
A C M S I G S O F T S O F T W A R E E N G I N E E R I N G NOTES vol 16 no 3 Ju l 1991 Page 52

S-R Machines: A Visual Formalism for Reactive and Inter-
active Systems

George W.Cherry
Thought**Tools, Inc.
5151 Emerson Road

Canandaigua, NY 14425
1-716-396-2233

Introduction. Engineers face many problems when de-
veloping realtime (reactive) systems. Some of these prob-
lems are caused by flawed notations. One example of a
problematical (but widely used) notation is State Transition
Diagrams. Most realtime methods, whether object-oriented
or not, use State Transition Diagrams to describe realtime
behavior. Cherry [1] and Harel [2] have described the short-
comings of State Transition Diagrams. Harers Statecharts
and our Stimulus-Response (S-R) Machines are new visual
formalisms claiming to solve the problems of State Transi-
tion Diagrams.

This note describes S-R machines, the newest notation.
The semantics of S-R Machines are derived strictly from
Concurrent C++ and Ada. By means of a case study, this
note describes some of the advantages of S-R Machines
over State Transition Diagrams.

A Toy Vending Machine (State Transition Dia-
gram). Figure 1 :is the State Transition Diagram for a toy
vending machine. It's adapted from a respected Computer
Science textbook [4]. Its octagonal blobs represent states; its
arrows represent state transitions. (Some authors use other
shapes for states.) The blobs (states) give the machine suffi-
cient memory to emit the right responses. The state transi-
tion labels have the format "Stimulus [Response"
("gum_request [dispense_gum" is an example) to represent
stimuli to and responses from the machine. In general, a
stimulus on an State Transition Diagram causes a change of
state and a response. However, the response may be absent;
for example, a nickel stimulus in the 10¢ state causes a tran-
sition to the 15¢ state, but no overt response.

There's much to criticize about the ergonomics, real-
ism, and maintainability of this machine: there's no change
retum request nor state (sum) display; the price of the con-
fections is absurdly low (and difficult to modify); the ma-
chine doesn't accept quarters; and the diagram doesn't ex-
plain what happens if a customer deposits a nickel or dime
in the 20¢ state. Why do the authors of [4] "toy" with the
vending machine problem? (I believe the answer is: an er-
gonomic, realistic vending machine would require over 100
blobs and 500 arrows! See below.)

A Realistic Vending Machine (S-R Machine). S-R
Machines may be viewed as "black boxes" (their expected
external behavior); "state machines" (their internal partitions
that map stimulus/state pairs into responses and new states);
and "clear boxes" (their state machines' internal mecha-
nisms). The quoted terminology is due to Mills et al [3].
Figures 2-6 are an S-R Vending Machine broken down
along these views. Figure 2 is the black-box view; we call it
the interface. Figure 3 contains the state machines view; it
decomposes the S-R Machine into three state machines: one
for "any state"; one for {sum >= gum_price}; and another
for {sum >= candy_price}. Figures 4-6 are the clear boxes
for the three state machines, i.e., their bodies or internal
logic. We call Figures 3-6 the S-R Machine bodv. It is box
structured and (in CASE tools) hypergraphically iinked.

For our syntax in this case study, we have chos~m Ada.
(We could have chosen Concurrent C.)

Figure 2 gives the syntactic interface and the expected
external behavior of the Vending Machine. We've imple-
mented it as an Ada task with six interrupt invoked entries.
The stimulus-response patterns (traces) describe the ex-
pected external behavior (semantics) of the machine.

Each one of Figures 3-6 is the inside of an abstraction.
Start reading any of these figures at its root node, the cross-
hatched body icon.

The 1st act of the Vending Machine (Figure 3) is to
elaborate the declarations of its two constants and its state
variable, sum. Its second act is to execute its loop (named
"events"). The loop repeatedly (1) executes its selective wait
statement and (2) updates its display of sum. (Because each
select alternative must conclude by updating sum, we have
"bottom-factored" this operation from the three select alter-
natives.)

We have used an elegant principle for decomposing the
Vending Machine into three subordinate state machines, a
particular eouivalence relation on its set of stimuli, {nickel,
dime, quarter, change request, gum request, candy request}:
"is selected in the same set of states as". An equivalence re-
lation partitions a set into a set of subsets with the character-
istics that the subsets are disjoint, no subset is empty, and
their union is the whole set (so that every stimulus is a
member of one and only one subset). The interesting fact
about this kind of partition is that I programmed-for clarity-
dozens of S-R Machines in several problem domains-and in
every case I unwittingly used this equivalence relation to
partition the S-R Machines into maintainable lower-level
state machines. Now that I've perceived the mathematical
pattern of these many decompositions, I proceed to good de-
compositions faster.

The semantics of the select statement are strictly Con-
current C and Ada. When control reaches the select state-
ment, it evaluates all its guards. If a guard is true, than the
select alternative is open. Next, the select statement checks
whether a stimulus is pending for an open select alterative.
If so, the select statement accepts the stimulus and performs
the associated actions; if not, it nonbusily waits for a stimu-
lus to any open select alternative. Note that the select state-
ment waits nondeterministically for a stimulus; this is an
especially useful mechanism for event-driven (reactive)
systems.

Note the guards on Figure 3. They are computed sets of
states (for example: {sum >= gum_price}). Notice the
textboxes on Figures 4-6. The state variable transitions are
effected by computations and assignment statements (for
example: sum := sum - gum_price). (Since Computer
Science is the Science of Computing, wouldn't it be better to
teach students a comoutational mechanism like S-R Ma-
chines-rather than the unsystematic, noncomputational
mechanism of STDs, which, like the abacus, should have
only historical interest?)

How to avoid blob and arrow explosion. To even at-
tempt drawing a realistic State Transition Diagram, we must
limit its number of states (values of sum), and then provide
some mechanism to block coin inputs which could make
sum larger than the biggest and last state. We'll assume
some mechanism that prevents the customer driving sum
above $5.00. Still, the news is bad:

The State Transition Diagram must have 101 blobs for
the states: 0¢, 5¢, 10¢, 15¢ 495¢, 500¢.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F127099.127105&domain=pdf&date_stamp=1991-07-01

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 16 no 3 Jul 1991 Page 53

I gum_request I dispense.._9~..~...~

dime

..~}-- nickel ,---ID.i~-5~C--~m nickel - - ~ ' { ~ } - " nickel "--D'L 15¢ J'-- nickel - - I ~

i~e I °iTe candy_request I dispense_candy_ d

Figure 1. Finite State Toy Vending Machine (State Transition Diagram)

coin ~ f
, (/ i gum_request ' ~ 1

Stimufi ~ ~ c a n d y request
change request

task declaration I

task

Vending
Machine

] sum display ~ 1 ~ , ~

cgaUn~ v Responses I
change ~ l ~ ' / , , J

task Vending_Machine is
-- The following six entries are called by interrupts.
entry nickel; entry dime; entry quarter; -- coin entries
entry gum_request;
entry candy_request;
entry changerequest;

end;

I sample stimulus-response patterns for gum. price = 25¢, candy_price = 50¢ I
<0.0, quarter, 0.25, quarter, 0.50, quarter, 0.75, quarter, 1.00, quarter, 1.25, gum_request, gum, 1.00>
<0.0, dime, 0.1 O, nickel, 0.15, nickel, 0.20, gumrequest, null, coin_return_request, change(O.20), 0.0>
<0.0, nickel, 0.5, dime, 0.15, quarter, 0.40, candy_request, null, dime, 0.50, candy_request, candy, 0.0>

Figure 2. Stimulus-Response Vending Machine Interface

sum • Natural := O;
gum. price : constant'=25;
candy_price : constant : = 50;

r task

I ~ Machine

body icon

a select alter- selective execution order number 2~ textbox
native(s) box wait statement

.he. I I .he. ,
every state sum >= gum_price sum >= candy_pric~. I

ch e candy
c 7e r r t reqiest II r

Figure 3. Stimulus-Response Vending Machine Body (page I of 4)

j [output
(display, sum);

when I I
s u m

display

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 16 no 3 Jul 1991 Page 54

the select alter-
native(s) body

. I ac(

- , ~ coin.nickel~ nk

I

r

~pt I
'el I
f

s u m :=
sum + 5;

l when /
V///,~ ew 'y sl ateE/I///x/"'/""~/<//"~'~

accept
c o i n . q u a r t e r l quader

accept statement

sum := l sum + 25;

__J acce0' I
- - co,n.0,me - - q ,mo I

sum :=
sum + 10;

accept I
change I~,,ichange_request i
request I

output(change, sum);
sum := 0; i change

Figure 4. Stimulus-Response Vending Machine Body (page 2 of 4)

I when I

[~ sum >= gumDrice~,~.::l
z z • • • / /X -2~X~ z

i gum_request
accept

g u m
request

g u m H sum := sum - gum price; ~ l I
output(gum); ~ . . .

Figure 5. Stimulus-Response Vending Machine Body (page 3 of 4)

Next Function
Out Function

/ when /
V/~z~.7//zx////////;/////'4 Rsum >= candy.price f.l [~ , .&..7///.(.(~|

1
~ accept

i candyrequest candy
request

. , ~ candy i i . l sum := sum - candy_price;]
output(candy);

Figure 6. Stimulus-Response Vending Machine Body (page 4 of 4)

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 16 no 3 Jul 1991 Page 55

The State Transition Diagram must have (assuming
gum is 25¢ and candy is 50¢):

100 arrows for state transitions caused by nickel inputs;
99 arrows for state transitions caused by dime inputs;
96 arrows for state transitions caused by quarter inputs;

101 arrows for state transitions caused by coin return re-
quests;

96 arrows for state transitions caused by gum requests;
91 arrows for state transitions caused by candy requests;

for a total of 583 arrows! This STD cannot be drawn on
a 8.5 by 11 inch page; nor can it be partitioned.

The Stimulus-Response (S-R) Machine has about 25
blobs and less than 50 arrows.

But the S-R Machine has (assuming Natural'last =
32765) 6,553 states!

To change the price of gum to 30¢ and the price of
candy to 75¢ necessitates deleting many arrows and moving
hundreds of arrows.

Of course, you can always avoid blob and arrow explo-
sion by using S-R Machines. (And to make the same price-
changes on the S-R Machine requires changing only 4 char-
acters on page 1 of the Vending Machine's body.

References
1. Cherry, George. W. Software Construction by Object-

Oriented Pictures: Specifying Reactive and Interactive
Systems. Thought**Tools, Canadaigua, N.Y. 1990.
[This book describes the SCOOP-3 rM method, includ-
ing S-R Machines (also called Abstract State Ma-
chines). You may order it from Dorset House by calling
1-800-342-6657.]

ruSCOOP-3 is a trademark of Thought**Tools, Inc.
2. Harel, D. "On Visual Formalisms", Communications of

the ACM, May, 1988, 514-530. [Harers criticisms of
State Transition Diagrams led to his Statecharts and our
S-R Machines.]

3. Mills, H.D., Linger, R.C., and Hevner, A.R. "Box-
Structured information systems". In Software State-of-
the-Art: Selected Papers, T. DeMarco, and T. Lister
Eds. Dorset House Publishing, New York, N.Y. 1990,
322-339. [You may order this book from 1-800-342-
6657]

4. Wulf, W. A., Shaw, M., and Hilfinger, P. N, and Flon,
L. Fundamental Structures of Computer Science. Addi-
son-Wesley, Reading, Massachusetts, 1981.

Appendix: Ada Source Code

task body Vending_Machine is
sum : Natural := 0;
gum__price : constant := 25;
candy_price : constant := 50;

begin
events: loop

select
accept nickel do

sum
end;

or

accept
sum

end;
or

a c c e p t
sum

end;
or

or

:= sum + 5;

dime do
:= sum + i0;

quarter do
:= sum + 25;

accept change_request do
output(change, sum);
sum := 0;

end;

or

when sum >= gum_price =>
accept gum_request do

sum := sum - gum_price;
output(gum);

end;

when sum >= candy_price =>
accept candy_request do

sum := sum - candy__price;
output(candy);

end;
end select;
output(display,

end loop;
end Vending_Machine;

sum)

