
A Concurrent  Object -Oriented Framework for the S i m u l a t i o n  of 
Neural  N e t w o r k s  

A. Weitzenfeld and M.A. Arbib 
Center for Neural Engineering 

University of Southern California 
Los Angeles, CA 90089-2520 

alfredo@rana.usc.edu and arbib@pollux.usc.edu 

Extended Abstract  

This paper discusses the issues in simulating neural networks using an object-oriented concurrent 
programming framework, based on our experience in developing two generations of the NSL (Neural 
Simulation Language) simulation system. The second generation simulation system, NSL 2.0, was 
designed and implemented utilizing object-oriented programming concepts. We close with future design 
and implementation directions. 

Neural Networks as Concurrent Obiect-Oriented Structures 

Our group has approached brain modeling and neural engineering at two levels, a top-down 
functional analysis in terms of computing agents called schemas, and a bottom-up analysis of how 
interacting schemas may be implemented in neural networks [Arbib 198.1, 1987]. We have developed 
programming languages for both schemas [Lyons and Arbib 1989] and for neural networks [Weitzenfeld 
1989, 1990]. In developing a unified environment for schemas and neural networks, we have noted a 
convergence of schema theory with recent work in object-oriented concurrent programming [e.g., Agha 
1986, Agha and Hewitt 1987, Yonezawa et al. 1987], and have also found a great similarity between the 
requirements of neural network simulation and object-oriented programming. It is the latter theme that 
we emphasize in the present article. We start by describing neural network concepts in terms of such 
concepts of object-oriented concurrent languages as objects, instantiation, inheritance, message-passing, 
and concurrency. 
1) Neurons are self-contained objects. 
2) In creating a neural model, neurons are instantiated from a uniform and basic class structure. 
3) Neural  networks are described as a hierarchy of modular  objects where  higher level structures 
inherit the characteristics of lower level ones. 
4) Communication among neurons is a form of message passing. 
5) Neural networks are by nature concurrent processes. 

Other  requirements  that we have tried to achieve with the incorporation of object-oriented 
programming are the following: 
6) Models should be easy to describe. 
7) The language should be able to describe neural network models in any application area. 
8) The language should be as general as possible, and should not enforce a particular level of internal 
neural  detail. 
9) The model should be as independent  as possible from a particular numerical analysis technique or 
learning algorithm. 

Neural Network Simulation 

A neural network is, in our abstraction, a set of simple concurrently processing units (neurons), 
connected in a particular topology, sending small amounts of information to other units along each 
(directed) connection. Therefore, a model description includes (1) declarations of the units in the model, 
(2) connections between the units, and (3) descriptions of inputs external to the network. 

120 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F127070.127098&domain=pdf&date_stamp=1991-04-01


A neuron may receive input from many different neurons, while it has only a single output. We will 
focus on neurons whose internal state is described by a single scalar quantity, its membrane potential m, 
whose time course T m is described by a differential equation 

din(t) 
~'m d t = f(Sm'm't) 

depending on its input vector Sm. The choice o f f  defines the particular neural model utilized, including 
the dependence of m on the neuron's previous history. 

The firing rate or output  of the neuron, M, is obtained by applying some "threshold function" to the 
neuron's membrane potential, 

M(t) = o(m(t)) 
where cr is usually a non-linear sigmoid saturation function. 

When building neural networks, the output of a neuron serves as input to other neurons. Links among 
neurons carry a connection weight which describes how neurons affect each other. Links are called 
excitatory or inhibitory depending on whether the weight is positive or negative. The most common 
formula for the input to a neuron is 

n 

wi Mi(t)  

i = 1  
where Mi(t) is the firing rate of the neuron whose output is connected to the i th input line to the neuron, 
and w i is the weight on that link. 

It is important to realize that neurons may be modelled with different levels of detail, from the 
sophisticated biophysical models  to simple binary models where the neuron is either on or off at each 
time step. Thus neurons are best suited to be treated as objects whose internal details are completely 
hidden away from the rest of the network. 

A neural network can also be treated as a whole, as one single object, which may communicate 
externally through input and output  ports. The neural network internal connectivity is completely 
hidden away. By putting together neurons we have shown how neural networks are built. Neural 
networks can themselves be inter-connected in a hierarchical way,  creating higher level structures 
known as neural  ne twork  assemblages. These assemblages  have the p o w e r  to per form very 
sophisticated tasks while keeping a modular  design. 

Different languages have been written for the simulation of neural networks,  with different 
modelling capabilities, and for different application areas [Goddard et al. 1987, Paik and Skrzypek 
1987, Teeters 1989, Wilson et al. 1989, Wang and Hsu 1990]. In our particular simulation language, NSL 
[Weitzenfeld 1989, 1990], we describe neural connectivity in the form of mathematical equations, where 
the assignment operator is utilized to describe connectivity in the network. 

Layers and Masks 

As part of our modelling primitives, we have extended the basic neuron abstraction into neuron 
layers and connection masks, describing spatial arrangements among neurons and their connections, 
respectively. The reason for defining such abstractions is that, in the brain as well as in many neural 
engineering applications, we often find neural networks structured into two-dimensional layers, with 
regular connection patterns between various layers. 

The computational advantage of introducing such concepts when describing a neural network is that 
neural layers and interconnection masks can then be concisely described as higher level data structures. 
Instead of describing neurons on a one by one basis, a layer can be described as an array and, similarly, 
the connections between layers can be described by a mask storing synaptic weights. An interconnection 
among neurons would then be processed by computing a spatial convolution of a mask and a layer. For 
example, if A represents an array of outputs  from one layer of neurons, and B represents the array of 
inputs to another layer, and if the mask W(k,I) (for -d_~k,l_~d) represents the synaptic weight from the 
A(i+k,j+l) (for -d_~k,l_~d) elements to B(i,j) element for each i and j, we then have 

121 



d d 

k=-d l=-d 
which can be expressed by the single array operation of convolution 

B = W , A  

giving greater computing power to a simple descriptive expression. 

Numerical Methods 

Up until now we have left out the internal neural model detail. One widely used neuron model is 
the 'leaky integrator', whose membrane potential is described by the following differential equation 

din(t)  
~:rn d t - - m(t)  + Sm(t)  

where Sm( t )  incorporates the input from all the other cells, and ~m is the time constant. The overall 
dynamics will depend upon the actual choice of excitatory and inhibitory weights in each Sin(t) and of 
the time constants. 

While different numerical methods may be used to solve a particular neuron model, the neural 
network architecture and connection weights should not have to change depending on this. For this 
reason we treat numerical methods as orthogonal  object classes totally independent from network 
specification. A numerical method is instantiated only after the neural network has been completely 
described. Different numerical methods keep on evolving and they may be more appropriate according 
to the sophistication of the model and the processing power of the computing machine. 

A common characteristic of the various neuron models, and the corresponding numerical methods 
describing them, is that they are processed as cont inuous  time systems, but with the estimate of the 
state of each neuron updated at constant time steps At. This gives rise to synchronous message passing as 
means of communication among neurons. 

As an example consider two different methods, the 'Euler' method and 'interpolation' method, for 
solving the previous differential equation. The 'Euler' method replaces the differential equation by 

At 
m(t+at )  = (1 - zl__t_) m(t)  + Sm( t )  

• m Tm 
where At is the integration time step, while the 'interpolation' method replaces the differential 
equation by 

m( t+a t )  = (p) m(t) + (1 - p) S in( t )  
- z ~ t / ~ :  where p = e 

Learning Methods 

An important part of neural network modelling is to be able to introduce learning in a model. There 
are many different learning algorithms commonly utilized in neural network simulation, the most 
popular being back propagation [Rumelhart, Hinton, and Williams, 1986]. This learning algorithm is 
not  biological and thus differentiates biological modelling, which is primarily concerned with 
modelling the brain in a faithful way, from the study of artificial neural networks, otherwise known as 
connectionism or neural engineering, where the main concern is in applying neural network computing 
techniques to varied technological applications. Artificial neural networks take advantage of newly 
developed neural learning algorithms to approach problem domains where traditional programming 
approaches may not have been very successful. 

Similarly to numerical methods, learning rules are treated as or thogonal  object classes where 
learning is abstracted away from the network description. The reason being that learning methods also 
keep on evolving. Moreover, different learning rules may be more appropriate for different kinds of 
applications, and so it is valuable to be able to readily change the learning algorithm while exploring 
the applicability of a given network architecture. 

122 



NSL: Neural Simulation Language 
v v 

The first simulator, NSL 1.0 [Weitzenfeld 1989], has been extensively used in our research 
laboratory, and by students taking the brain theory course given at USC. Experience with this work has 
prompted us to develop NSL 2.0 [Weitzenfeld 1990] following an object-oriented design. While NSL 1.0 
is implemented using C [Kernighan and Ritchie 1978], NSL 2.0 is implemented using C++ [Stroustrup 
1987]. 

The functionality of the simulator is basically the same in the two versions. The most important 
modification has been the change in the conceptual description of neural networks language elements, 
and the incorporation of classes of numerical  methods and learning methods,  while the simple 
objectization of the original design has given the system a much cleaner implementation. 

A common characteristic of the two implementations, is that concurrency is simulated by updating 
layers in the network only when the entire network has been completely processed after each time 
cycle. This way during an entire processing cycle only previous layer values will be utilized; the newly 
computed ones will then be used during the next processing cycle. 

Other aspects of the NSL system, such as interfaces and graphics, are also implemented following 
the object-oriented design. 

Data Structures 

LAYER - The layer is an abstract super-class. 
DATA_LAYER - Data layers are layer derived classes which may have several dimensions. 
INPUT_LAYER - External network input is managed by a special input layer class derived from the 

layer super class. 
NEURON_LAYER - A neuron layer is derived using the basic layer classes. The purpose of this 

class is to hide away the details for specific neural circuitry. 
MODULE - Modules group together the different layer equations. The user can control which 

modules are to be active at every time, while distributing the tasks performed in the network. 
NETWORK - This object class is at the top of the conceptual neural network hierarchy. The model 

class identifies a particular neural  network, made up of a list of layers and modules  describing a 
particular inter-connection topology. 

Numerical methods 

All numerical methods are treated as orthogonal object classes to be instantiated at run time. Thus, 
a model may be run using varied numerical methods without need for re-compilation. Moreover, the 
syntax accommodates any differential equation 

din(t) 
~m d t = flSm'm't)  

for updating the membrane potential, and not just the leaky integrator form, using the syntax 
diff.eq(m,tm) = f (Sm,m,t) 

with the details on the numerical method completely hidden. Here, m is the layer name, tm (for Zm) 
is the time constant, diff.eq() applies the appropriate integration method, and S m specifies the input 
to the layer. 

Learning methods 

Similarly to numerical methods, NSL incorporates learning rules as object classes to be instantiated 
at run time. A model may be run with different learning rules without re-compilation. The user specifies 
the network architecture, and includes a general 'learn' call for the respective weight matrices to be 
learned,  

learn(Wab,A,B)  

123 



r,, 

where Wab is the weight matrix to learned, A and B are the interconnected layers, for some chosen 
rate of learning. 

Discussion 

As part of our ongoing research, our next goal is to fully distribute the system both in terms of 
processing and graphics. The system will be run in a distributed heterogeneous environment, where 
graphics processes will reside on a graphics engine, and neural network processing will take advantage 
of massively parallel hardware specially designed for that kind of processing. Independent neural 
network modules may be running on different machines while at the same time they may communicate 
with each other. An important research aspect in linking together different neural models is to define 
what kind of communication is best suited and how to maximize both processing and communication 
performance in such a distributed environment. 

References 

Agha, G., 1986, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press. 
Agha, G., and Hewitt, C., 1987, Concurrent Programming using Actors, Yonezawa, A., Tokoro M. (Eds), 

Object-Oriented Concurrent Programming, MIT Press. 
Arbib, M.A., 1981, Perceptual structures and distributed motor control. In Handbook of Physiology 

The Nervous System II. Motor Control (V.B. Brooks, Ed.), Bethesda, MD: Amer. Physiological 
Society., pp. 1449-1480. 

Arbib, M.A., 1987, Levels of modeling of mechanisms of visually guided behavior (with commentaries 
and author's response), The Behavioral and Brain Sciences, 10:407-465. 

Arbib, M.A., 1989,The Metaphorical Brain 2: Neural Networks and Beyond, Wiley. 
Goddard, N., Lynne, K.J., Mintz, T., 1987, Rochester Connectionist Simulator, (User's Manual), 

University of Rochester, Department of Computer Science. 
Kernighan, B.W., and Ritchie, D.M., 1978, The C Programming Language, Prentice-Hall. 
Lyons, M.A., and Arbib, M.A., 1989, A Formal Model of Computation for Sensory-Based Robotics, IEEE 

Trans. on Robotics and Automation, 5:280-293. 
Paik, E., and Skrzypek, J., 1987, SFINX: Neural Network Simulation Environment, (Technical Report), 

Department of Computer Science, University of California at Los Angeles. 
Rumelhart, D.E., Hinton, G.E., and Williams, R.J., 1986, Learning Internal Representations by Error 

Propagation, in Parallel Distributed Processing: Explorations in the Microstructure of Cognition 
(Rumelhart, D., and McClelland, J., Eds.), The MIT Press/Bradford Books, Vo1.1:318-362. 

Stroustrup, B., 1987, The C++ Programming Language, Addison-Wesley. 
Teeters, J., 1989, A Simulation System for Neural Networks and Model for the Anuran Retina, TR 89-01 

(PhD Thesis), Center for Neural Engineering, University of Southern Califronia. 
Wang, D., and Hsu, C., 1989, SLONN: A Simulation Language for modeling Of Neural Networks, 

Simulation, Vol. 55:69-83. 
Weitzenfeld, A., 1989, NSL, Neural Simulation Language, Version 1.0, TR 89-02, Center for Neural 

Engineering, University of Southern California. 
Weitzenfeld, A., 1990, NSL, Neural Simulation Language, Version 2.0, TR 90-01, Center for Neural 

Engineering, University of Southern California. 
Wilson, M.A., Bhalla, U.S., Uhley, J.D., Bower, J.M., 1989, GENESIS: A System for Simulating Neural 

Networks, in Advances in Neural Network Information Processing System (Touretzky, Eds.), 
Morgan Kauffman. 

Yonezawa, A. and Tokoro, M., Eds., 1987, Object-oriented concurrent programming, The MIT Press. 

124 


