
Whole-Program Linear-Constant Analysis with Applications to Link-Time
Optimization

Ludo Van Put
lvanput@elis.ugent.be

Dominique Chanet
dchanet@elis.ugent.be

Department of Electronics
and Information Systems

Ghent University

Koen De Bosschere
kdb@elis.ugent.be

Abstract

Current link-time optimization techniques can reduce
the power consumption and code size of embedded soft-
ware [2]. Due to a lack of information, the stack frames
of procedures are left untouched by link-time program opti-
mizers. In this paper we present a practical whole-program
linear-constant analysis [9] that allows to analyze the stack
layout of a procedure. The analysis deals with the peculiar-
ities of link-time program representation, namely the lack
of high-level information and the huge size of the control
flow graph. Even on a complete linux kernel, our analy-
sis is practical in terms of computation time. The collected
information consists of restricted affine equations between
two registers, but it enables optimizations complementary to
existing link-time optimization techniques. On a set of ARM
benchmarks, the number of store operations decreases by
up to 7% while the execution time, program size and power
consumption are all further improved. This paper discusses
both the practical issues of applying whole-program linear-
constant propagation as well as its use in program optimiza-
tion and understanding.

1 Introduction

An important application of static analysis is the detec-
tion of affine relations that hold between the variables of a
program. The information provided by such an analysis is
used in optimizing compilers and program verification. A
lot of work in this field deals with the theory of the analyses
and the classification of the abstracted programs they work
on (see [6] for an overview). This paper discusses the imple-
mentation and evaluation of interprocedural linear-constant
propagation applied on realistic programs.

Link-time transformation of programs has been success-
fully used for program compaction and program optimiza-

tion [2, 3]. The technique benefits from the whole-program
overview at link time to apply optimizations that are com-
plementary to compiler optimizations. The drawback of
link-time transformation is the absence of high-level infor-
mation on the program, forcing analyses and optimizations
to be very conservative. Due to the size of whole-program
control flow graphs, all analyses and optimizations must be
carefully engineered to be practical in their use.

At link time, the information on variables as they exist in
the source code or at compile time is discarded. Therefore,
the analysis presented in this paper will detect simple affine
relations that hold between the processor registers at every
point in the program. Each of the affine relations contains at
most two registers, which is a specialization of the relations
that are used in the work by Karr [5]. The binary relations
that we evaluate are similar to those in the linear-constant
propagation by Sagiv et al.[9], but they are less general.
Since our analysis operates on the level of machine instruc-
tions, even simple relations can capture enough information
to enable effective program optimizations and at the same
time keep the running time and memory usage practical.

In the next section, we discuss the characteristics of the
program representation at link time. In Section 3, we ex-
plain our data flow analysis and the different operations in-
volved. In Section 4 we give some applications that use the
computed information and we discuss the results of the op-
timizations. We discuss related work in Section 5 and draw
conclusions in Section 6.

2 Link-time program representation

To motivate the design of our analysis, explained in the
next section, we highlight the most important characteris-
tics of the program representation that we are working on
at link time. We have implemented our analysis using Di-
ablo, a framework for link-time binary rewriting1. For a

1http://www.elis.ugent.be/diablo

1



The remainder of this paper is not in-
cluded as this paper is copyrighted ma-
terial. If you wish to obtain an elec-
tronic version of this paper, please send
an email to bib@elis.UGent.be with a
request for publication P107.041.pdf.

1


