Θx (57)

al(i) = max(az(i), al(i − 1)) +
1
ρx

(58)

Substitution of Equation (57) in Equation (58) results in

al(i) = max(a(i) + Θx, al(i − 1)) +
1
ρx

(59)

Since every arrival of a token on the edge(vk, vy) leads to
an external enabling ofvy, we have thatb(vy, i) = ay(i).
And since every firing ofvz produces one token on the edge
(vz, vl), we have that a finish of firingi of actorvz cor-
responds with the release of a token on the edge(vz, vl):
f(vz, i) = al(i). This means that Equation (59) becomes

f(vz, i) = max(b(vy , i) + Θx, f(vz , i − 1)) +
1
ρx

(60)

By definingf(vz , i) = 0 for i ≤ 0, we have that substitution
of g(j) = f(vz, i) andb(j) = b(vy, i) results in an equality
of Equations (60) and (9). Lemma 3 and Lemma 1 tells us
that the bound on the finish time of actorvx as obtained by
Equation (9) is equivalent to the bound on the number of
finishes of actorvx as obtained by Equation (6).

This means that in any busy period(s, t] the number of
releases by actorvz in the interval(s, τ ], s < τ ≤ t equals
Q̆ as defined by Equation (6). �

22


