
Actor Reflection without Meta-Objects*

T A N A K A Tomoyuki t
IBM Research, Tokyo Research Laboratory

5-19, Sanbancho, Chiyoda-ku, Tokyo 102, Japan

Abstract

We consider how reflection should be introduced into an
actor language, where reflection is a mechanism for al-
lowing a program to have access to the data structures of
its own processor. Rather than introducing meta-objects
as in the previous work, we propose to introduce reflec-
tion through two kinds of special messages: reifying and
reflecting messages. We show that the fifll range of reflec-
tive programming in an actor language is possible without
introducing meta-objects, and argue that our approach
provides a more uniform interface for actors than the
meta-object approach. All the examples in this paper
have been tested on our prototype actor system.

1 Introduct ion

Reflection is an at tempt to allow programs to have knowl-
edge of their text and the context in which they are
executed. Reflection was first introduced by Smith in
[$82]. Since then there have been various at tempts to
extend this concept within Lisp [$84] [FW84] [WF86]
[B88] [T89], as well as at tempts to introduce the concept
to different languages and models. Since different lan-
guages have different processor structures, working data,
and }anguage constructs, a new method of reflection must
be devised for each language.

Outside of Lisp, the area where such at tempt attracted
the widest attention has been that of object-orlented lan-
guages, which are either class-based such as SmalltMk-
80 iF J89] or class-less and actor-based [M87b] [IC88]
[WY88]. In this paper we consider how reflection should
be introduced into an actor language.

2 The actor model and our description
language

In this section we examine the key characteristics of the
actor model, and then present our description language,
the language in which the examples in this paper are
presented. All the examples have been tested on our pro-
totype actor system, written in Common Lisp.

"This is a condensation of Actor Reflection without Meta-
Objects (TRL Research Report RT-0047, 1900) which was
presented and distributed at Object-Based Concurrent Sys-
tems Workshop.

IThe author's family name is Tanaka.

2.1 T h r e e key cha rac t e r i s t i c s of the a c t o r m o d e l

We do not intend to give a detailed introduction of the
actor model, i For tile purpose of tlm discussion in this
paper, the essentiM aspects of the actor model can be
summarized as follows. An actor language is a conven-
tional sequential language augmented with the following
characteristics:

A1 Concurrency The model consists of concurrently
and asynchronously running actors that communi-
cate with each other only by sending messages. This
assumes that each actor has a buffer or queue for
messages recelved and waiting to be processed. A
data flow network has this aspect.

A2 Actor Creation Unlike a data flow network, nodes
or actors can be dynamically created.

A3 Actor Internal States Tile actors have internal
states and therefore are history-sensltive. They can
behave non-functlonally in that the same input to an
actor at two different occasions may cause different
behavior.

An actor system (model) consists of two levels: au-
tonomous actors and a general superviso~: The supervi-
sor is not necessarily a global synchronizer that govern
all the actors to execute one cycle at a time, but even
in a distributed environment, a supervisor nlust reside, a
major component of which is a mail system that keeps
track of all the actors that exists in the system, convey
messages to the destination actors, and, if this can not
be done directly, send the message to the appropriate in-
termedlate site, etc.

2.2 T h e desc r ip t ion l anguage and o u r
p r o t o t y p e s y s t e m

In order to test our ideas and also to present the exam-
ples, we have developed a prototype actor system which
interprets actor scripts in a language similar to SAL, a
mlnimM actor language presented in [A86]. Our language
will be simply referred to as "the actor language". Like
SAL, the messages are positional not keyword-based, and
the language has data other than actors, such as numbers,
symbols, and lists. Because our description language is
simple and is similar to SAL, we believe that no formal

aSee [A86] or [H77] for a general introduction to the actor
model and concept.

114

http://crossmark.crossref.org/dialog/?doi=10.1145%2F127070.127097&domain=pdf&date_stamp=1991-04-01

description of the language is necessary; Rather we in-
troduce the language by explaining the definitions of two
typical actors.

The first example is the factorial actor adopted ~om
[H77] and [A86]. It shows the actor features A1 Con-
c u r r e n c y and A2 A c t o r Creat ion. The following is a
session with our prototype actors system.

> (def-actor fact
() ; state-vats
(n cent) ; main-vars
; ; maln-form
(if (= n 0)

(send cent (list 1))
(let ((c (new Roe-Customer (list n cent))))

(send self (list (i- n) c)))))
ACTOR DEFINED: fact

> (def-actor Roe-Customer
(n cent) ; state-vars
(v) ; main-vats
;; maln-form
(send cent (list (* n v))))

ACTOR DEFINED: roe-customer

> (d e f v a r f (new f a c t ()))
VAR DEFINED: f

> (defvar p (new print-cent ()))
VAR DEFINED: p

> (send f (list 3 p))
6
.

First, the two actor definitions are typed into the sys-
tem. An actor definition consists of four components:
the name of the actor; state-vars, the variables used to
specify the internM state of the actor, which must be
initialized when an instance is created; main-vats, the
positional template for the messages to the actor; and
main-forTT~ which corresponds to the script in traditional
actor terminology; Then, the instances 2 of the actors are
created with new expressions and bound to global vari-
ables, p r i n t - c e n t is an actor whose definition is built
into the system. It receives a message of one component
and prints the component. Finally~ a message of two
components, 3 and a printer actor, is sent to the factorial
actor. Here, the printer actor is sent to specify what to
do after the factorial value is computed. Actors used in
such a way" are called continuations or customers.

The main-form part of an actor definition is a single
command, which is either of

(send actor-expr message-ezpr)
(i f pred-expr then-command else-command)
(l e t var-expr-pairs command)
(progn command ...).

An expression is a simple Lisp expression or a nets ex-
pression: (new actor-name expression).

The second example shows the effect of A3 A c t o r In-
ternal States. A counter actor maintains a count of
how many objects it has processed, so that even for the

2Henceforth we will say actor instances or instances, iu-
stead of actors, where distinction need to be emphasized.

same input (the first and the third messages in the fol-
lowing session) the outputs may be different.

> (def-actor counter
(count) ; state-rare
(obj roe) I main-vare
;; main-form
(send roe (llst (list (setq count (I+ count))

obj))))
ACTOR DEFINED: counter

> (defvar c (new counter (llst 0)))
VAR DEFINED: c

> (send e (list 'aaa p))
(I aaa)

> (send e (list 'bbb p))
(2 bbb)

> (s e n d e (l i s t 'aaa p))
(3 aaa)

.

3 A r e f l e c t i v e m e c h a n i s m in t h e a c t o r

l a n g u a g e

In this section, we first examine the notion of procedural
reflection in Lisp, where reflection was first introduced,
then consider how to introduce the concept to an actor
language with the three characteristics described in the
last section.

3.1 I n t r o d u c i n g reflection to a l anguage

It should be stated on the outset that reflection is not
changing the interpreter. Rather than modifying the in-
terpreter, procedural reflection which Smith introduced
in [$82] aims to do two things: (1) To allow programs to
have access to the data structures of its own processor, so
that code manipulating such data can be seen as running
at the level of the interpreter; and (2) If the language at
tlie level above is the same as the level below and the
same reification mechanism can be used, then the pro-
cess of shiftlng-up can be repeated, resulting in a virtual
tower of processors.

When introduclug a reflective mechanism to a lan-
guage, three questions must be answered:

1. What are the working data structures of the inter-
preter? (These should constitute a complete snap-
shot of the computation.)

2. ttow should they be made available to the object
level program? (This process is called reification.)

3. How should they be reinstalled? (This process is
called reflection.)

The process of reiflcation and reflection may require con-
version of data, as in [FW84].

3.2 Reif lcat ion and reflection in Lisp
In Lisp the data structures of the interpreter chosen to
be retried and reflected are the following:

o the expression to be evaluated

r the variable environment

115

k the continuation to which the value of e in tile envi-
ronment r is to be sent

The three data structures are made available to the
object level program through an application of a relfylng
procedure (or a reifier). For example, when body of the
reifier in Brown 3 program

((abs re i : fy (e r k) <body>) a b c)

is evaluated, the variable e is bound to the expression (a
b c) , r is bound to the environment, and k is bound to
the continuation of the entire application form.

There are two ways of reflection in Lisp: one is to in-
voke the continuation with a value, and the other is to
call a function meaning or eva]., specifying a set of three
values to be installed. 4

3.3 W h a t a re t h e w o r k i n g d a t a s t r u c t u r e s o f
t h e i n t e r p r e t e r ?

What is tile interpreter in an actor system? We stated
in Section 2 that an actor system consists of two levels:
autonomous actors and a general supervisor. Therefore,
an interpreter can be seen to exist at both levels. How-
ever, the supervisor is something that programs (scripts)
usually do not have access to, and therefore it is not ap-
propriate to see the supervisor as an interpreter, at least
as the first step in introducing reflection into an actor
language. Pursuing this direction would lead to treating
the entire system (the supervisor and all the individual
actors), but we will not explore this aspect in the present
paper, s

Instead, we focus on the processor for just one object
as an interpreter, and decide on the the following four
data structures of the object interpreter:

ma in -va r s the message template for the actor

main- form the script of one command

s t a t e - v a t s - e a r the environment for representing the
internM state of the actor; must be initialized when
an instance is created

queue the queue of messages received by the actor but
are still waiting to be processed

The properties A1 C o n c u r r e n c y and A3 A c t o r In-
t e r n a l S t a t e s respectively require that queue and
s t a t e - v a r s - e n v be a part of the object interpreter's data
structure. The property A2 A c t o r C r e a t i o n does not
introduce a new aspect to actor reflection over a sequen-
tim language because creating an actor only causes an
event outside the interpreter of the actor (creation of a
process that may send messages to the current actor). To
the interpreter such an event is no different from creation
of a data structure from a heap (e.g., a list).

3.4 R e l f y i n g messages : m a k i n g t h e p r o c e s s o r ' s
d a t a ava i lab le

The question is, through what mechanism should the
data structures of the actor interpreter be made avail-
able? Since this is a communication that may take place

3This is in [FW84] notation.
4There is also a method of exiting which we will see in

Section 5.
5See [WY89] for work in this direction.

across different actors, it is natural to model this commu-
nication as a kind of message passing. Sending a message
is the actor 's analogue of Lisp's applying a function. Just
as in Lisp special functions (reifying procedures) are used,
we introduce special messages, which we call reifyi,g mes-
sages (or reifiers). To ask for the data structures of an
actor one sends a reifying message to tile actor, s

Tile exact format is

(send <actor> <reifylng-message>)

where actor is tile target actor, and reifying-message is
created by the function make-re i : fy-message .

The function make-re i : fy-message takes two argu-
ments: fi~eeze? and cont. The cent argument is a contin-
uation actor which always takes a message of four com-
ponents, corresponding to the four data structures of the
interpreter. The freeze? argument is described below.

When an actor receives a relfying message, and its turn
to be processed arrives, r it does not go through the reg-
ular processing of matching the message to the message
template (ma:i.n-vars), but instead makes a list of the
four data structures of its actor processor and sends it
to the continuation actor as a regular message, s (See
Section 4 for how exactly these are specified.)

In tMs reification mechanism (or in the reflection mech-
auism to be described below), there is no conversion prob-
lem because the four'reified components are already da ta
of the object level language.

F r e e z i n g a n d n o n - f r e e z i n g reifiers

Should an actor be allowed to continue running while
its registers are given to another actor, which may possi-
bly modify and install them into the original actor? This
is a question which does not arise in sequential languages,
but which must be answered when introducing reflection
to an actor language.

We found uses for both types of reifiers: a non¢~eezing
reifier (one that lets the target actor continue to run)
is good for obtaining a snapshot of the actor (see Sec-
tion 4.2), whereas a fi'eezing relfier, (one that "freezes"
the target actor until it receives a reflector) is neces-
sary to define the send command at the user level (see
Section 4.3). Therefore we provide both types of rei-
tiers which is specified by the freeze? argument to
m a k e - r e i f y - m e s s a g e .

An actor in a frozen state does not process any mes-
sages in its queue, and it only receives a reflecting mes-
sage. The arrival of a reflecting message resumes the
execution of a frozen actor.

6A uniform notation is used for an actor to send reify-
ing messages to other actors as well as to itself, although the
implementation may treat this differently when the target is
itself, for no inter-actor communication need to be generated
in that case.

t i t is possible also to have it so that all reifylng (and reflect-
ing) messages are processed out of order (for example, as soon
as they arrive), but we do not see any significant advantage
of this.

sit is more precise to say that a copy of the four data
structures of the processor arc sent, beca,se sha~i~*g of list
structures, for example, is not permitted between two difl',~ ctlt
actors.

116

3.5 Re f l ec t i ng messages : i n s t a l l i ng t h e
p r o c e s s o r ' s d a t a

We similarly model reflection as sending messages of a
special type, called a reflecting message.

(send <actor> <reflecting-message>)

A re)qecting message is created by the function
make-reflect-message, which takes four arguments cor-
responding to the four date components of the inter-
preter.

When an actor receives a reflecting message, it handles
it differently from a regular message, and installs the four
components of the message into the four "registers" of the
interpreter.

The arguments to m a k e - r e f l e c t - m e s s a g e may be
omitted to specify that the corresponding data structure
of the target actor interpretor is to be left untouched.

4 P r o g r a m m i n g w i t h r e i f y i n g a n d

r e f l e c t i n g m e s s a g e s

In this section, we show some programming examples us-
ing the relfylng and reflecting messages, and show the
range of programming possible with our approach. In
the first two examples, a reifier and a reflector are used
by itself, not in pairs. It should be noted that reiflcation
and reflection do not have to occur in pairs at all in this
model, as there is no global level common to all actors.

4.1 C o u n t e r r e s e t t e r

The first example is an actor which resets the counter ac-
tor defined in Section 2. It is an example of an unmatched
reflectoT; a reflecting message without the matching reify-
lug message.

(def-actor counter-resetter
() ; state-vars
(counter) ; main-rare
; ; main-form
(send counter

(make-reflect-message
:state-rare-any (make-env 'count 0))))

When a counter resetter (instance) accepts a counter,
it sends to the counter a reflecthlg message contahllng the
environment to be installed. Here make-env is a function
which constructs a valid representation of the environ-
meat. This counter resetter can be used on any family of
counter actors which stores its counter within the variable
named count .

4.2 L o a d a v e r a g e checke r

The second example is a load average checker, which
checks the length of the queue of a given actor. It is
an example of a use of non-freezing reifier without the
matching reflector.

(d e f - a c t o r l a
;; use: (send lai (list arg-ai p-la))
; ; sends load average (length of queue) to cent
() ; s t a t e - v a t s
(arg-ai cent) ; main-vars
; ; main-form
(let ((la-sub-i (new is-sub (list cent))))

(send arg-ai

(make-reify-message :freeze? nil
:cent Is-sub-i))))

(def-actor 1a-sub
;; receives a quadruplet
;; sends the length of queue to CONT
(c o n t) ; s t a t e - r a r e
(r a r e f o r m env q u e u e) ; m a i n - r a r e
; ; m a i n - f o r m
(s e n d ¢ o n t (l i s t (l e n g t h q u e u e))))

An instance of actor la accepts a message cons~stlng of
two arguments, the argument actor and a printer contin-
uation, and sends the length of the queue of the argument
actor to the printer continuation.

A simple load balancer can also be written using the
load average checker which will accept a list of actors,
check tile load balance of each actor, and re-distribute
messages more evenly when possible.

4.3 U s e r - d e f i n e d send

The next example is a user-defined send. With the fol-
lowhig definitions, sending a message to <usi>, an in-
stance of actor user-send, as

(send <usi> (list <ai> <message>))

produces tile same effect as this command:

(send <ai> <message>)

(d e f - a c t o r u s e r - s e n d
;; use: (send usi (list ai message))
() ; state-rare
(al m) ; main-rare
; ; main-form
(let ((u-s-sub-i (new user-send-sub (list aim))))

(send ai
(make-reify-message :freeze? t

:cent u-s-sub-i))))
(def-actor user-send-sub

;; receives a quadruplet
;; push m to ai's queue
(ai m) ; state-vars
(rare form env queue) ; main-vars
; ; main-form
(let ((q (cons m queue)))

(send ai (make-reflect-message :queue q))))

4.4 T race : m o n i t o r i n g an a c t o r ' s b e h a v i o r

The last example is monitoring or tracing the behavior
of an actor: whenever a certain actor is about to process
a received message, some trace output is printed.

To set the trace on, a message consisting of the ar-
gument actor and a printer continuation is sent to an
instance of actor t r a c e . After this takes effect, every
time the argument actor is about to process a received
message, the trace information is sent to the printer con-
tinuation.

Sending the traced actor to an instance of u n t r a c e
actor sets off the trace.

(def-actor trace
;; use: (send <ti> (llst <ai> p-trace))
() ; s t a t e - r a r e
(ai p-cent) ; main-vars
; ; main-form
(let ((t-eub-i (new trace-sub (] .4ot a i p-cent))))

(send ai
(make-reify-message :freeze? t

117

:cont t - s u b - i))))
(defvar p - t r ace

(new print-message-cent
(llst "traced actor received: ")))

(def-actor trace-sub
;; receives a quadruplet
;; change ai's main-form to
;; (progn <trace-output> <original>)
(ai p-cent) ; state-vars
(rare form env queue) ; main-vats
;; maln-form
(let ((new-main-form

'(progn
(send ',p-cent (llst (list . ,vars)))
,form)))

(send ai
(make-reflect-message
:main-form new-maln-form))))

(de f - ac to r untrace
;; use: (send <uti> (l l s t <ai>))
() ; state-vats
(ai) ; main-vats
;; main-form
(let ((ut-sub-i (new untrace-sub (list ai))))

(send ai
(make-reify-message :freeze? t

:cont u t - s u b - i))))
(def-actor untrace-sub

;; receives a quadruplet
;; change ai's main-form from
;; (progn <trace-output> <original>) to <oriEinal>
(al) ; state-vats
(vats form env queue) ; maln-vars
;; main-form
(let ((new-main-form (third form)))

(send ai
(make-reflect-message
:main-form new-maln-form))))

5 Comparison with the meta-object
approach

We have presented a method of reflection through reifylng
and reflecting messages. This is in sharp contrast with the
approach in the previous work, all of which involved the
notion of recta-objects: every object has a meta-object,
a meta-meta-object, . . . to form an infinite tower [M87b]
[WY88] [FB88] [F39].

5.1 C o n v e r t i n g f rom the m e t a - o b j e c t a p p r o a c h
to our a p p r o a c h

In the recta-object approach, a reflective operation is per-
formed either by sending a message to the meta-object of
the target object (actor) [WY88] [F89] or by temporarily
changing the recta-object to be a different one [M87b].

A program in ABCL/ l t [WY88] for sending a message
to the meta-object of an object can be translated as fol-
]OWS.

• In case of asking for a snapshot of e~ data compo-
nent of the evaluator (with messages such as :queue,
: s t a t e , or [: s c r i p t m]) , translate it into a pro-
gram for sending a non-freezing reifier to the object.

• Other messages that modify some data compo-
nent(s) of the evaluator (such as [: a d d - s c r i p t s]

or [: d e l e t e - s c r i p t m]), are translated into a pro-
gram which first sends a reifying message to the tar-
get object to get the data components (the quadru-
plet), modifies some of the components, and then
instMls them to the object by a reflector.

Programs in [M87b] and [M87a] which temporarily
change the recta-object to a different one can be con-
verted similarly. For the trace example, instead of chang-
lag the the recta-object of a program-object, the script
of an object can be temporarily modified as our example
in Section 4 .4 .

5.2 A r e m e t a - o b j e c t s necessa ry?

It is natural to wonder: Isn't tile meta-object tower nec-
essary to implement the reflective tower? The answer is
no.

In our model, when

(send <target-actor>
(make-reify-message :freeze? t

:cent <cent-actor>))

is executed, tile quadruplet is sent to the continuation
actor, which receives it and have access to the quadru-
plet. At this point, since the continuation actor's script is
manipulating the data structures of the (target actor's)
interpreter, the continuation actor's script can be seen
as running at the levdl of the (target actor's) interpreter.
Furthermore, if the data structures of this continuation
actor is reified and manipulated by another actor, then
that actor's script may be seen as running at an yet higher
level, the level of the (continuation actor's) interpreter,
and so on. TMs is how we have a reflective tower; no
actual recta-object tower is necessary.

Similarly in case of Lisp, no actual reflective tower is
created; no separate interpreter is created for each level,
but instead the same interpreter is reused with different
continuation taken from the meta-contlnuation, which is
a stream-like, virtually infinite llst of continuations.

This leads to the question: Isn't the recta-object
tower the counterpart of the meta-continuatlon stream,
then? The answer is again no. Each entry in the meta-
continuation stream represents "the context in which the
interpreter at each level is running". This information is
necessary in Lisp because there is a way of eziti~g from
within a reifier, which is to return to the toplevel loop of
the current level, instead reflecting to the original level
below. ~ Having no such e~iti~g mechanism, an actor lan-
guage does not require that kind of information contained
in a meta-continuation.

To sum up, in an actor system every object must have
an evaluator that specifies the behavior of the object,
and this evMuator can be seeu as the the meta-object of
the object. But it is not necessary that this evaluator
exist as a separate, genuine object, nor that these meta-
objects also have separate recta-objects (or evaluators)
associated with them. Instead of having a meta-object
tower, shlftlng-up levels can be done one step at a time,
as described above.

Our approach offers a more uniform interface for ac-
tors than the previous meta-object approach. In the

9See [WF86] [DM88] or [Tg0] for a description of this.

118

meta-object model, there are two kinds of objects: user-
defined objects and virtual meta-objects. User-defined
objects have interface defined by the user, whereas meta-
objects in the infinite tower on top of each user-defined
object have a different, pre-deflned interface (accepting
: add-sc r ip t , etc. in [WY88] or :handlel.isg in [F89]).
In our model, all actors have a uniform interface, in that
they all accept reifying and reflecting messages in addi-
tion to the user defined messages.

6 C o n c l u s i o n s

We have examined how reflection should be introduced
to an actor language, and presented a method using two
kinds of special messages: reifying and reflecting mes-
sages. We also introduced the notions of fi'eezing and
non-f, eezing reifiers. We showed that the full range of
reflective programming in an actor language is possible
without introducing meta-objects, and argued that our
approach provides a more uniform interface for actors
than the meta-object approach.

The meta-object concept may be useful when modeling
conceptual reflection [F88] or when building a reflective
architecture for an operating system [YTT89]. From the
work in this paper, however, we conclude that reification
and reflection can be introduced to an actor language
without introducing meta-objects. We are currently in-
vestigating further implications of the model based on
reifying and reflecting messages, which we hope to report
elsewhere.

A c k n o w l e d g e m e n t s

I would like to thank MAEDA Atusi for the discussions
in the early stage of this work, as well as Dr. Tsu-
tomu I<AMIMURA and Dr. Christian QUEINNEC for
the helpful comments. I would also like to thank nay
managers and colleagues at IBM Tokyo Research Labo-
ratory for support and encouragement.

References

[A86] Agha, Gul A. Actors: A Model of Concurrent
Computation in Distributed Systems. The MIT Press,
1986.

[B88] Bawden, A. Reification without Evaluation. In
Proceedings of the 1988 ACM Confe~ence on Lisp and
Functional Programming. 1988, pp. 342-351.

[DM88] Danvy, O., and Malmkjaer, K. Intensions and
Extensions in a Reflective Tower. In Proceedings of
the 1988 ACM Conference on Lisp and Functional
P,vgramming. 1988, pp. 327-341.

[FB88] Ferber, J., and Briot J-P. Design of a Concurrent
Language for Distributed Artificial Intelligence. In
Proceedings of the International Conference on Fifth
Generation Computer Systems. 1988, pp. 755-762.

[F88] Ferber, J. ConceptuM reflection and actor lan-
guages. In P. Maes, D. Nardi, ed. Meta-Level Archi-
tectures and Reflection. 1988, pp. 177-193.

[F89] Ferber, J. Computational Reflection in Class based
Object Oriented Languages. In OOPSLA "89 Proceed-
ings. 1989, pp. 317-326.

[FJ89] Foote, B., and Johnson, R.E. Reflective Facilities
in SmalltMk-80. In OOPSLA '89 Proceedings. 1989,
pp. 327-335.

[FW84] Friedman, D.P., and Wand, M. Relflcatlon: Re-
flection without Metaphysics. In Proceedings of the
1984 ACM Confe1~ence on Lisp and Functional Pro-
gramming. 1984, pp. 348-355.

[H77] Hewltt, C.E. Viewing control structures as pat-
terns of passing messages. Journal of Artificial In-
telligence. Vol. 8, No. 3, June 1977, pp. 323-364.

[IC88] IbrMlim, M.H. and Cummins, F.A. KSL: A Re-
flective Object-Oriented Programming Language. In
Proceedings of the IEEE International ConfeT~ence on
Computer Languages. 1988, pp. 186-193.

[M87a] Maes, P. Computational Reflection. TechnicM Re-
port 87-2, Vrlje Universiteit, 1987.

[M87b] Maes, P. Concepts and Experiments in Computa-
tionM Reflection. In OOPSLA '87 Proceedings. 1987,
pp. 147-155.

[$82] Smith, B.C. Reflection and Semantics in a Proce-
dural Language. MIT/LCS/TR-272, MIT, 1982.

[$84] Smith, B.C. Reflection and Semantics in Lisp. In
PTvceedings of the 11th A CM Symposium on Princi-
ples of Programming Languages. 1984, pp. 23-35.

[T89] Tanaka T. A Stack Representation of Continua-
tions in a Reflective Lisp lnterpTeter. TRL Research
Report RT-0024, 1989.

[T90] Tanaka T. "Jumpy" and "Pushy" c a l l / c c . SIG-
PLAN Lisp Pointers. ACM, Vol. 3, No. 1, March
1990, pp. 3-4.

[WF86] Wand, M., and Friedman, D.P. The Mystery of
the Tower Revealed: A Non-Reflective Description
of the Reflective Tower. In Proceedings of the 1986
ACM Co77ference on Lisp and Functional Program-
ruing. 1986, pp. 298-307.

[WY88] Watanabe, T., and Yonezawa, A. Reflection in a
Object-Oriented Concurrent Language. In OOPSLA
'88 Plvceedings. 1988, pp. 306-315.

[WY89] Watanabe, T., and Yonezawa, A. A Concurrent
Reflective Computation Model Based on ACTOR
Paradigm. In IEICE TechnicM Report (COMP-89-
97). Institute of Electronics, Information and Com-
munication Engineers. 1989, pp. 77-86 (in Japanese).

[YTT89] Yokote, Y., Teraoka, F., and Tokoro, M. A
Reflective Architecture for an Object-Oriented Dis-
tributed Operating System. In Prec. ECOOP '89.
1989.

First version submitted for publication: 1 March 1990
Revised: 1 August 1990; 8 December 1990

119

