
ecure File System Versioning at the
Block Level

by

Jacob Taylor Wires

B . S c , The University of California at Santa Barbara, 2004

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L M E N T O F
T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

September, 2006

© Jacob Taylor Wires 2006

Abstract

Information is capital; disk space is a mere commodity. Versioning file sys
tems offer an appealing storage model that prevents users from uninten
tionally deleting or overwriting important data by transparently retaining
old versions. However, improving storage reliability by adding versioning to
a file system is problematic in two important ways. First, the complexity
of file systems and the operating systems in which they reside leaves data
vulnerable to bugs and viruses, even when versioning is added. Second, the
mission-critical nature of file systems makes users and OS vendors justifiably
hesitant to adopt new file system features like versioning, regardless of the
potential benefits they might provide.

This thesis presents VDisk, a block layer system capable of providing
file-grain versioning to existing, unmodified file systems. VDisk features a
novel division of labor to enhance security and reliability. Write-access to
versioned data is restricted to two very simple, reliable, file system agnostic
components: a block logger and a log cleaner. These crucial components
are isolated in a virtual machine, where they are protected from the errors
and attacks that plague operating systems. More complicated, untrusted,
read-only utilities operate in user space. These utilities, which are free to use
sophisticated, off-the-shelf tools not appropriate for trusted kernels, support
version browsing and reconstruction without degrading system reliability.

VDisk employs a policy-driven approach to block reclamation. A reten
tion policy specifies a set of constraints that describe which file versions must
be retained and which need not be. A user-space tool periodically invokes
the secure cleaner by submitting a set of delete requests along with a proof
that these requests satisfy the retention policy. The secure cleaner verifies
the proof and reclaims the specified blocks if applicable. Experimental re
sults show that the cleaner is capable of reclaiming more than 80% of logged
data.

Table of Contents

Abstract ' • • "

Table of Contents i i i

List of Tables v i

List of Figures vii

Acknowledgements v i i i

1 Introduction 1
1.1 Mot i va t i on • 1
1.2 D a t a Vers ioning ^ 2
1.3 Secure Logg ing 3

2 Related Work 7
2.1 Snapshot Ut i l i t i es 7
2.2 Vers ion ing F i l e Systems • • 9
2.3 B lock Logs 11
2.4 Gray-Box Systems 13
2.5 System Logs 14
2.6 Trusted C o m p u t i n g 15
2.7 S u m m a r y 17

3 Secure Versioning 18
3.1 T h e Ideal Vers ioning System 18
3.2 E x i s t i n g Systems 19

3.2.1 Fi le-Level Vers ioning Systems 20
3.2.2 B lock-Level Vers ioning Systems 21

3.3 Summary 22

i i i

Table of Contents

4 Design 24
4.1 Version Preservation . 24

4.1.1 Log Isolation • • 25
4.1.2 Optimizations 26

4.2 Version Browsing . 28
4.2.1 User-Space Tools 28
4.2.2 VDisk Metadata Database 29
4.2.3 File Reconstruction 29

4.3 Version Pruning 34
4.3.1 Deletion Proofs 35
4.3.2 Retention Policies 37
4.3.3 Security Issues 42

4.4 Summary 45

5 Algorithm Details 46
5.1 Notation and Definitions . . . 46
5.2 File Reconstruction 48

5.2.1 Ordered Models 49
5.2.2 Writeback Models . . .- 49

5.3 Log Cleaning 51
5.3.1 Keep Safe 51
5.3.2 Keep Landmarks 52
5.3.3 Keep Milestones 52

6 Implementation 55
6.1 The Logger 55

6.1.1 The Linux Block Layer 55
6.1.2 The VDisk Device 56

6.2 The Reconstruction Utility 59
6.2.1 The ext2 and ext3 File Systems 59
6.2.2 The Reconstruction Algorithm 60

6.3 The Cleaner 61
6.3.1 The Segment Analyzer 61
6.3.2 The Secure Cleaner 62

7 Evaluation 64
7.1 Temporal Overhead 64

7.1.1 Bonnie++ 65
7.1.2 PostMark '67
7.1.3 Discussion 67

Table of Contents

7.2 Spatial Overhead ; 70
7.2.1 Log Growth 70
7.2.2 Content Hashing 72
7.2.3 Block Reclamation • • 74

7.3 File Reconstruction 77
7.3.1 General Performance Characteristics 78
7.3.2 Specific Performance Profiling 79

7.4 Summary 81

8 Future Work and Conclusion 83
8.1 Future Work 83

8.1.1 Block Delta-Chaining . 83
8.1.2 Templated Retention Policies • 83
8.1.3 Version Content Indexing 84

8.2 Conclusion 84

Bibliography 86

List of Tables

3.1 Comparison of Versioning System Attributes 23

7.1 The Most Frequently Written Block Addresses 72

vi

List of Figures

4.1 Inode Block Example . . : 41

4.2 Block Version Timeline 43

6.1 The VDisk Device 56

7.1 Bonnie++ Benchmark Results 66
7.2 PostMark: Time ' 68
7.3 PostMark: Throughput 68
7.4 Total Log Growth 71
7.5 Log Growth Per User 71
7.6 Versions Per Block Address 73
7.7 Effect of Content Hashing on Log Growth 73
7.8 Block Lifetimes 75
7.9 Version Cleaning 76
7.10 Log Growth With Cleaning 78
7.11 Path Resolution 80
7.12 File Reconstruction 81

vii

Acknowledgements

Many thanks to Mike Feeley and Norm Hutchinson. Thanks also to Ab-
hishek Gupta, Kan Cai, Cuong Le, Andre Lifchits, and the DSG lab.

Chapter 1

Introduction

1.1 Motivation
Computers have become repositories for a variety of information, including
business records, intellectual property, and sentimental keepsakes. Some of
this information has direct financial value; some of it is invaluable; all of
it is entrusted to computers, which must store it securely and dependably.
Computers are quickly becoming an integral component of every aspect of
our lives, but they are only truly useful insofar as we can trust them to
operate correctly. Storage subsystems, which are responsible for ensuring
data persistence, have thus become one of the most crucial components of
computing environments.

Advances in hardware technology have resulted in storage systems with
capacities commensurate to the value of the data they are meant to retain.
Hard drives have become so affordable and so capacious that in many cases
they can take the place of slower, more cumbersome tertiary storage devices
such as magnetic tape drives. This surplus of disk space has introduced new
opportunities for improving storage reliability—and increased the complex
ities of doing so: modern storage systems must now be capable of scaling to
immense proportions and supporting large numbers of users.

The complexities involved in providing reliable storage on a vast scale
have become onerous to system administrators. While the cost of hard
drives has decreased significantly in the past years, the cost of storage ad
ministration has not. In fact, the cost of administration has been estimated
to exceed the price of storage hardware by several hundred percent [19].
Increased system administration is undesirable not only because it increases
costs, but also because it increases the potential for human error, thereby
reducing system reliability.

Modern hardware is no longer the primary cause of data loss; recent
studies impute 60% to 80% of data loss to human error, software defects,
virus attacks, power failures and site failures [63]. The users themselves can
constitute a surprisingly hazardous threat to data: in addition to erroneously
deleting important files, users may intentionally modify a file one day only to

1

Chapter 1. Introduction

find themselves desperate for the or ig inal version a week later. A dependable
storage system charged wi th . the task of protect ing da ta from a l l dangers is
thus charged w i t h the task of protect ing users from themselves.

D a t a is valuable, disk space is cheap, adminis t ra t ive complexit ies are
burdensome, and users are fall ible. These trends suggest the need for a new
mode l of da ta storage; a na tu ra l design response is to provide l ibera l undo
capabil i t ies by t ransparent ly increasing da ta redundancy at the expense of
increased storage requirements.

1.2 Data Versioning

Vers ioning ut i l i t ies use the abundance of storage capaci ty available to m o d
ern machines to preserve mul t ip le versions of impor tan t da ta . Vers ion ing
is a general service that can be provided by a number of entities, i nc lud
ing user-space applicat ions, v i r t u a l and on-disk file systems, and block-level
drivers. T o be effective, a versioning u t i l i t y should operate t ransparent ly
and automatical ly , thereby reducing the potent ia l for human error. T o be
dependable, a. versioning u t i l i t y should be except ional ly s imple.

A number of versioning file systems [13, 23, 34, 39, 47, 53] have been
created to provide users w i t h a new mode l for da ta management. Vers ion ing
file systems main ta in mul t ip le versions of files: the current version is func
t iona l ly ident ical to conventional files, whi le older versions are immutab le
and often h idden du r ing no rma l operat ion. Users can browse a file's h is tory
and revert to an older copy at any t ime. M a n y vers ioning file systems also
provide ex t ra features, such as the ab i l i ty to s t ipulate per-file or per-file-
group retention policies [47] and the ab i l i ty to t ransparent ly compress o ld
versions [34].

Vers ioning file systems provide r ich functionali ty, bu t the in t r ins ic com
plexi ty of these systems significantly compromises their dependabil i ty . F i l e
systems export sophist icated interfaces and must suppor t paral le l , asyn
chronous interactions w i t h bo th appl ica t ion and block layer code. T h e file
system constitutes a fundamental component of most opera t ing systems; its
performance must be fine-tuned, wel l coordinated, and u t te r ly reliable to
ensure the integri ty of the system. Moreover , i t is except ional ly difficult, i f
not impossible , to verify the correctness of file system code w i t h formal au
d i t ing . E v e n ext3 [1], a mature file system renowned for i ts rel iabi l i ty , is not
flawless: mode l checking has been used to uncover five correctness errors i n
this file system, inc lud ing one that resulted i n permanent da t a loss [62]; i t is
l ikely that callow versioning file systems would require years of wide-spread

2

Chapter 1. Introduction

use and refinement to achieve even this imperfect level of dependability. For
these reasons, operating system vendors and users are typically very reluc
tant to adopt new file systems, even when they offer innovative and enticing
features.

User-level applications like C V S [18] and P R C S [30] and stackable file
systems such as VersionFS [34] and Wayback [13] add a degree of flexibil
ity not attainable by on-disk file systems, as these higher-level systems can
be used to provide versioning to extant file systems. However, versioning
applications fail to provide the transparency required of a truly dependable
system because they leave the user responsible for initiating data preser
vation. Moreover, both applications and stackable file systems rely upon
underlying file systems to maintain important versioning information—and
thus can be no more secure than the on-disk systems over which they oper
ate.

1.3 Secure Logging

File system undo capabilities protect data by interposing an extra level of in
direction between users and data, much in the same manner that the recycle
bin metaphor protects against undesired deletions by requiring an additional
confirmation of a user's intent. In a trusted environment, this extra layer
of insulation is often enough to prevent the destruction of important data.
However, in a less sheltered environment, all the effort invested in retaining
versioned data might go for naught if the data is not carefully secured.

If a versioning system supports the removal of versioned data—and for
the sake of practicability, it must somehow do so—it runs the risk of suc
cumbing to the very dangers it seeks to protect against. Although users
would conceivably be more circumspect when deleting a file's version history
than they would when performing common file system operations, the pres
ence of a mechanism which is capable of destroying version histories poses
the same dangers to versioned data that conventional file system operations
pose to unversioned data: in both cases, there exists the same potential for
the erroneous loss of data, and, perhaps more importantly, there exists the
same susceptibility to the malicious destruction of data.

Version histories can be valuable for a number of reasons. In addition
to protecting users from their own mistakes, version histories can be used
to audit compromised systems. Version histories can record the actions
of viruses and other malware, and they can be used both to discover the
system vulnerabilities exploited by such agents as well as to recover from

3

Chapter 1. Introduction

the harmful consequences engendered thereby—but only if they survive the
attack. If version histories are not protected, viruses could cover their trails
by destroying versioned data, rendering log-based recovery impossible.

To guard against both incidental and malicious data destruction, ver
sioned data must be protected. In particular, untrusted processes should
never be capable of overwriting or deleting versioned data. This implies that
only privileged, dependable processes should have write-access to versioned
data. There are number of methods by which versioning can be imple
mented, but given the complexity and vulnerability of large code-bases, the
most secure way to implement versioning is to do so at the lowest possible
level.

A dependable system is one in which all functioning components are
trusted to adhere to their intended purposes. A vulnerability in any one
component may be propagated throughout the entire system, undermining
the system's dependability. To reduce or eliminate the vulnerabilities of a
system, it is beneficial to minimize the trusted computing base (TCB) of the
system, thereby minimizing the probability that the system is reliant upon
a faulty component.

The process of data versioning admits of a natural division into two tasks:
version preservation and version browsing. In an ideal world, users would
neVer be compelled to delete data, but even the immense storage capacity
provided by modern hard disks is not infinite; thus, a third task must be
supported by any practical versioning system: version pruning.

File systems perform all of these tasks as a single, monolithic unit. The
complexity of these systems derogates from the appeal of including them in
a trusted computing base. If versioning is to be implemented in a depend
able manner, it should be done below the file system, at the block layer.
The block layer interface is very narrow: block-level. drivers deal only with
raw blocks of data and remain blissfully ignorant of complicated file system
semantics. This tractable interface enables the development of block-level
services that are much simpler than their bulky file system counterparts and
therefore much easier to audit for correctness.

The T C B of a file system includes the file system itself, the kernel, the
device drivers, and the device hardware; a failure in any one of these com
ponents could result in the irretrievable loss of data. Block-level drivers are
situated much, closer to hardware and thus suffer from far fewer vulnerabili
ties than file systems. Moreover, the situation of drivers beneath the kernel
makes it possible to completely isolate these extensions from the operating
system. Wi th the use of virtual machine monitors (VMMs) such as Xen [7],
block-level drivers can be hermetically isolated, protected by the V M M from

4

Chapter 1. Introduction

the vagaries of kernel operations.
However, new difficulties arise when endeavoring to offer satisfactory

functionality from the block layer. Conventional block layer versioning sys
tems like Clotho [19] and Peabody [32] can only provide coarse-grain ver
sioning of logical volumes. These systems are compatible with a number
of existing file systems, and their trusted computing bases are significantly
smaller than those of versioning file systems, but their limited version brows
ing and version pruning facilities yield sub-par utility. Users predominantly
interact with storage systems at the granularity of files, and thus a truly
effective versioning system should support versioning on a per-file basis.

The challenge, then, to providing a dependable versioning system is to
achieve file versioning at the block layer. Moreover, the extra complexity
required to support file versioning should not detract from the system's
reliability.

Wi th these considerations in mind, we have designed and implemented
the Versioning Disk (VDisk), a dependable versioning system. The most
notable characteristic of VDisk is its stratified design: to improve depend
ability, we have incorporated only the simplest mechanisms into the critical
components of VDisk; complicated—and possibly undependable—tasks are
executed in user space, where they can cause no harm.

VDisk executes as a block-level driver, and is therefore compatible with
multiple file systems. The critical components of VDisk include a simple log
ging utility and a secure log cleaner. File system writes are routed through
the VDisk driver, which simply appends these writes to an immutable log
before passing the requests down to the underlying device driver. While
this approach requires the duplication of all disk writes, it has the advan
tage of leaving the original on-disk file system layout unmodified, meaning
that VDisk does not introduce new vulnerabilities into existing file systems.

To support version browsing at a per-file granularity, an untrusted user-
space application uses the logged data to reconstruct file versions. There are
numerous advantages to performing reconstruction in user space. For one,
user-space development is much simpler than kernel development. Powerful
debuggers and a protected execution environment greatly ease the coding
process. As well, user space applications can leverage a plethora of tools not
available to kernel modules. For example, we use a relational database to
organize log metadata, which greatly simplifies file reconstruction. Finally,
because the reconstruction process never modifies the log, it is incapable of
erroneously or maliciously destroying logged data, and thus poses no risks
to the system's dependability.

A concern for all versioning systems is resource management. Even with

5

Chapter 1. Introduction

cheap, abundant storage, disk space will ultimately need to be reclaimed.
This imposes new dependability issues, as any process which modifies ver
sioned data introduces potential dangers. However, following our stratified
design approach, we have faced this challenge by dividing version prun
ing into two sub-tasks: an untrusted and innocuous user-space application
makes suggestions about what data is eligible for deletion, while a simple,
secure cleaner verifies that these suggestions adhere to the system's retention
policies and performs the deletions. In this manner the advantages of user-
space development can be exploited without introducing new vulnerabilities
into the trusted logging subsystem.

6

Chapter 2

Related Work

The tremendous value of data stored on modern computers has motivated
the creation of a number of tools designed to preserve electronic documents.
User-initiated applications such as C V S [18], RCS [56], and P R C S [30] facil
itate the maintenance and organization of file versions by allowing users to
commit important versions of selected files to a repository. These applica
tions are particularly useful in well-managed, dynamic environments where
users a make conscious effort to retain important file versions, but they fail
to provide the transparency and security required of a truly dependable ver
sioning system. Snapshotting, checkpointing, and transparent versioning at
or below the file system layer preserve data versions automatically and thus
reduce the potential for human error. In addition to providing increased
protection of important user documents, comprehensive versioning systems
are useful in other domains, such as post-intrusion analysis [14, 60] and
kernel debugging [28].

However, the increased functionality obtained by implementing version
ing in the kernel does incur a cost. Adding code to file systems and kernels
increases the difficulties of technology adoption and introduces potential new
security holes. Moreover, the typically vast size and complexity of these
systems makes any formal verification of their correctness extremely diffi
cult, thereby diminishing their trustworthiness. These predicaments have
prompted the development of new technologies—such as gray-box design
and trusted computing infrastructures—that can be used to mitigate the
difficulties of kernel expansion.

2.1 Snapshot Utilities

Snapshot utilities support the coarse-grain versioning of data. Such utilities
enable the periodic creation of file system images, allowing for the production
of a series of instances from a file system's history which can be accessed
online or archived in tertiary storage. These utilities do not support the
versioning of individual files and do not maintain comprehensive histories
of file system activities: each snapshot preserves the entire file system state

7

Chapter 2. Related Work

at a single instant, but any data updates made between two snapshots are
irrecoverable.

The Write Anywhere File Layout system (W A F L) [24] was designed to
operate as a dedicated network storage appliance interfaced via NFS [46].
W A F L ' s hierarchical block layout enables the rapid generation of file system
snapshots: given a live block tree, a read-only snapshot can be made simply
by copying the root node of the tree. Subsequent writes to the live tree
are done in a copy-on-write fashion so that the data blocks referenced by
the snapshot's tree are not overwritten. Modified blocks are written to
new locations on the disk, and all intermediary nodes linking the leaf to
the root must be updated to reflect these relocations; these updates are
buffered with non-volatile R A M and batched to improve efficiency. W A F L ' s
block reallocation scheme sets a hard limit on the number of concurrent
snapshots the system can support. Each block is tracked with a 32-bit
reference counter, with each bit indicating the block's allocation status in
exactly one snapshot. Thus the system can only support 32 snapshots at
any given time, a limitation which makes W A F L ill-suited for a number of
versioning scenarios, including landmark preservation [47] and post-intrusion
analysis.

W A F L achieves efficient snapshotting because of its unconventional, hi
erarchical block store. Traditional U N I X file systems are intellectual descen
dants of the Berkeley Fast File System [31] and as such share a common disk
layout which is significantly different than that of W A F L . F F S was designed
to minimize disk seeks, the slowest of disk operations. Adhering to the as
sumption that a directory and the files it contains wil l often be accessed
concurrently, F F S endeavors to place the data blocks which compose these
objects together on the same disk cylinder, hoping thereby to curtail disk
seeks. The Sprite Log-structured File System (LFS) [44] takes a radically
different approach to disk layout. Positing that the majority of file system
reads can be served by ever-growing in-memory file caches, the designers of
L F S made optimizing disk writes their main priority. In L F S , disk writes
are organized sequentially and sent to the disk in batches: many individual
file system updates are clustered into a single large write, which is appended
to a contiguous region of the disk. This process ensures that collections of
multiple small writes, which may have required many disk seeks in F F S , wil l
be written to one region by L F S and wil l thus require far fewer seeks.

The consequences of this design are manifold. Most notably, data is
not directly overwritten—once committed to disk, data blocks remain im
mutable until they are ultimately reallocated by a system cleaner. L F S can
thus be considered an implicit versioning system, and indeed, L F S makes

8

Chapter 2. Related Work

good, if limited, use of its versioning capabilities. L F S supports the notion
of checkpoints, or positions in the log which contain consistent instants of
the system's data and metadata. If a machine shuts down while the on-
disk representation of L F S is inconsistent, it is possible to revert to a recent
consistent state simply by returning to the last checkpoint.

Although L F S contains the information required to support a more com
prehensive versioning policy, it only preserves two checkpoints. Blocks not
belonging to these checkpoints must be reallocated to ensure the availability
of contiguous extents for efficient writes; this process of reallocation entails
new difficulties. In particular, much effort must be expended by the L F S
cleaner to determine which segments of the disk contain blocks that are no
longer referenced by current files. This cleaner, which operates as a separate
background process, transfers the live data from multiple segments into a
few segments; the remaining empty segments are then available for reallo
cation. However, this cleaner is the source of some controversy, as it has
been found to decrease overall file system performance by more than 34%
in transactional environments, with the cleaner accounting for up to 80% of
data written to disk [48, 49]. The advantages and new capabilities provided
by L F S thus come with a concomitant increase in complexity.

A variety of systems provide snapshotting functionality similar to that
of W A F L and L F S [11, 25, 29, 33, 38, 41, 59]. While the individual designs
of these systems vary widely, they all share the common goal of provid
ing coarse-grain, system-wide versioning. This type of versioning can be
useful, but it cannot provide sufficient guarantees against inadvertent data
loss. To provide absolute protection of important data from malicious and
unintended deletion, a more exhaustive approach is required.

2.2 Versioning File Systems

Versioning file systems employ a copy-on-write strategy to create versions
on a per-file, rather than a per-system, basis, thereby creating much more
detailed histories of file system activities. Resource management is a key
challenge faced by versioning file systems—even on modern, capacious disks,
the retention of every version of every file will ultimately result in a complete
exhaustion of storage space. A number of versioning file systems have been
designed and implemented, each offering its own unique advantages and
drawbacks.

The Cedar File System [23] was one of the first file systems to automati
cally preserve immutable versions of files. Cedar is a distributed file system

9

Chapter 2. Related Work

designed to support file sharing between multiple concurrent users. Files in
Cedar are designated local or remote; users operate directly on local files,
and can choose to share them by copying them to a remote file server. A l l
remote files are retained automatically, but local versions are silently pruned
according to a simple per-file policy.

Elephant [47], which operates beneath FreeBSD's Vir tual File System
layer, creates a new file version upon the first write to an opened file. A l l
subsequent writes before the file is closed are performed on the new version.
Elephant supports the application of sophisticated versioning policies to
make the best use of storage space. These policies, which include Keep One,
Keep A l l , Keep Safe, and Keep Landmarks, can be applied on a per-file or
per-file-group basis. Keep One retention only preserves the current version
of a file, while Keep A l l retention preserves all versions of a file. Keep
Landmarks employs a heuristic to retain important milestone versions of a
file while reclaiming all others. The heuristic is based on the assumption
that minor differences between infrequently accessed versions lose meaning
to the user as the files age. Thus for very old versions, only relatively stable
instances—i.e., those that come at the end of a spurt of revisions and remain
unchanged for a substantial period of time—should be retained,-while for
recently accessed files, all versions should be retained. The Elephant cleaner
cleans a file by examining the log of inodes which represents its version
history and reclaiming eligible versions. Files are selected for cleaning on the
basis of a heuristic value which is updated on every file close. File cleaning
in Elephant is significantly easier than segment cleaning in L F S , because the
Elephant cleaner need only read file metadata to perform its duty, while the
L F S cleaner must read entire segments and rewrite live blocks.

Elephant was built from scratch to provide versioning from within the
file system; the adoption of Elephant thus requires the replacement of ex
isting, tried and true file systems with a new, untested system. In contrast,
VersionFS [34] is implemented as a stackable file system and operates within
the V F S layer, making it compatible with all standard on-disk file systems.
VersionFS adopts a copy-on-change policy to reduce the amount of redun
dant data stored in file versions and supports the transparent compression
of versioned files.

In a similar vein, Wayback [13] logs all version changes in user space,
relying on a kernel module to intercept file system calls and trap to the
application-layer server. Both VersionFS and Wayback operate above on-
disk file systems, and as such can be used to incorporate versioning function
ality into any existing file system. However, the inability of these systems to
directly control on-disk data structures poses new problems, as they are in-

10

Chapter 2.; Related Work

capable of preventing stale file versions from polluting the kernel page cache;
moreover, VersionFS cannot guarantee that a file's inode number wil l remain
constant throughout its lifetime, a property required for compatibility with
N F S .

Ext3cow [39, 40] is a modification of ext3 that makes use of retrofitted
on-disk ext3 inodes to accommodate the additional metadata required for
maintaining versions, thereby reducing the maximum supportable file size
by 16%. Ext3cow can provide transparent snapshot capabilities as well as
individual file versioning. Unlike Elephant, ext3cow is an extension of a
popular, robust file system. This approach both simplified the implemen
tation of ext3cow and reduced the amount of new code required to achieve
versioning. However, ext3cow suffers from the same compatibility issues as
Elephant—neither of these on-disk file systems can provide general version
ing services to arbitrary file systems.

The Comprehensive Versioning File System [53] was designed with secu
rity as a top priority. C V F S operates below S4 [54], a self-securing, dedicated
storage server, and is accessed via NFS [46]. To facilitate post-intrusion anal
ysis and auditing, C V F S maintains copies of all data and metadata written
to disk for a predetermined period of time, known as the detection win
dow. This system allows administrators to investigate the propagation of
malicious data and thereby determine the source of a system's ailments. Be
cause C V F S maintains versions of every write to disk, it must take special
care to optimize the storage of versioned data. In particular, C V F S in
troduces metadata journaling and multiversion b-trees to reduce metadata
storage requirements, which could otherwise equal the storage requirements
of the data itself.

2.3 Block Logs

While it is intuitive to offer file versioning at the file system level, there
are advantages to be gained in providing data versioning from beneath file
systems. A mechanism that can export versioning capabilities to any number
of file systems can provide a degree of flexibility and simplicity not achievable
by monolithic file systems. One means of providing flexibility is the use of
stackable or user-space versioning systems like VersionFS and Wayback. A
simpler approach is to offer versioning at the block level.

Clotho [19], which was designed to exploit the increasing computing
power of storage systems, supports versioning of volumes. Clotho is imple
mented as an addition to the block layer, and as such can operate beneath

11

Chapter 2. Related Work

any file system. Clotho organizes data into extents, introducing a level of
indirection between logical and physical block addresses. Like W A F L , ver
sioning in Clotho is achieved by writing versions of data blocks to new disk
locations and updating the mapping to reflect these relocations. Clotho is a
snapshot system, and can be configured to create read-only snapshots of an
entire volume upon the execution of any number of file system operations,
including file writes. Snapshots are accessed through virtual devices: each
snapshot results in the creation of a new, read-only virtual device, which
can be mounted and browsed in the conventional manner.

Peabody [32] is a block-level logging utility designed to operate on network-
attached storage systems. Peabody preserves data by appending all writes
to an on-disk log in a manner similar to that of L F S . For any file system
with a consistency checker, Peabody can provide undo capabilities by simply
rolling the log back to the desired time and using file system tools to verify
system consistency; if the target time cannot be made consistent, the log
can be rolled forward or backward until consistency is achieved. Peabody
employs a number of optimizations, such as content hashing and silent write
prevention, to avoid redundant writes to the log, thereby reducing the size
of the log.

While Peabody relies upon content hashing to limit log size explosion, a
different approach has been employed with modified R A I D arrays. T R A P [63],
or Timely Recovery to Any Point-in-time, systems store block histories by
retaining exclusive-ORs of consecutive block versions. Due to a strong con
tent locality, these exclusive-OR delta chains can represent version histories
with extreme concision. Workloads studied in [63] exhibited only 5% to
20% bit changes between consecutive block versions. This small variance re
dounds to exclusive-ORs consisting primarily of zeros, which can be greatly
compacted through simple run-length encoding. Version reconstruction is
achieved by traversing these delta chains, applying the exclusive-OR of each
version against the next successive version, until the desired state is reached.

A l l of these block-level loggers are oblivious to file system semantics,
making them compatible with a number of different file systems. This ne
science of file system semantics greatly simplifies the task of data preser
vation. However, none of these block-level utilities support versioning at
a per-file granularity; thus the flexibility and simplicity achieved by these
systems comes with restricted functionality.

12

Chapter 2. Related Work

2.4 Gray-Box Systems
A significant problem faced by systems researchers is the difficulty of con
vincing users to adopt new technologies. Many innovative ideas have been
sent quietly to their graves because of the difficulty of incorporating them
into widely used systems. Gray-box technologies [5] have been designed
to allow researchers to implement new ideas on commodity systems with
out modifying kernel code. This technique both improves the adoptability
of new technologies and avoids the introduction of new vulnerabilities into
heavily distributed kernels. The knowledge which can help to turn black-
box systems into gray-box systems is obtained from three main sources: an
a priori understanding of the system's algorithms, controlled observation of
the system's performance, and inferences of the system's internal state.

Semantically Smart Disks [52] present a prime example of the power
of gray-box techniques. Typical operating systems provide a very narrow
interface between file systems and block-level I /O . This interface is useful
in that it greatly simplifies block-level drivers, which need only deal with
blocks of raw data. However, it also limits the functionality that typical
block-level drivers can provide, because it hides all information of higher
level abstractions, such as files and directories, from the drivers. Gray-
box techniques can be used to reacquire this knowledge at the block layer.
When a semantically smart disk is installed, a five phase process is executed
to discern the location of important file system structures on disk. A n
application-layer process probes the gray-box system by executing a number
of carefully planned file system functions while a block-level module observes
the read and write requests which are consequently sent to the disk. B y
combining these observations with a deep understanding of supported file
system algorithms, the module can infer the type of the file system which is
using the disk, and can thus perform file system-aware optimizations at the
block level without modifying the kernel's block-level interface.

A convincing use of file system knowledge at the block layer can be
found in D - G R A I D [50], a driver which exploits knowledge provided by
gray-box techniques to optimally organize file system objects for use with
R A I D [37] systems. R A I D systems stripe data across multiple disks to
improve performance. Data is often replicated on multiple disks to reduce
the potential for data loss upon disk failure, but because R A I D controllers
operate beneath the block-layer interface, they are typically unable to stripe
and replicate data intelligently. For example, if a file composed of multiple
blocks is striped across multiple disks, a failure of any one of these disks
(assuming no replication) will render the file unusable, even though the

13

Chapter 2. Related Work

majority of its data is still accessible. D - G R A I D uses its knowledge of file
system semantics to ensure that all data blocks associated with a file are
stored on the same disk; thus the failure of a disk wil l only result in the loss
of files which are entirely stored on that disk, rather than resulting in the
loss of any file which has even a single block stored on the disk. This system
is a pointed example of the enhancements achievable through a multi-level
implementation of block layer mechanisms.

2.5 System Logs

Versioning file systems provide typical users with an obvious benefit: the
ability to undo any file system operation. Data versioning can also enhance
system security by enabling post-intrusion analysis and recovery.

Chronus [60], which operates within a /iDenali virtual machine [61],
records all changes made to the disks of its descendant V M s in an append-
only log. If a child V M begins malfunctioning, an analysis of the log can
expose the cause of the error and enable a reversion to the last functioning
disk state, effectively undoing the problem. Chronus uses a binary search
trial and error method to automate this analysis, rebooting its child V M
with different versions of the disk until the problematic change is found.

ReVirt [14], implemented as a part of U M L i n u x [9], logs non-deterministic
events of guest operating systems. This log can then be used to replay
the guest operating system's activities instruction by instruction. The log
only maintains a history of events that cannot be reproduced during the re-
enactment process. Similarly, BackTracker [27] logs higher-level operating
system events and objects. This log can be used to generate an easy-to-
read flow-chart which graphs the actions of intruders and the objects they
affected, helping administrators determine what system vulnerabilities were
exploited during an attack.

Operator Undo [8] uses time-travelling disks to provide system-wide undo
functionality to administrators. Designed as a general infrastructure for sup
porting application-neutral undos, Operator Undo provides an interface for
recording system actions, which are described as an abstract verb data struc
ture. Front-end proxies are charged with marshalling application-specific
data into verbs; Operator Undo records these verbs and can use them to
rewind to previous system states and to replay system activities, incorpo
rating repairs made along the way.

14

Chapter 2. Related Work

2.6 Trusted Computing

While gray-box technologies attempt to extend kernel functionality without
introducing new kernel code, their applications are limited; some features
simply cannot be implemented without modifying the kernel. But while
kernel changes may, in some cases, be inevitable, the impact of these changes
can often be mitigated. One strategy for facilitating kernel modification is
to isolate the existing, robust, trusted code from the new, experimental,
potentially incorrect extensions.

Terra [21] is a framework intended to facilitate trusted computing on
commodity hardware. Citing the complexity of full-featured operating sys
tems as an inherent limitation of assurance, Terra's designers strove to min
imize the trusted computing base of sensitive applications by simulating
closed platform functionality with virtual machines. Terra isolates critical
applications within specialized, trusted domains, which can employ user-
specified customized operating systems to provide optimal security. These
trusted domains are protected from malicious tampering by a Trusted Vir
tual Machine Manager. In addition, Terra provides an attestation interface
which enables the verification of critical applications through the use of
certificates documenting the validity of applications, drivers, firmware and
hardware.

Nooks [55] aims to transparently isolate kernel code from modules and
drivers, which are responsible for a significant proportion of crashes in com
modity operating systems [10, 35]. Although this isolation is sought to pro
tect the kernel from extensions rather than vice versa, the principle behind
Nooks is similar to Terra and other trusted computing frameworks. The
intention of these systems is to mitigate the danger of executing untrusted
code by establishing controlled operating environments. Nooks achieves this
by interposing a management layer between the kernel and its extensions;
this layer ensures that untrusted extensions operate within protected do-,
mains. Any undesired operations attempted by extensions can be prevented
or reversed by the management layer, thus shielding the kernel from erro
neous extensions. Nooks is based on the observation that in commodity
systems, the majority of bugs are introduced by drivers, and thus the ker
nel should be protected from extensions, while Terra endeavors to protect
critical, thoroughly audited applications from large, complicated operating
systems.

The primary intention of the Exokernel [17] is to enable application-
level management of operating system resources. Advocates of end-to-end
design [45] maintain that although a single, monolithic operating system

15

Chapter 2. Related Work

can provide satisfactory functionality to a broad range of applications, its
performance for any particular application is often hindered by unnecessary
generality. The Exokernel therefore endeavors to grant applications as much
leeway as possible in designing and managing system abstractions such as
inter-process communication and virtual memory. Library operating sys
tems run in the address space of the applications they support, and can
be optimized for individual performance requirements. A low-level exoker
nel controls resource allocation and revocation, maintaining equity between
competing library operating systems. Library operating systems can create
rich system abstractions to facilitate application development and execu
tion; the exokernel, however, remains ignorant of the semantics of such ab
stractions. The exokernel enforces resource protection by evaluating simple
predicates, provided by library operating systems, which express resource re
quirements in a language that the low-level exokernel can understand. This
infrastructure allows the exokernel to protect system resources without un
derstanding their application-level semantics. The exokernel thus isolates
the complexity of richly featured operating systems from the mechanism
responsible for protecting system resources, greatly reducing the trusted
computing base of the system's critical components.

While the Exokernel supports customized library operating systems, it
is incompatible with unmodified commodity operating systems. In contrast,
Xen [7] has sought to provide some of the same features as the Exokernel
while supporting standard operating systems such as Linux and Microsoft
X P . Xen, a virtual machine monitor, is designed specifically for the x86
architecture. Xen paravirtualizes hardware by providing very slightly modi
fied interfaces to guest operating systems. The Xen hypervisor can support
multiple guest operating systems simultaneously; each guest OS operates in
its own isolated domain, and is protected by the hypervisor from all other
guest operating systems. Additionally, Xen supports the isolation of individ
ual device drivers; any driver can operate in complete isolation by running
in its own virtual machine [20]. Guest operating systems communicate with
these isolated drivers via an asynchronous device channel primitive which is
offered by the hypervisor. This isolation enables Xen to protect guest oper
ating systems and device drivers from each other; as well, the device channel
which links these two entities can be redirected to user space processes in
the driver's domain, thus facilitating the implementation of virtual devices
from the application layer [58].

16

Chapter 2. Related Work

2.7 Summary
The increasing value of digital information has motivated the design of a
number of systems intended to preserve on-disk data. Many file systems pro
vide snapshotting functionality, allowing users to revert to previous system
images to recover old data. More comprehensive systems decrease version
granularity by retaining all versions of all files, or by enforcing user-specified
policies to retain important files. Versioning can also be provided by block
layer systems, which are generally oblivious to file system semantics and can
thus provide volume or virtual disk versions to a number of unmodified file
systems. Gray-box technologies have explored methods for providing some
file system information to the block layer without modifying existing kernel
code.

In addition to providing users with file system undo capabilities, ver
sioning file systems (or time-travelling disks) can be used to increase system
security by enabling post-intrusion analysis and recovery. Versioning sys
tems designed for such security applications must retain all versions of all
data and must handle version deletion in a secure manner to prevent mali
cious users from erasing incriminating evidence.

Empirical evidence shows that in typical commodity systems, kernel ex
tensions such as drivers significantly reduce system dependability. Con
versely, the complexity of monolithic kernels diminishes their appeal for use
with truly critical applications. In both cases, increased dependability can
be achieved by isolating the untrusted code; virtual machine monitors pro
vide an ideal infrastructure with which to enforce this isolation.

17

Chapter 3

Secure V e r s i o n i n g

Versioning systems provide an attractive model for data storage. The abun
dant disk capacity available to modern systems has made traditional storage
models, in which data is frequently destroyed in order to reclaim disk space,
obsolete. Modern users should enjoy the confidence that, barring a disk
failure, all data entrusted to the storage subsystem will be available under
any circumstances—including user error.

There are a number of different manners in which the versioning model
can be implemented, each with its own particular strengths and weaknesses.
Current versioning systems suffer from one of two major shortcomings: in
adequate security and inadequate utility. The problem faced by versioning
system designers consists of coupling adequate flexibility with unimpeach
able reliability.

3.1 The Ideal Versioning System

As evidenced by the previous chapter, versioning systems come in a variety
of guises, from user-space applications to block-level drivers. For purposes
of comparison and conceptualization, it is useful to enumerate a prioritized
list of criteria by which to judge different designs. These ideal standards,
listed below in descending order of importance, provide a vocabulary with
which to conduct a rigorous evaluation of current systems and a means of
articulating the abstract concepts from which an ideal versioning system can
be composed.

Reliability: The degree to which a system can be relied upon to store and
retrieve all data entrusted to it.
The primary goal of a versioning system is to safeguard data; thus
we must first and foremost evaluate a versioning system according to
its ability to reliably do so. A susceptibility to undesired loss of data
constitutes an intolerable flaw.

Security: The degree to which a system can survive malicious attacks.

18

V

Chapter 3. Secure Versioning

If a principal danger to data lies in buggy software, a no less insidious
threat lurks behind every firewall: a menagerie of viruses, spyware,
malware and other malicious entities pose a real hazard to users' data,
and thus a versioning system should protect against these dangers as
much as possible. u

Flexibility: The degree to which versioning services can be adjusted to
satisfy users' needs.

Versioning systems should accommodate users' needs rather than the
converse. Systems which impose unnecessary or cumbersome restraints
upon users are less appealing than systems which afford users as much
freedom as possible without introducing vulnerabilities.

Adoptability: The ease with which a versioning system can be incorpo
rated into a working system.

A system can be useful only insofar as it is used. If the difficulties
of transitioning to a system are too great, it wil l quickly be relegated
to the software graveyard, there to be mourned by its creators and
forgotten. The ideal versioning system should easily integrate with
current working systems.

Efficiency: The degree to which a versioning system impacts system per
formance.

While it is accepted that the costs associated with data versioning are
warranted by the services rendered, ideal versioning systems should
impose minimal performance degradation, both in terms of time and
space.

Put concisely, the ideal versioning system should reliably protect data
from both users and malicious software, offer users an appropriate degree
of flexibility, and integrate easily into current working systems without im
posing burdensome overhead. Even given the number and variety, of current
versioning systems, no existing solution presently satisfies all of the above
criteria.

3.2 Existing Systems

There are two general classes of versioning systems: those which operate on
file system objects, and those which operate on disk blocks. Each of these
classes is broad enough to contain a number of diverse systems, but each

19

Chapter 3. Secure Versioning

represents a fundamental design choice that significantly impacts the degree
to which a system can satisfy the proposed criteria.

3.2.1 File-Level Versioning Systems

File-level versioning systems can be implemented as user-space applications,
stackable file systems, or on-disk file systems. These systems deal with file
system objects like directories and files, and as such are ideally situated
to provide versioning at a per-file granularity—and because users typically
interact with the storage subsystem by manipulating individual file system
objects, per-file versioning is more appropriate than, say, per-volume or per-
disk versioning.

Additionally, file-level versioning systems can enforce per-file policies.
For instance, Elephant [47] allows users to specify version retention policies
on a per-file or per-file-type basis. This is useful because the value of indi
vidual files is often related to their file types; for example, word processing
documents are often much more valuable to a user than cached H T M L ob
jects. Another example of the advantages of versioning on a per-file basis
can be found in VersionFS [34], which uses its knowledge of file system ob
jects to employ a copy-on-change (rather than copy-on-write) approach to
versioning. W i t h copy-on-change, version histories are saved as delta chains
of individual versions, and no two versions contain redundant data. This
approach, which requires a knowledge of file system objects, reduces the
amount of storage space required to maintain version histories.

Stackable file systems like VersionFS and Wayback [13] are highly adopt-
able, as they are compatible with a number of existing file systems. However,
these systems have limited control of data structures maintained by the ker
nel and on-disk file systems. For this reason, these types of systems cannot
prevent stale file versions from polluting the kernel's page cache; nor can
they manage the allocation of inode numbers to ensure that file identifiers
remain stable for use with systems like N F S . On-disk file systems like Ele
phant and ext3cow [39] have the ability to manage kernel data structures,
and can thus make better use of the page cache and inode numbers. How
ever, these systems are not compatible with other file systems, and are thus
not easily adopted.

A l l file-level versioning systems, by virtue of their awareness of file sys
tem objects, share one common trait: complexity. File systems are large
and complicated; they export rich interfaces, and are oftentimes used in
unexpected ways; and they maintain a significant amount of sophisticated
metadata to manage the objects they support. For these reasons, file systems

20

Chapter 3. Secure Versioning

are notoriously difficult to construct, and even well-established, thoroughly-'
tested file systems like ext3 [1], JFS [2], and ReiserFS [4] have been found
to contain logical errors capable of wiping out important data [62].

In general, file-level versioning systems are particularly well-suited to sat
isfy the flexibility and efficiency criteria listed above. Per-file policies allow
file-level systems to provide rich, customizable functionality while minimiz
ing the overhead required to do so. User-level applications and stackable file
systems satisfy the adoptability criterion, as they are compatible with mul
tiple file systems, but they incur slight performance penalties in doing so.
On the other hand, on-disk file systems make better use of kernel data struc
tures, but are not amenable to incremental adoption. Finally, all file-level
versioning systems suffer from considerable reliability and security issues, as
the complexity of such systems can introduce significant vulnerabilities.

3.2.2 Block-Level Versioning Systems

Block-level versioning systems like Clotho [19] and Peabody [32] operate
beneath file systems and offer versioning at a per-volume or per-disk granu
larity. Unlike file-level versioning systems, block-level systems are generally
incapable of supporting per-file policies. These systems deal exclusively with
blocks, and this limitation is a double-edged sword: on the one hand, pro
viding versioning at the block layer is much simpler than doing so at the file
system layer, but on the other hand, block-level versioning often provides
unsatisfactory utility.

Typical usage scenarios for versioning systems include allowing users to
recover an individual file that has been erroneously destroyed. They do not
often include recovering entire logical volumes. However, most conventional
block-level versioning systems impose precisely this constraint; for instance,
if a user wishes to roll back to a previous version of a single file with the
Peabody system, she must roll the entire file system back to the time of
interest and then wait for a file system consistency checker to verify that
the disk is valid at the chosen time. There are applications, like kernel
debugging and post-intrusion analysis, which can benefit from such coarse-
grain version recovery, but for the common case of browsing the versions of
one or a few files, this approach is cumbersome.

Additionally, block-level versioning systems often end up storing much
more data than do file-level versioning systems. File systems always write
data in units of blocks; this means that changing even a single byte of a file
results in an entire block—up to as much as 4 KB—being written to disk.
File-level versioners like VersionFS can avoid retaining redundant data by

21

Chapter 3. Secure Versioning

analyzing file system objects, but block-level versioners are less capable of
doing this and thus typically retain entire blocks. However, recent work
in block-level delta-chaining has been shown to dramatically reduce block
log sizes at the expense of an increased latency for random access to block
versions [63].

Given a finite storage capacity, a versioning system's recovery window—
or the period in which it can guarantee the recovery of a file version—is
inversely proportional to the rate at which its log grows [53]; thus, the ability
of a versioning system to support arbitrary version recoveries hinges upon
its ability to curb log growth. Block-level versioning systems are particularly
susceptible to log size explosions, and thus their efficacy is closely related to
their ability to effectively manage storage space.

Block-level versioning systems do enjoy a few advantages over file-level
versioning systems: block-level systems, due to their nescience of file system
semantics, are compatible with a number of different file systems, and thus
are adopted more easily than many versioning file systems; block-level sys
tems do not pollute the page cache with stale data, nor do they alter the
operation of the file systems they support; and the location of block-level
systems beneath the kernel allows prudent users to isolate these versioning
systems from erroneous or malicious impingements from higher-level soft
ware. In fact, block-level versioning systems can be made simple enough
that they can be confidently included in a trusted computing base, thereby
bolstering the security and reliability of the system.

The biggest advantage of versioning at the block layer is the increased
reliability and security obtained by doing so. Block-level versioning systems
are much simpler than versioning file systems, they are protected by a nar
row, tractable interface, and they can be further isolated through standard
trusted computing techniques—in short, they are considerably superior to
file-level versioning systems both in terms of reliability and security. As
well, they are compatible with multiple file systems and are thus more eas
ily adopted than many versioning file systems. However, they often suffer
from poor flexibility, as they typically only offer versioning at an unaccept-
ably coarse granularity, and they are unable to implement per-file policies
and optimizations.

3.3 S u m m a r y

When the value of data is significant, the primary criteria by which a ver
sioning system should be evaluated are reliability and security. File-level

22

Chapter 3. Secure Versioning

versioning systems, due to their inherent complexity, are simply unable to
provide optimal reliability and security. A n ideal versioning system should
be simple enough that its correctness can be verified a priori through au
diting, but the complexity of richly-featured file systems precludes any con
fident verification of their correctness.

Block-level versioning systems, due to their simplicity, can be certified
as correct, but—also due to their simplicity—they cannot provide adequate
versioning functionality. The instant a versioning mechanism is saddled
with the responsibility of understanding files and their metadata—requisite
knowledge for supporting per-file policies—its reliability decreases.

Table 3.1 summarizes the differences between the various types of ver
sioning systems and indicates the need for a hybrid approach. In particular,
the reliability, security, and adoptability of block-level versioning systems
should be combined with the flexibility and utility of file-level systems.

Table 3.1: Comparison of Versioning System Attributes
Reliabil ity Security Flexibi l i ty Adoptab i l i ty Efficiency

User-space tools • • •
Stackable F S • • •
On-disk F S • •
Block-level systems • • •

23

Chapter 4

Design

Secure versioning compels a stratified design. The mechanisms responsible
for safeguarding data must be simple, perspicuous, modular—and isolated
from the more complicated, less reliable mechanisms that are required to
provide adequate utility.

VDisk achieves this separation of responsibilities by isolating the mech
anisms which have write-access to versioned data. VDisk consists of three
primary components: a secure logging module, a version reconstruction util
ity, and a secure log cleaner. Only the logging module and the cleaner have
write access to versioned data; these two units perform only simple tasks,
and compose the trusted component of the entire system. The version re
construction process, which reads from the log but never writes to it, is the
only component of the system which deals with file system objects. It is
separated from the critical components and thus does not introduce vulner
abilities to the system.

4.1 Version Preservation

For maximum reliability, security, and adoptability, VDisk provides ver
sioning from the block layer. To achieve this, a simple logging utility is
situated beneath the file system as a virtual device driver in an isolated
virtual machine. All write requests pass through this utility, where they are
duplicated; one instance of the request is relayed to its original destination
on the file system disk, while the other is appended to a secure log on a
separate partition.

Conventional block layer logging utilities like Clotho [19] avoid duplicat
ing write requests by introducing a level of indirection between file systems
and the disk: write requests to logical block addresses are redirected to
available physical locations, and all subsequent read requests to those log
ical blocks are mapped onto their corresponding physical addresses. This
scheme is attractive because it obviates copy-on-write penalties by perform
ing updates to the metadata that describes the logical-to-physical mapping.
However, it poses two problems: it can vitiate any work done by file sys-

24

Chapter 4. Design

tems to achieve spatial locality, and it introduces new potentials for data
loss—if the logical-to-physical mapping ever becomes corrupted, the entire
file system could be lost.

Moreover, maintaining this indirection is a complicated task; to guaran
tee integrity in the face of arbitrary system failures, the logical-to-physical
mapping must be handled with extreme care. Journaling and transactional
semantics could be adopted to ensure mapping metadata is committed to
disk appropriately, or perhaps a block-level consistency checker could be im
plemented to facilitate recovery from system failures, but something must
be done to protect the mapping metadata. For this reason, VDisk does not
interpose an extra level of indirection. Instead, it takes a performance hit to
ensure the integrity of the file system's on-disk layout by duplicating write
requests. Every write request thus commits data to both the original file
system disk and the secure log.

The VDisk log consists of a metadata log and a data log. For each request
submitted to VDisk 's data log, a small entry is added to the metadata log
which describes the salient features of the request—namely, the file system
block address, the log block address, the size of the request, and the time at
which it was committed; these entries also contain a flag byte used by the
cleaner to record block deletions.

The log disk partition is sub-divided into large, fixed-sized segments that
are threaded together on three lists: the metadata log, the data log and the
free list. The metadata and data logs are written in append-only fashion,
with new segments allocated from the free list when needed.

4.1.1 Log Isolation

The simplicity of VDisk 's logging mechanism lends reliability to the system.
It is reasonably well protected from erroneous higher-level software by the
narrow block-level interface—no read or write request issued from upper-
layer software can result in the destruction of logged data. However, if
situated within the kernel, the security of the logging mechanism is limited
to that of the kernel itself. In particular, if the kernel is compromised, the
logged data is likewise put at risk.

To eliminate this vulnerability, the logging mechanism can be placed
in its own protected domain through the use of a virtual machine monitor
(V M M) like Xen [7]. V M M s enable the creation of multiple virtual machines
on a single computer; each virtual machine is isolated and protected by
the V M M , which prevents interference from other virtual machines. The
VDisk logger, which is implemented as a block-level driver, can be placed

25

Chapter 4. Design

in its own protected domain; from there it can export its interface to an
untrusted virtual machine while remaining beyond the control of the kernel
it services. In this manner, the security of versioned data is decoupled from
the security of a user's kernel—even a compromised V M operating system
cannot destroy logged data. This approach is similar to that of S4 [54],
which uses a network interface to protect its versioning file system.

4.1.2 Optimizations

VDisk's logging mechanism benefits significantly in terms of reliability, se
curity, and adoptability by operating at the block layer. However, the con
straints imposed by the simplicity of the mechanism and the narrowness
of the block-level interface present a few impediments to achieving opti
mal performance. The most notable obstacle is the necessity of writing
data twice—this requirement alone immediately halves the available bus
bandwidth of the original system. While this bandwidth reduction substan
tially degrades throughput for bandwidth-bound workloads, the application-
perceived penalty of VDisk is much smaller for seek-bound workloads. VDisk
writes its data sequentially, while in many cases file systems scatter their
writes across the disk; the time required for these file system disk seeks often
almost completely overshadows the increased latency introduced by VDisk 's
duplicated writes. In addition to imposing temporal overhead, versioning
data at the granularity of entire blocks can lead to explosions in log size, as
even single-byte updates in the file system will result in entire blocks being
written to disk.

To address the write performance issue, a lazy writeback approach could
be adopted during bursty writes. When the logger is barraged with many
writes in a short period of time, instead of immediately writing data to the
log, it can add a small entry to an in-memory hash table indicating the file
system block addresses and timestamps of the writes. During the burst, all
writes to distinct block addresses can be copied to the log lazily; only when
multiple blocks are written to the same address do the older versions need
to be logged punctually. When the bursty period has passed, the logger can
then copy all blocks listed in the hash table from the file system partition into
the log without having to compete with the file system for disk bandwidth.
This optimization could improve performance for cases in which large files
are being written to disk, as such scenarios typically do not entail multiple
writes to a single block address. However, this technique would introduce
extra overhead when blocks are rewritten within a bursty period, as this
wil l require reading the old versions of the blocks from disk before the new

26

Chapter 4. Design

versions can be committed. We have not implemented this optimization.
To limit log size explosion, we have implemented a content-hashing mech

anism to avoid retaining redundant data. File systems often send superfluous
data to the disk; for instance, creating a file with the ext2 file system results
in seven 4 K B blocks being sent to disk, only one of which actually contains
the contents of the file [32]. The other six blocks are metadata blocks, of
which only a few bytes per block—128 bytes in the case of the inode block,
one bit each in the case of the inode and data bitmap blocks—have actually
been updated as a result of creating the file. If this superfluous data can be
recognized as redundant, it need not be preserved. To this end, the VDisk
logger compares certain write requests to a table of content summaries of
recently-read blocks; if the summary of a block being written to disk is
identical to its corresponding cached summary, it need not be logged.

In general, this strategy could impose a security vulnerability, as the
accuracy of the log would be dependent upon the cryptographic strength
of the hash function used: if a malicious agent could alter a data block in
such a way that the new, corrupted block hashed to the same summary as
its original block, the agent could modify files in the file system without
the changes being logged. This could be protected against by making a full
comparison of the blocks whose hashes are identical, but this would require
either an extra disk read to fetch the original block, or a much larger memory
footprint to cache recently read blocks.

While data blocks are vulnerable to such attacks, it seems unlikely that a
malicious agent would be able to modify inode blocks in such a manner that
it could realize its sinister ambitions—by creating new inode blocks whose
hashes collide with those of their original counterparts—without corrupting
the file system. That is, it would be highly infeasible to perform many
unlogged operations before the entire file system became useless. Thus,
there is less of a security concern in applying this optimization to inode
blocks.

Even limiting content hashing to inode blocks can result in significant
improvements: inodes are updated frequently, and the blocks in which they
reside can quickly become a large portion of logged data—file system meta
data blocks can ultimately require as much disk space as data blocks [53]—if
they are preserved blindly. Thus in cases in which it is feasible to distinguish
inode blocks from data blocks at the block layer, as it is with the ext2 and
ext3 file systems, content hashing can help curtail log growth.

27

Chapter 4. Design

4.2 Version Browsing
VDisk's logging mechanism is simple and file system agnostic. To provide
adequate utility, a suite of sophisticated user-space tools are relied upon to
interpret file, system objects like files and directories. These tools combine
information stored in the log with a deep understanding of file system in
ternals to enable users to interact with versioned file objects rather than
versioned blocks. These tools never modify the logged data, and can thus
safely operate outside of the system's trusted computing base.

4.2.1 User-Space Tools
The capabilities of VDisk's version browsing tools are not limited merely
to individual file reconstruction. Theoretically, an entire read-only, user-
space file system could be built on top of the log, providing users with the
same features as standard file systems. However, considerably more work is
required to reconstruct a file from the log than is required to read a file from
a typical file system, as the reconstruction process can involve searching
large portions of the log for particular versions of particular blocks. A n
operation such as giving a detailed listing of a directory's contents could
be prohibitively expensive for a file system built on top of the log because
the log is temporally structured and may therefore fail to preserve spatial
locality. This performance penalty could possibly be sufficiently mitigated
with the use of a relational database to expedite the searching process, but
for the purpose of our prototype, we decided against implementing an entire
file system.

Instead, we provide two reconstruction tools. The first can recover a
specific version of a specific file; the user indicates a file path and a time,
and the tool reconstructs the newest version of the file that existed before
the given time. The second tool is slightly more general: given a file path, it
lists all versions of that file stored in the log; the user is then able to choose
one or a number of versions to reconstruct. Similar tools could display or
reconstruct the contents of a particular directory version. If desired, such
tools could even reconstruct entire volumes, although in most cases the
applicability of such coarse-grain reconstruction is limited to highly specific
tasks like kernel debugging [28] and post-intrusion analysis [14, 27].

While the ability to browse a file's version history is crucial, we expect
that it will not be used very frequently and thus does not warrant optimiza
tions that could adversely affect common operations like reading and writing
to current file versions. The mechanisms responsible for browsing read-only

28

Chapter 4. Design

version histories need not—and indeed should not—be implemented within
the kernel.

There is a fundamental difference between current file versions and ver
sion histories: the former are mutable and frequently accessed, while the lat
ter are immutable and infrequently accessed. The latency associated with us
ing current versions needs to be minimized, which is one reason why standard
file systems are included within the kernel, but there is simply no need to in
clude version browsing mechanisms in the kernel. Moreover, log-structured,
read-only version histories are amenable to current data management trends
which make use of powerful indexing tools to organize and search data. Just
as complicated indexing processes, such as those required by Google's search
engine, are more appropriately implemented in user space, the tools needed
to index and browse VDisk 's read-only file histories are better suited to user
space implementations.

4.2.2 VDisk Metadata Database

For the process of reconstruction, the most frequently used portion of the
log is the VDisk metadata—in particular, file system block addresses and
timestamps are referred to regularly while interpreting file system objects
and their versions. As mentioned, VDisk metadata entries are grouped
together in log segments; these segments are linked together to form the
entire metadata log. For convenience and efficiency, VDisk 's user-space tools
copy this metadata log, which typically constitutes less than 0.5% of the log
for file systems with a 4 K B block size, into a relational database.

Whenever a user-space tool is used, any new VDisk metadata entries in
the log are added to the database; the reconstruction tools then deal exclu
sively with the metadata log contained within the database. This greatly
facilitates the reconstruction process, as the brunt of the work is handled by
the database, which indexes the log and services queries based on file sys
tem block addresses and timestamp values. Leveraging a relational database
in the version reconstruction process is just one example of the benefits to
be gained from implementing version management tools in user space; the
database could also be used in the implementation of additional features,
such as content indexing of versioned files.

4.2.3 File Reconstruction

The process of file reconstruction is a file system-specific process of scanning
through the logged data—interpreting file system objects like inodes and

29

Chapter 4. Design

directories along the way—until the desired file version is located. It is based
upon the assumption that all file system metadata is eventually written to
disk—and duly logged—and can thus be reconstructed to obtain any file
system object at any time in history. Our reconstruction approach is similar
in spirit to that of gray-box systems such as D-GRAID [50]. However, while
D-GRAID uses its understanding of file system data structures to identify
the type of the file system stored on its disk, VDisk combines a similar
understanding of data structures with a priori knowledge of the file system
type to reconstruct file system objects from the block log.

VDisk can only be used to reconstruct file versions which are commit
ted to disk; versions which are overwritten in memory are irrecoverable. As
well, while both trusted components of VDisk—namely, the logger and the
cleaner—are compatible with any file system, the reconstruction tools are
not; a distinct set of tools must be developed for each supported file sys
tem. However, a collection of auxiliary libraries—such as the VDisk-specific
interface to the metadata database—can simplify this development process.

The general algorithm for reconstructing a file version consists of two
tasks: finding the inode of a file which corresponds to its desired version,
and collecting the correct versions of the data blocks referenced by the in
ode.1 Most of the work entailed by this algorithm lies in querying the log's
metadata database in search of entries for particular file system blocks at
particular times. Relational databases are ideally suited for these types
of searches, and are thus employed liberally in the implementation of this
process.

The first task of the algorithm is similar to the standard path resolution
algorithm: starting from the root directory, the process checks the contents
of each directory for the corresponding name listed in the path. If a match is
found, the process recurses on the newly found directory. If not, the process
returns a message indicating a failure to resolve the path.

However, when resolving all versions of a path, this algorithm is com
plicated by the introduction of a new temporal dimension. This means that
a single path resolution failure does not indicate an absence of the desired
path—the path could exist in a different version of the file system. Thus
the path resolution procedure must be repeated on each version of the file
system until either the path is fully resolved or the given time constraints
are exceeded.

For example, to list the contents of a directory that we know existed
1 This algorithm will also work for file systems that use metadata structures other than

inodes, like V F A T ; we limit the following discussion to inodes for convenience.

30

Chapter 4. Design

at time t, the following query can be used to locate the appropriate root
directory inode, assuming that the root directory has a block address R and
the file system adheres to an ordered write model:

SELECT log_block_address FROM vdiskjnetadata
WHERE fs .b lock_address = R AND time < t
ORDER BY time DESC LIMIT 1 ->

Because we know the directory "existed at time t, we know that the newest
version of the root directory written before t wil l contain a path to the
target directory. This query returns the log address of the block containing
the newest root inode before t with a path to the target directory. Given
this address, we can find the inode number of the next directory in the
path, translate this inode number into a block address, and perform the
next iteration of the path resolution algorithm.

If we do not know the exact time that a directory existed, this process
must be modified. For instance, imagine that we are given a time range (£,
t + 6), and we want to find the newest version of a directory that existed at
some point within this range. To do this, we would query the database for
a list of all appropriate root directory versions with the following command:

SELECT log_block_address FROM vdiskjnetadata
WHERE fs_block_address = R AND time < t + 5

ORDER BY time DESC
Notice that in this case we cannot limit the query to a single result. Instead,
we must collect a list of root directory versions that were written to disk
before t + S. We sort this list in reverse chronological order and perform
the path resolution process on each version until we successfully find the
target directory. This query places no lower bound on the time of the root
directory, because even though we are only interested in versions of the
target directory that existed after time t, it is possible that no versions of
the root directory were logged between (t, t + S). For instance, if the target
directory was created at time to such that to « t and the root directory
persisted unchanged after the creation of the target directory, the newest
version of the root directory may be much older than the newest version of
the target directory, since subsequent updates to the target directory will
not produce new versions of the root directory. Thus lower time bounds for
the target directory do not always apply to every directory along the target
path.

In the most general case, we can search the entire file system history for
every version of a particular directory. To do this, we generate a list of all
versions of the root directory:

SELECT log_block_address FROM vdiskjnetadata

31

j

Chapter 4. Design

WHERE fs_block.address = R ORDER BY time ASC
While this first query might return a large set of blocks for aged file systems,
subsequent queries on subdirectories wil l be performed with converging time
constraints. For example, if the first root version existed at time to but
the next directory in the target path, residing in block B , was not created
until time tx, the second query performed in the recursive path resolution
algorithm need not include the extraneous times:

SELECT log_block_address FROM vdiskjnetadata
WHERE fs.block_address = B and time >= tx

ORDER BY time ASC
Once the appropriate version of the file's inode is found, the second

task of reconstruction is commenced: appropriate versions of all the blocks
referenced by the inode are collected and written in order to a user-specified
output file. The process of collecting the appropriate versions of blocks is
simple for file systems which impose order on writeback operations (i.e.,
file systems which flush all data to disk before writing its corresponding
metadata): given a version of an inode, we simply take the newest versions
of the referenced data blocks that are older than the inode. For file systems
that might write metadata blocks to disk before flushing data blocks, this
process is more complicated.

Consistency Issues

To successfully reconstruct file system objects, the VDisk reconstruction
utility must be able to understand the relationship between versioned blocks
at any given time. Part of this understanding comes from the file system
metadata, such as inodes. However, some of it must be inferred from the
implicit temporal information contained in the log. For example, simply by
inspecting an inode, the reconstruction utility can determine the addresses
of any blocks that belonged to a particular file version, but it must infer
the period in time during which the blocks belonged to that version by
evaluating the time at which the blocks were written to the log.

If a file system imposes write ordering, guaranteeing that data is writ
ten to disk before its corresponding metadata, it is straightforward for the
reconstruction utility to infer the temporal relationships of blocks. Many
newer file systems do in fact impose such write ordering, as it helps to avoid
file system inconsistencies during arbitrary system failures. However, some
file systems, such as ext2, do not impose write ordering, making file recon
struction more difficult.

Moreover, the write ordering imposed by some file systems does not typ-

32

Chapter 4. Design

ically preserve application-level consistency. For example, if an application
writes block A then B of a file, a version of that file that contains the new
value of B, but not A, is inconsistent. In the VDisk metadata log, these
writes are represented by two timestamped entries. They are written to the
log and timestamped, however, in the order the blocks are delivered to the
block layer, which may be different from the order the application writes
them if disk writes are asynchronous to the application, as they typically
are in local Unix file systems. As a result, the log might record B before
A. If so, VDisk's version reconstruction .mechanism risks delivering an in
consistent version of the file if a user requests a version at a time that falls
between the timestamps of these two entries.

For file systems that impose write ordering, this problem is confined to a
single file. For file systems that do not impose write ordering, inconsistencies
can extend across multiple files. For example, if an inode is truncated and
one of its blocks is allocated to a new inode shortly thereafter, the log may
record two different inodes that reference the same data block at nearly the
same time. If the time gap between the two inode entries and the data block
entry is short enough, it is impossible for VDisk to tell whether the block
version belongs to the old inode or the new one.

In all of these cases, the problem is resolved if there is a bound on the
time between when an application writes to a file and when the resulting
block modifications are written to disk and if there is a period of update
quiescence for each file that is at least as long as this bound. In this case,
the version-access tool can ensure consistency by only delivering file ver
sions that have been quiescent for the disk-write-bound period of time. For
example, most U N I X systems flush dirty, blocks to disk periodically, ev
ery 30 seconds. For these systems, the version-access tool can guarantee
application-level consistency by restricting the file versions it reconstructs
to those that remain unchanged for at least 30 seconds. It is easy for the
tool to establish this constraint by examining the timestamps of metadata
entries and rolling forward when necessary until the gap between the block
versions it selects and the next version of those blocks in the log is at least
30 seconds.

A potential problem remains, however, for files that are accessed so fre
quently that there are insufficient periods of quiescence or for file systems
that provide no bound on how long updates can be cached in memory. In
these cases there is little VDisk can do but rely on higher-level tools to
determine which reconstructed versions are consistent.

Fortunately, applications that care about the consistency of disk data
typically have application-level (or in the case of file system metadata, file

33

Chapter 4. Design

system-level) consistency constraints that, when combined with the VDisk
version information, can be used to extract consistent versions in a straight
forward manner. A n application that uses atomic transactions to update
a file, for example, places specific ordering constraints on transaction log
updates and between certain log entries and target-file checkpoints. As a
result, the transaction log is properly ordered in the VDisk logs and any
transaction log entry that establishes a consistent checkpoint is properly or
dered with respect to updates to the target file. It is thus straightforward for
the transaction system's recovery manager to establish version consistency
in much the same manner it would when recovering from a crash. As an
other example, consider a file updated in append-only fashion. In this case,
the ordering constraint on VDisk log entries is the logical block number of
updates and not their timestamp, so the VDisk-log order is irrelevant.

These consistency issues are an undesired artifact of the difficulties of
providing file-grain versioning at the block level. Such difficulties can lead to
situations in which reconstructing data can be difficult, sometimes requiring
help from higher-level applications—but the data is still available. In con
trast, more complicated versioning file systems are better suited to handle
these consistency issues, at the cost of a less dependable system. Thus while
it is less likely that a user will encounter consistency issues with a versioning
file system, it is arguably more likely that a user wil l encounter security and
dependability issues, which could result in the irrevocable loss of data.

4.3 V e r s i o n P r u n i n g

Version pruning is a sensitive process that must be handled with extreme
care: an insecure delete mechanism could easily undermine the reliability
of the entire versioning system. Moreover, providing support for arbitrary,
user-initiated version pruning would make VDisk susceptible to the very
dangers that versioning aims to protect against. For these reasons, a more
structured deletion interface is called for.

A policy-based deletion scheme is attractive because policies can prevent
users from erroneously deleting important information. Policies require that
users articulate retention strategies only once, during log installation; af
ter this, the established policies wil l protect information automatically and
transparently, even in the event of user error. From a reliability standpoint,
policies are appealing because they can enable secure version pruning. How
ever, their feasibility as a practical deletion strategy depends upon whether
or not efficacious policies—i.e., policies that protect important information

34

Chapter 4. Design

and enable the reclamation of unneeded blocks—can be suitably expressed.
To protect against both erroneous and malicious mishaps, VDisk pro

vides a trusted log cleaner, which is responsible for serving all delete re
quests. Before any delete request can be satisfied, the log cleaner must
verify its legality with respect to the established retention policies.

The log cleaner is trusted, and as such should be as simple as possible.
However, it is often difficult to verify that a delete request will not destroy
important file system information: retention policies can impose sophisti
cated constraints that can be difficult to evaluate, especially at the block
layer. For this reason, every delete request is couched in terms of a simple
proof. In addition to describing which blocks should be deleted, this proof
provides adequate evidence that the deletion is in accordance with the re
tention policies established during the installation of the log. The secure
cleaner needs only to verify the correctness of the proof and, if appropriate,
perform the deletion.

4.3.1 Deletion Proofs

In designing the secure cleaner, we have again followed a stratified ap
proach. We use an untrusted, user-space application to query the metadata
database in search of segments that contain a large number of deletable
blocks according to the policies being used. This application then sends a
list of proofs to the secure cleaner, which performs the simple verifications
required to confirm that no important blocks will be deleted.

In general, much more effort is required to construct proofs than to
verify them. By separating the tasks of creating and checking proofs, we
have developed a two-tiered system in which the difficult work is done in
user space while the critical task of protecting data is reduced to simple
proof verifications. Our approach is similar to that of Exokernel [17], in
which a simple resource manager ensures equitable resource allocation by
evaluating predicates submitted by higher-level systems.

The feasibility of this approach hinges upon the ability to construct
proofs which adequately evince the expendability of a block. One possible
method of expressing these proofs would be to develop a domain-specific
language in which both block layer and file system layer information could
be communicated. For instance, upon installing the log, a user could register
a number of templates with the secure cleaner; these templates could be
used to verify the type of a particular block and also to extract important
information from it, such as which other blocks it is dependent upon. If the
relationships between these templates are adequately described, the secure

35

Chapter 4. Design

cleaner could use them to check sophisticated, file system-aware proofs.
For example, consider a name-based policy that stipulates the retention

of all versions of any file with a ".doc" suffix while allowing the reclamation
all other files. With this policy, the simplest way to prove that a block is
deletable—assuming that files do not share blocks—is to demonstrate that
it belongs to a file (or file system object) whose name is not suffixed with
".doc". This entails producing a version of an inode that references the
block and producing a version of a directory entry that names the inode.
For complete security, the directory entry must be authenticated as actually
belonging to the file system metadata (rather than existing as the data
block of a specially-contrived file); for file systems with dynamic directory
block addresses, this requires tracing the path of the directory containing the
proffered entry all the way to some system invariant, such as the root inode
or superblock, whose address remains constant throughout the lifetime of
the file system.

To enforce this policy at the block layer, VDisk's secure cleaner would
require template functions capable of:

• authenticating the system invariant (e.g., identifying a block as the
root directory inode)

• interpreting inode data block references

• interpreting directory entries

• translating the inode identifiers given by directory entries into inode
block addresses

With these templates at its disposal, the secure cleaner could verify a
block's eligibility for deletion by evaluating a proof consisting of a link of
block addresses, starting with the system invariant and ending with the data
block in question. The cleaner would authenticate the root directory and
interpret it to ensure that one of its entries named the inode designated by
the next block address in the proof; at this point, the cleaner can consider
that inode authenticated. This process, which is essentially a process of veri
fying the translation of a file system path into a sequence of block addresses,
would be continued on each successive block in the proof, until the cleaner
could verify the name and authenticity of the inode which references the
block to be deleted. Having done this, the cleaner would also have to verify
that no other versions of the inspected blocks exist with timestamps greater
than the inspected versions and less than the block to be deleted; this is
necessary to prove that the correct version of the path is being evaluated

36

Chapter 4. Design

and that, for instance, there does not exist a newer version of the path in
which the target file name has a ".doc" suffix.

The complexity of implementing this mechanism would vary with file
systems. For instance, in ext2 and ext3, the first and last template functions
can be implemented with simple block address evaluations: the root inode
always has an inode number of two, and inode numbers are deterministically
mapped to block addresses. For file systems with dynamic inode allocation—
such as ReiserFS, for example—the process of translating an inode number
into a block address would involve traversing the inode tree which maps
inode numbers to block addresses; additional template functions might be
required to perform this translation at the block layer.

While templated deletion proofs would enable the enforcement of se
mantically richer retention policies at the block layer, we have excluded file
system information from our proofs. A central idea of VDisk is to keep crit
ical components as simple as possible, so we have opted not to implement a
file system-aware cleaner. As Section 7.2.3 shows, this is a viable approach,
because the secure cleaner is still able to reclaim a substantial number of
unneeded blocks without interpreting file system semantics.

Our proofs are limited to ordered lists of block version descriptors, which
contain a block's file system and log block addresses as well as the time at
which it was written. This makes the secure cleaner's job exceedingly simple,
but it imposes the constraint that all retention policies must be expressible
solely in terms of blocks.

This proof-based deletion system provides a dependable infrastructure
that can be used to guarantee the security of every logged block. This
infrastructure allows users to submit deletion requests at wil l while ensuring
that any operation that could result in the destruction of logged data must
be explicitly validated by the secure cleaner. The secure cleaner provides
reliable protection against both incidental and malicious data destruction by
evaluating simple proofs, and the logic required to implement this cleaner is
quite simple; all of the difficult logic is pushed into the user-space process of
constructing deletion proofs, where an error wil l result in an invalid proof
rather than the illegal destruction of data.

4.3.2 Retention Policies

The secure cleaner is simply an enforcer: it ensures that all deletion requests
adhere to the retention policies established during the initialization of the
log. The retention policies are crucial because they must express the rules
that wil l prevent the loss of important information. Developing general

37

Chapter 4. Design

guidelines about which blocks should be eligible for deletion can be a difficult
task, and in the case of VDisk, this difficulty is exacerbated by the fact the
these rules must be expressible purely in terms of blocks.

VDisk's retention policies are derived from a model of file system access
patterns developed by Elephant [47]. One key notion of this model is that
important files which are modified by users typically vacillate between two
states: a volatile state, in which the files are updated frequently as new
changes are made, and a stable state, in which landmark versions of the files
persist unmodified for a period of time. Landmark versions are important
for two reasons: the first is that they seem to indicate versions of files which
users are satisfied enough with to leave unchanged; the second is that they
represent versions of files which users are likely to be more familiar with and
remember for longer periods of time.. Volatile versions of files, on the other
hand, are not around for very long, and seem therefore to be of less value
to users, who quickly overwrite them; it also seems less likely that these
ephemeral versions will stand out in users' minds for very long. As time
progresses, we expect that the minute differences between various volatile
versions of a file will fade from a user's memory, while the differences of
landmark versions will remain more memorable.

With this model in mind, we have developed two policies, Keep Safe and
Keep Milestones, which are enforceable from the block layer and which we
feel will be of value to typical users. These policies can be used individually
or in conjunction, and additional policies can be added to the system as seen
fit.

Keep Safe

The Keep Safe policy stipulates that any file system update must be re
versible for a specified interval, called the Keep Safe Window. This policy
is employed by S4 [54], which is intended to support post-intrusion analysis
and thus must retain all file modifications to enable accurate log replays.
The Keep Safe policy is also helpful for typical users, as it provides liberal
undo capabilities [47].

To ensure that any file system modification occurring within the Keep
Safe Window can be undone, it is necessary to keep some block versions
that are outside of the Keep Safe Window. For example, consider a file that
has not been modified for one year in system with a Keep Safe Window of
thirty days. If this file is updated, there will be two versions of it in the
log: one which is a year old, and one which is current. To ensure that the
newest update can be undone for thirty days, the year-old version cannot be

38

Chapter 4. Design

reclaimed until it is 395 days old, at which point the new update is pushed
out of the Keep Safe Window and is no longer protected by the Keep Safe
policy.

The proof that a block may be deleted according to the Keep Safe policy
consists a reference to the candidate block and a reference to a proof block,
which is a different version of the candidate block. The cleaner must verify
that the following constraints are satisfied:

1. the candidate block and the proof block both correspond to different
versions of the same file system address

2. the difference between the current time and the timestamp of each
block is greater than the Keep Safe interval

3. the candidate block is older than the proof block

If all three of these conditions hold, then the candidate block may be deleted.
Otherwise, the proof is invalid and the delete request is denied.

Keep Milestones

The Keep Milestones policy is similar to the Keep Landmarks policy of
Elephant [47]. The Keep Landmarks policy retains stable versions of files,
with the exact definition of "stable" changing as versions age. For example,
one-month old files may have to persist unchanged for only one day to qualify
as landmark versions, while one-year old files may have to persist unchanged
for a month before they are considered landmarks.

The Keep Landmarks policy operates exclusively on file system objects,
and is thus difficult to express in the block-level proofs required by VDisk's
secure cleaner. The Keep Milestones policy is an approximation of the Keep
Landmarks policy. Because VDisk operates beneath the file system, it has
no way of ascertaining when a particular file has been closed, and as such, it
cannot determine what block writes constitute the last update to a particular
version of a file. It can observe the write patterns to individual blocks,
however, and any block which goes unmodified for some threshold period of
time can be considered a milestone block.

Note that not all milestone blocks necessarily correspond to landmark
file versions—a volatile file version may contain one block that has persisted
unchanged for a long period of time—but all landmark files are composed
entirely of milestone blocks. Thus by retaining all milestone versions of
blocks, VDisk can ensure that all landmark files wil l be reconstructable.
However, the Keep Milestones policy will result in the retention of blocks

39

Chapter 4. Design

that could have been reclaimed by a file system enforcing a Keep Landmarks
policy.

For instance, consider the scenario in which a file, originally composed
of three blocks, is truncated to a size of zero. In this scenario, a new inode
for the file will be written to the log upon the truncation, but the three
truncated blocks will not. If the file persists unchanged in its truncated
form for an adequate period of time, the Keep Landmarks policy will man
date the retention of the empty file, while the three truncated blocks could
be reclaimed by the file system. However, the Keep Milestones policy is
concerned only with block writes: any block that is not overwritten for a
predetermined amount of time must be retained. Thus, if the three trun
cated blocks are not allocated to a new file and written within the milestone
window, the Keep Milestones policy wil l mandate the retention of these
blocks, even though they do not belong to a landmark file version.

The primary disadvantage of the Keep Milestones policy is that it cannot
reclaim blocks as aggressively as can the Keep Landmarks policy: due to
a dearth of file system information, the Keep Milestones policy must be
conservative in its retention rules. However, this conservatism does result
in a policy that will retain all landmark file versions, and it is applicable to
a number of file systems. Moreover, because it can be expressed solely in
terms of blocks, it fits nicely within the secure framework of VDisk. So long
as this policy allows for the reclamation of an adequate number of blocks,
it constitutes an appealing secure deletion policy.

The conservatism of the Keep Milestones policy arises from an additional
constraint that is not imposed by the Keep Landmarks policy. According
to the Keep Landmarks policy with a retention window of S seconds, a file
version must be retained if it does not change for at least 5 seconds. However,
an analogous Keep Milestones policy, again with a retention window of 6
seconds, must impose two constraints: (1) a block version must be retained
if it does not change for at least S seconds, and (2) a block version must be
retained if there do not exist two additional versions of the block, one older
and one newer, that fall within S seconds of each other.

This extra constraint is required by the Keep Milestones policy because
the secure cleaner does not distinguish file system inode blocks from other
data blocks; at the block level all blocks look the same. This poses a potential
problem for inode blocks, because they store multiple inodes and are thus
shared among multiple files.

For example, consider the following update sequence to two files X and
Y that share an inode block: extend X at t\, extend Y at ti, extend X
at £3. Figure 4.1 shows the four inode block versions this sequence would

40

Chapter 4. Design

CxD
(ZD

tO t l t2 t3

Figure 4.1: Inode Block Example

produce in the log. Assume the milestone interval for this example is S.
At first glance, it seems that only the block version at time t% should be
retained, because no other block versions persist unchanged for longer than
6 seconds. However, the version of file X that was extended at time t\
persisted unchanged for more than 6 seconds, and so its inode, which exists
in the block versions at t\ and t^, must be retained. With the extra Keep
Milestones constraint, the block version at to must be kept because no older
versions of the block exist; the version at t\ may be deleted because it is
bracketed by two versions that are within one milestone period of each other,
while the version at time ti must be kept because (after the version at t\
is deleted) it is not similarly bracketed; and the version at tz must be kept'
because there is no newer version of the block.

Because blocks can be shared between files, it is not sufficient merely to
keep entire block versions that persist unchanged for the milestone interval:
VDisk must retain any portion of any block that persists unchanged for the
interval. The milestone proof constraints guarantee that this requirement
is upheld by retaining the first and last version in each sequence of versions
that exist within the same milestone interval. Any byte of any intermediate
block in such a sequence will either be identical to the corresponding byte
of the first version in the sequence, or identical to the corresponding byte of
the last version in the sequence, or different than the corresponding bytes
of both the first and the last versions in the sequence. In the first two cases,
the block can be deleted because it contains redundant data. In the last
case, the block can be deleted because it did not persist unchanged for the
milestone interval.

A milestone policy for a candidate block version must contain a reference
to two proof block versions. The secure cleaner verifies the Keep Milestones
constraints by reading the metadata entries of the candidate block and its

41

Chapter 4. Design

two proof blocks and ensuring that the following criteria hold:

1. all three entries correspond to different versions of the same file system
block address

2. the candidate entry's timestamp falls within the range defined by the
two proof blocks' timestamps

3. the difference of the two proof blocks' timestamps is less than the
milestone interval

If these constraints are not satisfied, the secure cleaner denies the request.

Combination of Policies
Both the Keep Safe and the Keep Milestones policies can be used individu
ally, but we feel they are better used in conjunction. A Keep Safe retention
period—perhaps of one week, or one month—can be established, within
which all versions of all blocks are retained. After this period, blocks can
be reclaimed according to the Keep Milestones policy. This combines the
liberal undo capabilities of Keep Safe with a more selective retention policy
for older files in an attempt to find a reasonable balance between storage
reclamation and data preservation.

4 . 3 . 3 Security Issues

VDisk's secure cleaner must be capable of operating correctly and pro
tecting data even if the user-space tool misbehaves or is compromised. The
secure cleaner overcomes its distrust of the user-space tool by using retention
policies, translated into the form of block constraints, to verify each proof
submitted from user space before any block is deleted. While.the secure
cleaner expects that the proofs it receives wil l be valid, there are a number
of reasons why this might not always be the case.

In the simplest scenario, the user-space tool might construct an erroneous
proof. For instance, when constructing a milestone proof for a block with
file system address B, a bug in the user-space tool might cause it to submit
a proof referencing a version of block with address B'. Because a milestone
proof requires references to three different versions of the same file system
block address, the secure cleaner would quickly find that this proof is invalid
and would therefore deny the delete request.

A more insidious scenario could arise if the user-space tool was compro
mised. For example, an attacker might construct a list of proofs in which

42

Chapter 4. Design

8

S ' ^ N

1 : 1 1 1
tO tl t2 t3

8

Figure 4.2: Block Version Timeline

certain entries have been omitted in an attempt to fool the secure cleaner
into marking blocks as eligible for deletion when they are not. However, the
secure cleaner can survive such an attack because the algorithm for enforcing
the block policies is such that any omissions can only result in the reten
tion of blocks which would otherwise be eligible for deletion, and never the
converse. The milestone check is implemented by comparing a given block
to a previous version and a newer version; if a malicious process provided
a list which omitted a block's true previous version and- instead indicated
an even older version, this would only increase the interval between the two
proof block versions, reducing the chances that the candidate block could
be deleted. Similarly, an attacker could not achieve the illegal deletion of a
block by providing an inaccurate reference to a newer version, because doing
so would again increase the interval between the two proof blocks.

However, the Keep Milestones policy does allow some room for manipula
tion by an attacker. For example, consider the case illustrated in Figure 4.2,
in which four versions of a block are written to the log at times to through
£3. The version at time to must be retained because there is no earlier ver
sion, and the version at time £3 must be retained because there is no newer
version. There is some ambiguity concerning the versions at times t\ and t^-
if they are both retained, they are both eligible for deletion, but when one
of them is deleted, the other must be retained. In a sense, block reclamation
is a contract: the secure cleaner will allow the deletion of some blocks, so
long as doing so will not disrupt the invariant that one version of a block
is retained for every milestone interval in the log that contains one or more
versions of that block. In this example, an attacker could contrive to have

43

Chapter 4. Design

either the version at t\ deleted, or the version at ti deleted, but she could
not have both versions deleted.

This is still in accordance with the Keep Milestones policy—which man
dates that any block version which goes unchanged for 5 seconds must be
retained—because if some portion of the version at time t\ did not change
for 6 seconds, it must be identical to the corresponding portion of either
the version at time to o r ti, and similarly, if some portion of the version
at time ti remained unchanged for 6 seconds, it must be identical to the
corresponding portion of either the version at time t\ or £3. Thus any im
portant information that would have been retained by keeping the block
version at ti will likewise be retained by keeping the block version at ti,
and vice versa. However, if an attacker made incriminating changes at t\
and overwrote them at ti, she could destroy the evidence of her attack by
deleting the version at t\ and retaining the version at ti.

This illustrates an important characteristic of the Keep Milestones pol
icy: it does not guarantee the specific times at which block versions wil l be
retained, but it does guarantee the retention of block versions which persist
unchanged for a sufficiently long time. This policy is clearly not appropriate
for post-intrusion analysis, as any changes made between milestone versions
of blocks will not be retained.

As well, the Keep Milestones policy is susceptible to an attack in which
an intruder could cause a file that would otherwise become a milestone file
to be reclaimed. To achieve this, the attacker would have to update a user's
file version within the milestone interval of its last milestone version and
then ensure that the file persisted unchanged for the rest of the milestone
interval. At this point the intruder's version is a milestone version and the
user's is not, though it would have been without the intruder's update. The
user's version is retained for the Keep Safe period, but following this, the
user's version can be deleted without violating the Keep Milestones policy.

Keep Milestones thus provides a weaker intrusion detection window once
the Keep Safe interval has expired. Nevertheless, it is weakened by a declar
ative constraint that limits the versions that can be deleted. The constraint
ensures, for example, that once a version becomes a milestone it is invulner
able to attack. We hope that this principled approach to version deletion
wil l be of substantial benefit in limiting the damage an intruder can inflict
even after the Keep Safe interval.

VDisk's deletion proofs allow the secure cleaner to evaluate a block's
eligibility for deletion without expending a lot of effort. In the case of
milestone proofs, the secure cleaner is spared the effort of scanning the
metadata log in search of a block's previous version and its next occurring

44

Chapter 4. Design

version; instead, this work is done in user space with the aid of a relational
database, while the secure cleaner's task is limited to performing a few simple
verifications. Even when dealing with erroneously or maliciously constructed
proofs, the secure cleaner is able to quickly determine whether or not a block
is really eligible for deletion.

4.4 S u m m a r y

VDisk is designed to provide secure, reliable versioning. To attain this goal,
we have isolated the critical components of VDisk. The mechanisms which
constitute potential vulnerabilities to the system, namely the logger and the
cleaner, perform only very simple tasks. These mechanisms are so simple
that they can be audited for correctness and confidently included in the
system's trusted computing base. Furthermore, these mechanisms can be
protected by a virtual machine monitor, and can thus safeguard versioned
data even when a user's kernel has been compromised. This simplicity and
security is achieved at the expense of write throughput.

While the critical components of VDisk remain ignorant of file system
semantics, user-space utilities make use of a thorough understanding of file
system internals to enable the reconstruction of individual file versions. The
process of file reconstruction entails querying the log for desired block ver
sions, which are interpreted as file system objects to produce the desired
files or directories. While file reconstruction can be an involved process, it
does not modify versioned data and thus does not introduce reliability or
security vulnerabilities.

Because user-initiated storage space reclamation can constitute a signif
icant threat to versioned data, we have designed an automated log cleaning
process. A secure log cleaning mechanism operates from within the trusted
computing base to enforce deletion policies and protect against erroneous or
malicious delete requests. A n untrusted user-space application is responsible
for the more difficult tasks of locating segments which wil l most benefit from
cleaning and providing the secure mechanism with proofs of each block's el
igibility for deletion.

45

Chapter 5

Algorithm Details
VDisk logs blocks rather than file system objects, but a primary objective
of VDisk is to support file system-level versioning and cleaning. To achieve
this, some means of translating the block log into a file system history is
necessary. This process of translation is of course highly dependent upon
file system characteristics. There are two aspects of some file systems that
can make this translation particularly difficult: a lack of write ordering [51],
and the sharing of blocks by multiple file system objects.

Newer file systems, such as ext3 and Reiserfs, impose constraints on the
order in which data is written to disk. To aVoid inconsistencies, these file
systems ensure that when a metadata object references data blocks, the data
blocks are committed to disk before the metadata blocks. VDisk can use
these ordering constraints to make important inferences about the sequence
of file system operations captured in a log. However, some older file systems,
such as ext2, do not impose any write ordering constraints, thereby reducing
the amount of information available to VDisk during file reconstruction.

Additionally, some of the policies employed by VDisk 's secure cleaner
work best under the assumption that blocks are not shared between files.
While this is typically the case for data blocks, it is not for metadata blocks.
Because most file descriptors are significantly smaller than a block, file sys
tems tend to pack multiple descriptors into a single block. For this reason,
special care must be taken when designing VDisk 's retention policies.

This chapter presents a formal description of some of VDisk 's algorithms
and provides a more detailed discussion of the difficulties mentioned above.

5.1 Notation and Definitions

• A block variable B is defined by the tuple &(A,L,T) . where

- A indicates a file system block address

- L indicates a block log location

- T indicates a block timestamp value

4 6

Chapter 5. Algorithm Details

• A block instance is a block variable whose parameters are bound.
Block instances are represented with lowercase parameter variables:
J5 (a i f) . Block variables may also be only partially bound. For example,
B(a,L,T) represents the set of all blocks with file system block address a;
this set may contain many block instances with different log locations
and timestamp values, and thus these parameters are left in uppercase,
indicating their free status.

• A n asterisk next to a block instance indicates that the block is live:

BtaUM —> - ^ W) K a = h) A (** > *»))

• A subscripted set variable contains exactly the number of elements
indicated by its subscript:

Sn —» |5 n | = n (5.2)

• A X B denotes that A immediately precedes B. That is, there is no
block instance C with a file system block address identical to A which
existed after A and before B:

(A«,ia,ta) 1 B{b<kM) —> - 3 C (C , / C) f c) [(c = a) A {ta <tc< tb)} (5.3)

• B<5>(0 i ; , t) denotes that B(a ,(, t) is a milestone block version with a mile
stone lifetime 5. The formal definition of a milestone block is given in
Section 5.3.3.

• A file system with n blocks is defined by the set FS where

FSn = {B{0tL,T),B{hLJ),...,Bin_.hL,f)} (5.4)

• The most recent version of a file system of n blocks is thus denned as

FSn - { B (0 , (o , t o) ' - B (* l , « i , t i) ' - ' - B (n - l , « „ _ i , t n - i) } (5 - 5)

• A file set FF is defined by the tuple FF(M>D), where

- M = the set of all block instances that compose the file's descrip
tors

— D = the set of all block instances that compose the file's data

47

Chapter 5. Algorithm Details

Unlike a file system, the size of a file set is not constant. In particular,
the file set grows as new blocks are allotted to the file.

• A file instance is a subset of the corresponding file set. For simplicity,
we assume that a file's metadata will comprise one or a fraction of one
block, while a file's data wil l comprise an arbitrary number of blocks.
A file instance is defined by the tuple F(M(., t;)tD,tf)i where

— tf is the instance time of the file

— M(j(. t .) is the block instance that contains the file's descriptor at
time tf

— D is the set of all blocks that compose the file's data at time tf

It is not necessary that all blocks within the set F share the timestamp
value tf of the file itself. Rather,

VB (a , , i t)[(B (o ,« i 0 e Fn) — ((r- < */)A-.3BW t > t t)[(6 = o)A(f< tb < tf)])],

or
V£(„,«,t) [(BiaU) e >„) — (B{a,i,t) * */)] (5-6)

• When we speak of the size of a file, we refer to the number of data
blocks which belong to the file at any given instant. A file F with
n data blocks is denoted Fn, where Fn = (M^;.^.),Dn,t). The most
recent version of the file is denoted F*.

• Note that a file instance is live if and only if

V f l W , o [B W , t) 6 f » ^ B w , f c)] (5-7)

5.2 File Reconstruction

Given a time tf and a file descriptor block address i, we reconstruct the file
F{M{i<L<T),Dn,ts) as follows:

1. We find the file descriptor block M ^ ^ ^) which is closest in time to,
but earlier than, tf.

2. From the file descriptor, we determine the set Dn, which enumerates
the blocks contained in the file instance F at time U. That is,

Dn = { B(0,L0,T0),B(l,Li,Tl)' -> B(n-l,Ln-i,Tn-i)}

48

Chapter 5. Algorithm Details

3. Finally, we collect one instance of each block enumerated by Dn. Each
block instance should have a timestamp value which appropriately
corresponds to fj.

As noted in Equation 5.6, not all block instances in Dn wil l necessarily
have timestamp values of U. In fact, depending on the file system's write
ordering, the timestamp values of the block instances described by the file
descriptor block instance M ^ ; ^) may not even be less than U—that is,
some file systems may write a file's metadata to disk before writing its data
to disk. For this reason, choosing appropriately correspondent timestamp
values for file reconstruction is not always a trivial process.

We consider two common write ordering models, based on the journaling
modes of ext3: writeback and ordered.

5.2.1 Ordered Models

File systems adhering to an ordered model write a file's data blocks to disk
before writing its metadata blocks. This ensures that file metadata will
never reference stale data blocks, even in the case of an arbitrary system
failure. ext3's ordered mode adheres to this model.

Under this model, file reconstruction is simple: to choose data block
instances which appropriately correspond to a file's metadata block instance,
we merely choose the data block instances which were written immediately
prior to the metadata block instance in question. That is, for a reconstructed
file F(MiiM,ti),Dn,tf)

B { a U) e Fn —-> [B{aU) r< M{iMi)] (5.8)

This method is guaranteed to reconstruct a consistent file (with respect to
the file system, but not necessarily the application), because the presence
of a file descriptor block instance in the log indicates that all data block
instances to which it refers have already been committed to disk.

5.2.2 Writeback Models

File systems adhering to a writeback model impose no write ordering. After
an unexpected system failure, file descriptors may reference data blocks
which were not committed to disk before the failure; such files are said to
contain stale data. ext3's writeback mode and ext2's only mode adhere to
this model.

49

Chapter 5. Algorithm Details

Under this model, file reconstruction is more difficult, because the pres
ence of a file descriptor block instance M ^ ; . ^) in the log does not guarantee
that all the data block instances to which it refers have timestamp values
less than or equal to £j. Thus under such a model,

_'(-B(a,i>t) G F (M w . M) , D n , t s) • iB(aU) ^ MWi,t<)])-

In this case, determining which data block instances compose the set Dn

is not simple, because some data block instances may be much older than
M(itiuti) while others might be slightly newer. However, we have developed
a heuristic to simplify the task.

Linux kernels provide a dedicated process which is responsible for peri
odically flushing dirty buffers to the disk to limit data loss upon a system
failure. This process, known as pdflush, is triggered by the occurrence of one
of two events:

1. The number of dirty buffers in the kernel exceeds a predetermined
threshold value

2. The flush timer expires

In typical kernel configurations, the flush timer is set to 30 seconds (tft =
30). This sets an upper bound on the extent to which a file's metadata can
precede its data in reaching the disk:

V £ (0 i W 6 F(Miili^Dnttf)[t < (U + tft)} (5.9)

To reconstruct a file in this case, we take ti as our reference point. For
each file system block address j referenced by the descriptor block Mtitlitti),
there are three possible scenarios:

1. -.35 (a,j o,t o)[(a = i)A(t „> t0]

In this case we choose B (0 | j o j t o) such that B r< M .

2- -3B'a,iaita)Ka = j)r\{ta<U)]

In this case we choose B (0) j 0 i t o) such that (a = j) A -^3B(bjbitb)[(b =
j)/\(tb<ta)\

3- 3B(„ ,M o) , B (bM„)K a = b = j) A (ta <U< %)}

This case is ambiguous: perhaps block instance B^,lb,tb) belonged to

50

Chapter 5. Algorithm Details

the file at time t/ but was not committed to disk until pdflush was trig
gered by a timer expiration, or perhaps block instance B(b,lb,tb) w a s n ° t
added to the file until some time after tf.

In some scenarios, file system-specific information can be used to re
solve the difficulty. For instance, if M (i] (. t .) contains a generation
identifier, we can find the first version of M^p) with the same gen
eration number. Cal l this origin block descriptor M(iti0ttoy, if there are
no data block instances with file system address j existing in the log
after (t0 — t/t) and before ti, then we know that all block instances
of address j existing before ti did not belong to file F(M T.),£>„,*/)•
That is,

VB (a,M)(a = j)[{t <{t0 - tft)) —> (B{aM $ F{M{IAIH)TDNTTF))}

In this case, we can ignore B (a) j 0) t o) and choose B(bilbitby

If no heuristics can be used to accurately resolve the problem, the
reconstruction program must inform the user of the situation. For
convenience, the program can present multiple reconstructed versions
and allow the user to choose the desired result.

5.3 Log Cleaning

Log cleaning is a critical task and thus must be trusted. In order to improve
reliability, the cleaning mechanism should be as simple as possible. We
provide three retention policies, Keep Safe, Keep Milestones, and Keep Safe
+ Keep Milestones, which are enforced by a simple kernel component.

5.3.1 Keep Safe

The Keep Safe policy is quite simple: any file system update must be re
versible throughout the established retention interval 53.

Given a block instance -B(a,(,t)> a Keep Safe window 5S, and a current
time tcur, the following suffices as proof that -B(a,i,t) is deletable according
to the Keep Safe policy:

Deletable(B(atitty) <—> (tcur — t > 6a)A

3B{bihitb) [(a = b) A (tb >t) A {tcur -tb> 6a)} (5.10)

51

Chapter 5. Algorithm Details

5.3.2 Keep Landmarks

Elephant's Keep Landmarks policy retains versions of files that persist un
changed for a predetermined period of time [47]. Given a file set FF, the
Keep Landmarks policy mandates the retention of every block instance ref
erenced by a file instance of FF that persisted unchanged for 5i seconds.
Block instances belonging to FF which last less than Si seconds before being
overwritten can be deleted. That is,

V5(a,i,t) e FF[Deletable(B(aM) >

3B(btkM[B{bilbitb) e FF A (a = b) A (0 < tb - t < St)\] (5.11)

5.3.3 Keep Milestones

VDisk's deletion proofs must be couched exclusively in terms of blocks.
However, as is evident from Equation 5.11, the landmark deletion proof
requires some means of expressing file sets and their relationships to block
instances. For this reason, we have developed the Keep Milestones policy,
which is an approximation of the Keep Landmarks policy.

The goal of the Keep Milestones policy is to preserve all landmark ver
sions of files; however, the policy is applied to blocks. The file system layer
retention semantics are not quite as simple as the block layer semantics.

For the sake of security, it is acceptable if the Keep Milestones policy
mandates the retention of blocks that would have been deletable according
to the Keep Landmarks policy. However, the Keep Milestones should not
result in the reclamation of any file not reclaimed by the Keep Landmarks
policy.

For a file version to be designated a landmark version, the entire file,
including its descriptor block, must have persisted unmodified for some pe
riod of time Sm. For a file instance to remain unmodified, all of the data
block instances which it comprises must remain unmodified. That is,

F<5m>(M,Dn,tf) * (yB(a,l,t) £ • f 1 <(5 m >(M,D„ , t /) [B<6m>(aM]) (5-12)

Thus to approximate the Keep Landmarks policy, the Keep Milestones pol
icy retains all versions of all milestone blocks.

Naive Keep Milestones

The Naive Keep Milestones policy operates under the assumption that
blocks are not shared between files. This policy retains all block versions

52

Chapter 5. Algorithm Details

which persist unchanged for a significant period of time. More specifically,
we define a milestone period, 5m seconds; if any block remains alive for
longer than 5m, it will not be reclaimed during the cleaning process. That
is, for all blocks 5(0 , i„,t a) contained in the log,

(^3B(b,U6)[(a = b) A (*a < h < ta + Sm)}) —» B < S m > { a M a) (5.13).

Note that by Equation 5.1, this policy will retain all five versions of all
blocks.

Full Keep Milestones

If the assumption that files obtain exclusive ownership of their blocks holds,
then the Naive Keep Milestones policy described above wil l guarantee the
retention of all landmark files. However, while this assumption does hold for
data blocks in most file systems, it often does not hold for metadata blocks.
This poses a problem for the Naive Keep Milestones policy.

Consider two distinct file sets FFX(M{a L T)IDX)
 a I 1 d FF2(M{A L T),D2)- These

file sets represent two individual files, but both files have file descriptors lo
cated in the same block M^L<Ty

Assume that a file instance F\ contained in FF\ remains unchanged long
enough to become a landmark file; thus, the Keep Milestones policy should
retain the block M^^T) a n d all the data block instances belonging to Fi.
However, if block M(A,L,T) * s frequently updated due to changes in the file
set FF2, it is possible that no milestone version of block M^i^p) will exist
in the log.

To protect against unwanted deletions, the Naive Keep Milestones policy
must be modified. Not only must it keep all blocks that remain unchanged
for 5m seconds; it also must retain the last block instance written within 5m

of the previous retained version of that block. This stipulation is necessary
because it is possible that a portion of the block instance belonged to one
file and persisted unchanged for 5m seconds even though other portions of
the block, which may have belonged to different files, did not. Thus, for all
block instances B(o,«0,i0),

~"3B(b,ib,tb),B(ctlCltc)[(a = b = c) A (tb < ta < tc) A (tc -tb< 6m)} —•

B<Sm>(a,la,ta) (5: 1 4)

Wi th this policy, any file descriptor which remains unchanged for Sm

seconds will be retained, regardless of how frequently the block in which it

53

Chapter 5. Algorithm Detaib

resides is updated. In the case of FFi^M(a L T),DX)
 a n d FF2(MIA^LXT),D2)> O N E

version of M(a Jr T) will be retained for every 5m seconds it is written, regard
less of how many times F F 2 (M (o L T),D2) modifies its metadata. Thus, the
inode for FFi<M(a L T),Di)> which remained constant for at least <5m seconds,
will be available for file reconstruction.

Finally, as proof that a block instance £(a,(0,ta) is deletable according to
the full keep milestone policy, the following must hold:

Deletable(Bfatiatta)) <—>

3 B (6 i , 6 i t t) , B (C i , C i t c) [(o - b = c) A (tb < ta < te) A (tc -tb< 5m)] (5.15)

54

Chapter 6

Implementation
We have implemented a functional VDisk prototype for the 2.6 Linux kernel.
The system comprises three primary components: a logging mechanism, a
file reconstruction utility, and a secure log cleaner. Both the logging mech
anism and the log cleaner are implemented within a single kernel module,
while the reconstruction utility is implemented as a user-space application.
The current prototype supports both ext2 and ext3 file systems [1],

6.1 The Logger
The VDisk logging mechanism is implemented as a block-level kernel mod
ule. The module obtains exclusive access to two devices, one containing the
file system and the other containing the log, and exports a third virtual
device to the kernel. This latter is the only device made visible to users,
and it exports a standard block layer interface—the logging mechanism itself
is completely transparent. This is achieved by creating virtual data struc
tures identical to those of a real disk; in particular, the module registers a
standard request queue with the kernel, to which all IO requests are sent.

6.1.1 The Linux Block Layer

The Linux block layer relies upon a sophisticated mechanism to organize
disk accesses in an attempt to mitigate the onerous performance penalties
incurred by disk seeks. Rather than immediately performing reads and
writes as they are requested by higher level applications, the kernel places
these requests on a special per-volume request queue, where customizable
algorithms can order and merge these requests to reduce the number of
required seeks before sending them to the disk.

Requests contain a linked list of bios, which describe the mapping be
tween memory pages and disk sectors. Each bio contains a reference to a
block device, a disk address, a size, and a vector of tuples describing pages,
offsets and lengths; these pages are mapped onto a contiguous range of disk

55

Chapter 6. Implementation

Figure 6.1: The VDisk Device

sectors. Two requests can be merged if the union of their individual maps
is a contiguous disk region.

When a request is finally submitted to a disk driver, the driver works
through each bio of the request, transferring data as necessary. The driver
signals the completion of a data transfer via a reference to a callback function
included in the bio structure.

6.1.2 The VDisk Device

Just like other devices, the VDisk logging mechanism maintains its own
request queue. Unlike other devices, however, VDisk's request queue does
not correspond to a specific device, and requests sent to the VDisk module
are not merged or sorted in VDisk's request queue. Rather, IO requests are
immediately duplicated, remapped, and redirected to the request queues of
both the underlying file system device and the log device. These duplicated
requests are then optimized for their particular devices.

VDisk achieves this by duplicating and modifying the bios it receives
before they are merged to create requests. The original bios are already
mapped to the correct disk sectors of the underlying file system device,
and need merely be redirected to that device. The duplicated bios, which
are intended for the log, must be remapped to appropriate sector addresses
within the log and then redirected to the log device.

56

Chapter 6. Implementation

The VDisk module contains a simple block allocator that partitions the
disk into large segments and allocates blocks consecutively from within these
segments, resulting in optimal writes to contiguous disk addresses. When
a new bio is to be added to the log, the allocator returns the offset within
the current segment, or, if more room is needed, it allocates a new segment
and updates the segment bitmap. After a new segment is allocated, the
block allocator writes the old segment's reference count to a special segment
descriptor at the end of the segment; this count is used later by the secure
cleaner to ensure that only empty segments are reclaimed.

. A metadata entry is then created, containing the sector address returned
by the allocator, the sector address of the original file system device, the time
of the write, the size of the write, and a flag used by the secure cleaner to
indicate whether the written blocks have been reclaimed. Metadata entries
are written to segments just as are data entries; however, segments contain
ing metadata entries never contain data entries, enabling rapid scanning of
metadata entries. Metadata segments are joined in a linked list to enable
easy scanning of the entire metadata log.

Bios are duplicated in a zero-copy manner; this means that both bio
copies share references to common pages. Consequently, these bios must
by synchronized with each other—the original bio cannot be returned to
the file system, where its pages may be overwritten with new data, until
both bios have been successfully committed to their disks. To achieve this,
VDisk updates the callback function pointer of each bio to reference its
own function. When the two underlying device drivers have completed the
requested IO operations, they signal these completions by calling VDisk's
callback function; not until both bios have completed does VDisk inform the
file system, via the original callback function, that the request is finished.

The VDisk device also maintains a superblock which describes the cur
rent state of the log, including details such as the total number of segments,
the number .of free segments, the address of the first metadata segment, and
the addresses of the current data and metadata segments and their offsets.

In the simplest case, adding an entry to the log requires one immedi
ate write: the data. Metadata writes are buffered in memory before being
written to disk in batches. If a new segment is allocated, this requires two
more writes: both the segment bitmap and the previous segment's reference
count must be written to disk. For this reason, VDisk attains optimal per
formance with large segments—the default segment size is 32MB. Finally,
the superblock,and the current segment reference count are flushed to disk
periodically.

57

Chapter 6. Implementation

VDisk and Xen

To isolate the logging mechanism, VDisk is placed in its own protected
domain with the help of the Xen virtual machine monitor [7]. This is ac
complished quite easily: the VDisk device is installed in Domain 0 (the
management guest operating system) of the Xen system, and from here
it exports its interface to untrusted guest operating systems. These guest
operating systems can access the virtual VDisk device just as if it were a
standard block device, but they are unable to access the actual disk which
contains the VDisk log.

Content Hashing

We have implemented the content-hashing optimization mentioned in Sec
tion 4.1.2. To do this, we maintain a small in-memory hash table. To reduce
memory requirements, this table can be made arbitrarily small, and thus it
may be susceptible to collisions. Whenever inode blocks are read from disk,
we create MD5 [42] digests of their contents and store these summaries,
along with their sector addresses, in the hash table. When inode blocks are
written, we first check for their summaries in the hash table; if their sum
maries are found to exist—and are identical with summaries of the blocks to
be written—the blocks need not be committed to the log. If the summaries
are different, the stale summaries in the hash table are replaced by the new,
up-to-date summaries of the data to be written to disk.

To get the greatest benefit from this technique, we compare data at the
granularity of sectors (512 bytes). This may result in only a few sectors
of a large bio needing to be written to disk, meaning that the bio must be
split up into multiple smaller bios, with the unnecessary data elided; each
of these new bios requires its own entry in the metadata log.

As mentioned in Section 4.1.2, this strategy could pose a security vul
nerability if applied to data blocks. For file systems like ext2 and ext3, we
are able to distinguish data blocks from inode blocks simply by evaluating
their file system block addresses. These file systems allocate a static number
of inodes when the disk is formatted, and these inodes are located in prede
termined locations on the disk; bios mapped to these locations are known to
contain inodes. For file systems with dynamic inode allocation, this strategy
will not work.

58

Chapter 6. Implementation

6.2 The Reconstruction Utility

V D i s k ' s reconstruct ion u t i l i t y is implemented as a user-space appl icat ion
and makes l ibera l use of a M y S Q L [3] relat ional database. T h e database
contains a copy of the metadata log; each t ime the reconstruct ion u t i l i t y is
used, i t compares the database metadata log to the or ig ina l , and updates the
database as necessary. A s wel l , the u t i l i t y relies upon a file system-specific
l i b ra ry to locate and interpret file system objects. O u r prototype supports
bo th the ext2 and ext3 file systems [1]; the file system l ib ra ry provides
funct ions to translate sector addresses to file system block numbers , to read
superblocks, group descriptors, and inodes, to translate inode numbers to
block addresses, and to translate logical file offsets into file system block
addresses, among other things. F ina l l y , the ut i l i t y relies upon yet another
l ib ra ry to interface w i t h the log itself; methods for reading and seeking are
prov ided by this l ibrary.

6.2.1 The ext2 and ext3 File Systems

T h e ext2 and ext3 file systems are bo th intel lectual descendants of the Berke
ley Fast F i l e System [31]. ext2 and ext3 share near ly ident ica l da ta s t ruc
tures and disk layout, the p r imary difference between them be ing the ad
d i t ion of journa l ing i n ext3. Journa l ing can either be done on a separate
device or i n a file, and does not change the s t ruc tura l aspects of the system.
It can, however, change semantic propert ies. In part icu lar , some modes of
journa l ing impose wr i te order ing constraints, requi r ing that da ta be wr i t ten
to disk before metadata . As ide from this difference, the file reconstruct ion
a lgor i thms for ext2 and ext3 are ident ica l .

These file systems organize the disk into a number of block groups. Each
block group contains a number of metadata blocks at the beginning of the
group; this metadata includes: the file system superblock; group descriptors;
inode and block b i tmaps ; an inode table, wh ich contains a l l the inodes of
the group; and the da ta blocks. B o t h the superblock and the group descr ip
tors are universal , and are copied i n each block group for redundancy ; the
b i tmaps , inode table and da ta blocks are unique to a given block group.

B o t h the inode and block b i tmaps are l im i ted i n size to exact ly one
block; thus the m a x i m u m number of da ta blocks (and inodes) a block group
can contain is equivalent to the number of bits in a single file system block.
T h e inode table is a contiguous array of inodes, and is stat ica l ly a l located.
Inodes are assigned logical inode numbers, and given such an inode number ,
an mode's locat ion on disk can be determined through a s imple ca lcu lat ion.

59

Chapter 6. Implementation

Every file is identified by a unique inode. The inode contains a tree of
pointers to the data blocks which compose the file; typical configurations
allocate twelve direct pointers, one indirect, one doubly indirect, and one
triply indirect pointer per inode, with indirect pointers referencing indirect
blocks, which are arrays of block references.

Directories are represented as files. The data blocks of a directory contain
specially formatted directory entries, each of which contains a file's name
and inode number, with one directory entry describing each file contained
within the directory.

6.2.2 The Reconstruction Algorithm
The reconstruction algorithm begins by determining the file system block
address of the root directory's inode. For ext2 and ext3, the inode number
of the root directory is always two. After translating this inode number into
a block address, the utility queries the database for all metadata entries
corresponding to the address and containing appropriate time stamp values.
These metadata entries describe the locations of blocks in the log which
contain root inodes. These inodes—and their data blocks—are read from
the log and scanned in search of the target file or directory. If the target
is found, its inode number is converted to a block address and the path
resolution continues. If not, the path resolution for this version of the root
has failed, and the next version of the root is checked, until a match is found
or the time constraints are exceeded.

The most generic reconstruction utility will search all versions of the file
system between two given times and return a list of the times at which a
target file existed; the user can then choose to reconstruct one or a few of
these versions. To compile this list, the utility creates a temporary database
table containing the metadata entries that describe the path to each target
file; this is .done in one pass through the metadata log. A n advantage to
this approach is that it expedites future searches along the same path, as
all the requisite information can be retrieved directly from the temporary
table rather than by repeating the path resolution procedure.

To reconstruct a file, the utility translates each logical block address into
a file system block address with the help of the file system specific library,
and then translates each file system block address into a log block address
by querying the database.

60

Chapter 6. Implementation

6.3 The Cleaner

The VDisk cleaner comprises two components, a user-space tool that does
most of the work, and a simple kernel module which enforces the system's
deletion policies. The cleaner employs a simple mark and sweep algorithm.

6.3.1 The Segment Analyzer
VDisk's log is cleaned on a per-segment basis. A segment is cleaned by mov
ing any blocks that are not eligible for deletion to a different segment; when
all such blocks have been thus transferred, the segment can be reclaimed
by the segment allocator and subsequently used to store new data. This
process of transferring live blocks can be onerous, and should be avoided as
much as possible. The segment analyzer can reduce the impact of cleaning
by choosing to clean only those segments that have a small number of live
blocks, much as the LFS [44] cleaner endeavors to process only relatively
empty segments. However, while the LFS cleaner—one of the more com
plicated components of LFS—is implemented inside the kernel, the VDisk
segment analyzer operates in user space.

When a segment is chosen for cleaning, the segment analyzer compiles a
list of proofs for each data entry contained in the segment. A proof contains
enough information for the secure log cleaner to easily verify that its corre
sponding data entry is in fact eligible for deletion according to the various
system policies. The segment analyzer compiles this list with the help of
the database.

For the Keep Milestones policy, the analyzer creates a list of proofs sorted
by file system block address; each proof contains all instances of a given file
system block address sorted by time, as well as a reference 'to two blocks
not contained in the segment: the newest version of the block contained in
the preceding segment, and the next version of the block address contained
in the succeeding segment. If these versions do not exist, special null values
are inserted into the proof. This list is then passed to the secure cleaner,
which will visit each entry referenced by the list to evaluate its eligibility for
deletion and mark it appropriately.

This list is passed to the secure cleaner via the Linux sysf s interface,
which allows kernel modules to export virtual files that can be read from
and written to by user-space applications. When these files are written, the
data is not stored on any disk but is instead passed directly to the module.
This interface facilitates the transmission of-large quantities of data from
user space to the kernel, and it is used by VDisk to pass large lists of proofs.

61

Chapter 6. Implementation

Note that while the secure cleaner will evaluate every item in a proof,
it does not scan the actual log itself. This allows for the strategic omission
of entries on the part of the segment analyzer. For instance, if more so
phisticated retention policies are desired by a user, perhaps stipulating that
files with a particular name should never be deleted, the segment analyzer,
which operates in user space and understands file system semantics, can en
sure that the log entries which compose such files are never included in the
deletion lists. B y doing so, the segment analyzer can ensure that these en
tries will never be marked as eligible for deletion and wil l thus be retained,
even if they might have been deletable according to the lower-level block
retention policies. However, the converse does not hold. That is, while the
segment analyzer can retain blocks which are eligible for deletion, it cannot
delete blocks which are not eligible for deletion.

If a kernel is compromised and the segment analyzer is corrupted, these
higher-level retention policies cannot be enforced by the secure cleaner; how
ever, the low-level, block-oriented policies such as Keep Safe and Keep Mile
stones are enforced at all times, regardless of the state of the segment ana
lyzer.

6.3.2 The Secure Cleaner

When the segment analyzer has compiled a list of proofs for a given segment,
it passes it to the secure cleaner via the cleaner's special sysfs attribute
file. The list of proofs contains the locations within the metadata log of all
metadata entries that need to be inspected; thus the secure cleaner is spared
the task of scanning the log sequentially, as it can jump exactly to the correct
location for every inspection. In general, the secure cleaner expects that the
list it receives wil l be valid; it must simply verify that there are no mistakes
in the list and mark blocks which are eligible for deletion by setting a bit in
their metadata entries.

If during this process the cleaner discovers a discrepancy between the list
and the log, it returns an error to the user-space application. For instance,
if the list indicates that a metadata entry at a given address should refer
to a block address it does not, the secure cleaner fails that proof, ceases
processing the list, and returns an error. If the list of proofs is sorted by
time—as it should be—an error encountered midway through the list will
not affect any of the antecedent proofs. If the list is partially ordered such
that the first few proofs are correct but later proofs are incorrectly ordered,
the unordered proofs could take one of two forms: they could reference block
versions with the same file system block addresses described by the previous,

62

Chapter 6. Implementation

ordered proofs, or they could reference different blocks. The former case
amounts to an omission of blocks from the proof list, which, as discussed
in Section 4.3.3, will not result in the loss of milestone information. The
latter case concerns blocks which do not belong to the previously validated
proofs, and thus will not affect their validity. Consequently, any processing
completed before an ordering discrepancy is encountered, is still valid and
does not need to be undone.

After the all entries of a segment have been inspected, the segment can
be cleaned. When instructed to do so, the secure cleaner will scan through a
metadata segment, checking the status of each entry. Any entry that is not
marked as deletable is moved to a new segment, and the reference count of
its original segment is decremented by one. When a data segment's reference
count reaches zero, it is known to contain no live data blocks and can thus
be reclaimed by the segment allocator.

63

Chapter 7

Evaluation

Secure versioning primarily consumes two system resources: 10 bandwidth
and storage space. In addition, the use of Xen to isolate VDisk can also
impact the overall performance of a system. VDisk 's 10 bandwidth con
sumption is manifested in reduced write throughputs and increased write
latencies. Because VDisk duplicates every disk write, it is susceptible to
substantial throughput reductions in some usage scenarios. As well, logging
writes at the block layer requires significantly more storage than a typical,
non-versioning system.

We have conducted a number of experiments with VDisk to empirically
quantify the overheads it imposes. To measure 10 bandwidth costs, we
have used two synthetic benchmarks: Bonnie+-|- [12], a bandwidth-intensive
benchmark, and PostMark [26], a seek-intensive benchmark. B y testing
VDisk with these benchmarks, we gain insight into the performance degra
dation incurred by secure logging for various types of 10 operations. To
measure storage space requirements, we have replayed an N F S trace col
lected by Daniel Ellard at Harvard [15]. Replaying this trace with V D i s k .
enables us to ascertain the rate at which logged data grows under real-world
usage patterns; it also allows us to test VDisk's reclamation policies to de
termine how much data can be securely deleted.

Finally, we investigated the time required to reconstruct file versions.
The work involved in file reconstruction depends upon both the length of
the target path and the size of the log. We modified PostMark to create
file system images of varying size and depth to evaluate the typical cost of
reconstructing a file from a relatively large log.

7.1 Temporal Overhead

VDisk imposes substantial overhead to raw disk writes. This overhead can
affect users by degrading application performance. However, given the high
costs of disk 10 in general, operating systems expend much effort to avoid
disk accesses, and these efforts protect users from VDisk 's performance

64

Chapter 7. Evaluation

penalties just as they protect users from standard disk performance penal
ties.

In this section, we measure the performance of VDisk as perceived from
the application layer. All experiments were conducted with a 1GHz Pentium
III machine with two 320GB IDE disks, one containing an ext2 file system
with a 4KB block size and the other containing the VDisk log with a 32MB
segment size; each disk provides a raw IO bandwidth of approximately 15
MB/s. Experiments were run on the native machine and in a Xen 3.0 virtual
machine; both the native and virtual machines were configured with 512MB
of RAM. On the native machine, a standard-2.6 Linux kernel was used, while
in Xen, a 2.6 XenoLinux kernel was used.

7.1.1 Bonnie++

Bonnie++ is a benchmark designed to test file system bandwidth. We con
figured Bonnie+-(- to operate on a 1GB file. The benchmark consists of five
stages: the file is written one character at a time; the file is deleted and
then written one block at a time; the file is rewritten one block at a time
(note that this requires one read and one write per block); the file is read
one character at a time; and finally, the file is read one block at a time. In
each of these stages, the file is processed sequentially. To better observe the
effects of disk seeks on VDisk's performance, we added one additional stage,
in which block writes were performed at random offsets within the file.

Figure 7.1 shows the results of the Bonnie++ benchmark. Each value
in the graph is the average of 20 runs; the maximum relative standard
deviation across all tests was 3.06%. As is expected, the effect of VDisk on
disk reads is negligible; this is because the original file system image is kept
intact, and reads are passed directly to the underlying disk without any extra
processing. For sequential writes, VDisk halves the system's throughput, as
all data is written to disk twice. This is the worst-case scenario for VDisk,
but it is only likely to occur in specific cases, such as when a large file is
being copied. When working with applications that do not often perform
of this type of sustained, sequential write, users will not experience such a
substantial degradation in performance.

In the third stage of the test, in which blocks are written randomly,
VDisk imposes a 14% reduction in throughput compared to a raw disk.
This is due to the fact that, unlike sequential writes, which are throughput-
limited, random writes are seek-limited. While writes to the file system are
scattered randomly across the disk, writes to VDisk's log are sequential,
and thus incur a much smaller performance penalty. The reduction in bus

65

Chapter 7. Evaluation

8onnl8++ Benctvnailt Results 150001 1 1 I I

Figure 7.1: Bormie+-1- Benchmark Results

bandwidth imposed by VDisk is almost completely overshadowed by the
seek overhead of the file system disk, and thus both the raw disk and VDisk
perform very similarly in this scenario.

Likewise, the performance of VDisk in the fourth stage of the test, in
which blocks are rewritten, is closer to that of the raw disk. In this stage,
VDisk only incurs a performance penalty for half of the disk operations—
the writes—while both systems perform almost identically for the reads.
Thus the user-perceived throughput overhead of VDisk in this case is only
37%, rather than the 51% and 50% overheads incurred during the sequential
character and block writes, respectively.

It is interesting to observe that the impact of the Xen virtual machine
monitor is minimal, and in the case of sequential writes, even improves
performance. This improvement is an artifact of Xen's strategy of sacrificing
latency for throughput. In a Xen virtual machine, write requests are slightly
delayed in the guest kernel in order to improve batching; when they finally
reach the underlying device, they are often much larger than their native
kernel counterparts, and can thus improve performance.

66

Chapter 7. Evaluation

7.1.2 PostMark

PostMark was designed by Network Appliances to simulate an email server.
To do this, PostMark creates a large number of text files of various sizes and
performs a large number of 10 transactions on these files. More specifically,
during the transaction stage, PostMark either reads from, appends to, or
deletes an existing file, or creates a new file. Whereas Bonnie++ performs
a stress-test of the 10 system's throughput by preforming sequential reads
and writes, PostMark mimics slightly more realistic usage patterns by ran
domly accessing a large number of files, and is thus a better measure of a
system's seek performance. We configured PostMark to create 20,000 files
between 0.5KB and 10KB in size and perform 50,000 transactions with an
even read/write ratio, resulting in about 270MB of file system data being
written to disk.

Figures 7.2 and 7.3 display the averaged results of twenty PostMark
trials. The maximum relative standard deviation for all trials was 1.44%.
As can be seen in Figure 7.2, VDisk performs similarly to the raw disk
in this benchmark, imposing a 9.7% increase in overall time in a native
Linux environment. As in the random block write stage of Bonnie++, the
PostMark benchmark is seek-limited, and the time required to seek in the
original file system disk almost completely overshadows the time needed
to perform the extra sequential writes to the VDisk log. This is further
evinced by Figure 7.3, which shows that VDisk imposes a 10% overhead in
write throughput. Notice that the write throughput achieved by PostMark
with a raw disk is just 1.5MB per second, as opposed to the 12MB per
second achieved by Bonnie++.

As with Bonnie++, Xen imposes very little overhead in the PostMark
benchmark. While a raw disk in native Linux slightly outperforms a raw
disk in a Xen guest domain, VDisk actually performs better in the guest
domain than it does in native Linux. The throughput achieved with VDisk
in Xen is higher than that achieved in native Linux, again due to Xen's
strategy of batching writes in the guest domain before submitting them to
the disk.

7.1.3 Discussion

VDisk's strategy of duplicating all disk writes imposes a substantial overhead
to throughput-limited disk operations. Bonnie-r-+ verifies the expectation
that performing large, sequential writes with VDisk will take approximately
twice as long as doing so with a raw disk. However, as can be seen in the

67

Chapter 7. Evaluation

PostMark Benchmark Results: Time

Total Time Transaction Time

Figure 7.2: PostMark: Time
PostMark Benchmark Results: Throughput

16001

Read Throughput Write Throughput

Figure 7.3: PostMark: Throughput

68

Chapter 7. Evaluation

random write test of Bonnie++ and the PostMark tests, VDisk has a much
smaller impact on seek-limited disk writes.

The degree to which VDisk wil l degrade performance thus hinges upon
the frequency with which large, sequential writes are performed under typi
cal workloads. A number of studies have been conducted with the intent of
investigating file access patterns, and the general consensus of these efforts
is that most file accesses are made to small files [6, 22, 36].

Baker et al. found that the majority of sequential file transactions in
their traces were small, with about 80% of these runs transferring less than
10KB [6]. However, the size of the larger files in this trace were so large
that at least 10% of all bytes were transferred in sequential runs larger than
1MB. Note that in these traces, sequentiality is determined with respect to
logical file block numbers rather than physical block addresses.

This study also found that while most file accesses were made to small
files, most bytes were transferred to or from larger files. In a more recent
study, Vogels corroborates this observation, finding that most sequentially
transferred bytes belong to files greater than 10KB in size [57]. In Vogels'
study, the relative size of large files increased by an order of magnitude
over those in Baker's study, growing to 100-300MB for scientific computing
workloads.

Most large files in Vogel's study were system files such as executable
binaries, dynamic loadable libraries, and font files; typically, larger files were
not read and written in their entirety, but were instead accessed in small
chunks at a time, often via memory-mapped IO. Similar access patterns for
large files were observed by Roselli [43], who found that the majority of bytes
in files larger than 100KB were accessed randomly. Moreover, in Roselli's
N T workload, about 60% of bytes accessed were done so randomly. This
number is similar to results found in an analysis of the E E C S trace [16],
although it is substantially higher than the other workloads analyzed by
Roselli.

Modern text and image editors typically update files by deleting old ver
sions and replacing them with new versions. This results in a large number
of file deletions and creations [22], with the latter typically involving sequen
tial writes to logical block numbers. Again, the size of most created files is
small [22], meaning that most creations do not entail large sequential writes.
Gibson and Miller found that while 25% of modifications in their traces were
made to files that were larger than 64KB, most file modifications increased
file sizes by less than 1 K B at a time [22].

These studies indicate that most of the time, users interact with small
files. Document editing applications often rewrite previous versions of files

69

Chapter 7. Evaluation

w i t h newer versions, resul t ing i n a high number of deletions and creations of
smal l files. Larger files often account for the major i ty of bytes transferred,
but these files are typ ica l ly accessed piecemeal i n a r a n d o m fashion, and,
as i n the case of executables and l ibraries, are often opened for reads only.
These trends suggest that for m a n y — i f not most—scenarios i n wh ich users
interact w i t h the file system, V D i s k w i l l impose overhead s imi lar to that
exhibi ted by the P o s t M a r k benchmark.

7.2 Spatial Overhead
To gain insight into the rate at wh ich V D i s k ' s log w i l l grow and the efficacy of
our reclamat ion policies, we have made use of the E E C S N F S trace [15]. T h e
E E C S trace collected N F S usage statistics of the p r i m a r y home directory
server of Harvard ' s computer science faculty and research groups. T h i s
server was used for research, software development and course work, s tor ing
home directories and shared project and da ta files. T h e aggregate capaci ty
of users' loca l disks exceeded the capacity of the server, and its role was
p r i m a r i l y one of faci l i ta t ing shar ing across mul t ip le accounts and preserving
backups. T h e trace contained 317 unique user IDs .

T o replay the trace, we converted the logged N F S commands into loca l
file system operations, which.were then executed synchronously on a loca l
disk w i t h an ext2 file system w i t h a block size of 4 K B . W e replayed the first
57 days of this approximate ly eleven week trace.

7.2.1 Log Growth

Figure 7.4 displays the da i ly growth of bo th the file system and the log
du r ing the trace; the figure also includes the size of the log when a l l versions
of the superblock and group descriptors are omi t ted . W h i l e the file system
grew to just over 5 0 G B dur ing the trace, at an average of about 1 G B per
day, the block log exploded to nearly nine t imes that size, at an average of
almost 8 G B per day. F igu re 7.5 shows the growth of the log and file system
normal ized to the 317 unique u i d values contained i n the trace.

M e t a d a t a blocks consti tute a large por t ion of the block log. M a n y impor
tant file system blocks, such as the superblock and group descriptor blocks,
are flushed to disk u p o n any file system state changes, consuming a sub
s tant ia l por t ion of the block log. A s Table 7.1 shows, over one quarter of
the log is composed of versions of file system blocks zero th rough four, out
of a to ta l of 14,801,516 dis t inct file system block addresses wr i t t en du r ing
the trace.

70

Chapter 7. Evaluation

File System and Log Growth

Days ol Trace Processed

Figure 7.4: Total Log Growth
File System and Log Growth Per User

15001

0'

File System

Block Log

Block Log, No Superblock

— * — Block Log, No Superblock or Group Descriptors j /
/ 1

s I

0 10 20 30 40 50 60
Days of Trace Processed

Figure 7.5: Log Growth Per User

71

Chapter 7. Evaluation

Table 7.1: The Most Frequently Written Block Addresses
FS Block Address Number of Versions Percentage of Log

0 15,606,469 13.36%
2 4,823,655 4.13%
1 4,331,214 3.71%
4 3,931,097 3.37%
3 2,664,172 2.28%

886,018 225,614 0.19%
6,291,456 181,009 0.15%

However, while versions of these few file system block addresses make up
a large proportion of the log, the majority of block addresses were written
to only once during the trace. Figure 7.6 displays the number of writes per
file system block address: just over 70% of all file system block addresses
were written once, and over 95% were written less than ten times.

This evidence suggests that filtering strategies for reducing the log size
should be targeted towards the few select file system block addresses with
high write frequencies, where significant improvements can be realized, but
that the majority of block addresses are not amenable to such strategies
because they are written so rarely.

7.2.2 Content Hashing

Figure 7.7 illustrates the efficacy of content hashing in reducing log growth.
This plot displays the growth of the the log during the first day of the trace.
B y the end of the day, 4,630,712 blocks had been written to the log. We
re-ran this one day trace with two hashing policies: the first hashed only
inode sectors, while the second hashed both inode sectors and the sectors
composing file system blocks zero through four, which contain the superblock
and group descriptors.

W i t h both policies, we used a hash table of 256KB to store 128-bit M D 5
content summaries of targeted sectors as they were read from disk. When
hashing only inodes, there were 492,304 writes to targeted sector addresses,
of which 450,417—or 91%—were identical to their hashed counterparts and
were not written to the log. When hashing file system blocks zero through
four as well as inode blocks, there were 2,061,016 writes to target sector
addresses, of which 1,899,042—or 92%—were identical to their hashed coun
terparts.

Hashing just inode blocks resulted in a modest log size reduction of
about 10% at the end of one day, while hashing the superblock and group

72

Chapter 7. Evaluation

Cumulative Histogram of Versions per File System Block Address

EECS Trace

1 10 100 1000
Number of Block Versions per File System Block Address

Figure 7.6: Versions Per Block Address

Chapter 7. Evaluation

descriptors along with inode blocks resulted in a more substantial reduc
tion of 41%. Content hashing was particularly effective in this experiment
because writes were performed synchronously, resulting in a large number
of metadata blocks being flushed to disk with minimal changes. Further
gains could be obtained with the use of delta-encoding to store these small
changes in units more compact than sectors (512 bytes).

7.2.3 Block Reclamation

VDisk's block retention policies are based upon block lifetimes: according
to the Keep Milestones policy, block versions that are overwritten in a short
period of time are eligible for reclamation. Thus to evaluate the efficacy of
this policy in reducing log size, it is instructive to investigate the distribution
of block lifetimes.

Block Lifetimes

Figure 7.8 presents the block lifetimes we observed when replaying the E E C S
trace. Almost 82% of blocks logged during this trace were overwritten in
under one second. This number is higher than that reported in an analysis
of five days of the same trace in [16] because our replay of the trace includes
block writes required for file system metadata updates that are not explic
itly included in the N F S log (versions of block addresses zero through four
alone constitute 11% of blocks overwritten in one second). Moreover, it is
significantly higher than the 20% reported in Roselli's analysis of different
traces [43]. However, both our trace replay and the analysis in [16] show
that 90% or more of blocks in the E E C S trace are overwritten within an
hour, while between 70% and 80% of blocks in four out of five of the traces,
analyzed by Roselli are overwritten within an hour. This suggests that with
even a very small milestone window, a large portion of VDisk 's log can be
reclaimed by the secure cleaner.

Landmark Retention Policy

In order to evaluate the efficacy of a file system-aware retention policy, we
applied a simulated landmark policy to every file of the N F S trace. The
simulation only processed data blocks belonging to files; it did not account
for any file system metadata blocks.

Figure 7.9 displays the number of blocks retained by the landmark policy
with landmark windows of one hour, one week, four weeks, and nine weeks.
The nine week case illustrates the optimal scenario for the landmark policy;

74

Chapter 7. Evaluation

Cumulative Histogram of Logged Block Lifetimes

1 sec 1 min 10 min 1 hour 1 day
Block Lifetime (log)

Figure 7.8: Block Lifetimes

with this landmark window, only files that remained alive throughout the
entire trace are retained. Wi th a one hour landmark window, 62% of data
blocks can be reclaimed; this number increases to 64% with a landmark
window of nine weeks.

Milestone Retention Policy

Figure 7.9 displays the results of applying the milestone retention policy to
our log with various milestone windows. The majority of blocks that were
retained were done so because they constituted either the first or last version
of their file system block addresses, and under the milestone policy, these
versions must be retained regardless of their lifetimes. This is not surprising,
because, as we have already seen from Figure 7.6, 70% of block addresses
were written to only once during the trace. Using a milestone window of nine
weeks illustrates an extreme case in which all retained blocks are either the
first or last versions of their file system block addresses, because the entire
trace fits within the window. This case exhibits the maximum number of
deletable blocks for the trace.

Using a milestone window of just one hour, 81% of logged blocks can
be reclaimed. Using the best-case milestone window of nine weeks, 84%

75

Chapter 7. Evaluation

2.5 r
x 1 0 Blocks Retained by Landmark and Milestone Policies

1.5

0.5 h

1 hour

Ft?

IrftWil Landmark
I I Milestone

1 week 4 weeks
Stability Window

9 weeks

Figure 7.9: Version Cleaning

of logged blocks can be reclaimed. These results are consistent with the
general characteristics of the workload: typically, blocks are either rewritten
immediately or they are written less than three times during the entire trace.

Discussion

In general, both the milestone and the landmark retention policies allow for
the reclamation of a large proportion of versioned data. Due to the high
number of blocks with short lifetimes, this is not surprising. Although the
milestone retention policy exhibits a. higher reclamation percentage than
the landmark policy, this is primarily due to the huge number of file system
metadata blocks, i.e., blocks zero through four, written during the trace
replay.

It is interesting to observe that both policies retain nearly the same
number of blocks. W i t h a one hour window, the milestone policy retains
approximately 10% more blocks than the landmark policy, and this number
decreases to just 2.15% with a four week window. Although our simulation
of the landmark policy did not account for file system metadata blocks,
we expect the overhead required for these blocks wil l be quite low, as the
average number of retained file versions with a landmark window of one hour

76

Chapter 7. Evaluation

is 1.11%.
However, it should be noted that our simulation of the landmark policy

did not exploit one of the key capabilities of the Elephant file system, which
is the support for per-file-group policies. Had we restricted our landmark
simulation from versioning certain types of files, such as executable binaries
and H T M L objects, the number of blocks retained by the landmark policy
would have been smaller. Thus our analysis represents an upper bound of
the number of blocks retained by the landmark policy.

While the milestone policy is obliged to be more conservative than the
landmark policy in order to ensure the preservation of landmark files, the
bimodal write patterns exhibited by the E E C S workload mitigate the penal
ties incurred by this conservatism. The milestone policy mandates that both
the first and the last version of any block address must be retained, but the
majority of block addresses retained by both policies were only written to
once, resulting in similar performance for both policies. For the same reason,
both policies are nearly as effective with a stability window of one hour as
they are with a window of nine weeks. The vast majority of blocks reclaimed
by either policy are overwritten in under one hour, and blocks that survive
this initial hour tend to live for a long time.

Figure 7.10 shows the rate at which VDisk 's log would grow if it was
cleaned daily according to the landmark and milestone policies with a sta
bility window of one hour. Both the landmark and milestone policies dra
matically curtail log growth, keeping the log size to within just 36% and
50% of the original file system size, respectively.

7.3 File Reconstruction

The time required to reconstruct a file version is dependent upon a number of
variables. Some of these variables relate to file system properties, such as the
depth of the target file's path, the number of files contained in each directory
along that path, the number of versions of each file system object visited, and
the period of time over which these versions existed. Other variables relate to
block layer properties, such as the size of the log and the number of versions
of each block address of interest. Due to the variability of the work involved
in reconstructing a file, it is difficult to perform a universal evaluation of
the reconstruction utility. However, some performance characteristics can
provide a general insight into the time required to reconstruct versions.

77

Chapter 7. Evaluation

Log Growth Per User with Cleaning
1500. < -i— 1 1

5 1000h

0
0 10 20 30 40 50 60

Days of Trace Processed

Figure 7.10: Log Growth With Cleaning

7.3.1 General Performance Characteristics

VDisk's reconstruction utilities support two tasks: reconstructing a single
file version at a specified time, and finding all versions of a file given a
specified name and time range. The first task is straightforward: the newest
version of each directory along the path is searched, until the path is fully
resolved and the target file's inode number is obtained, or the resolution
fails. Thus, resolving one version of a path requires at least two metadata
database queries for each directory along the target path: one to translate
the file system block address of the directory's inode into its corresponding
log block address, and one to perform similar translations for each of the
directory's data blocks. Likewise, searching a directory requires at least
two log reads: one to read the directory's inode, and one for each of its
data blocks. The time required to resolve a single path version is dependent
predominantly upon the size of the metadata log, the length of the path,
and the average size of each directory along the path.

The second task, finding all versions of a file name, is the most taxing
task performed by the file reconstruction utility. Visiting each directory
along the path to be searched requires searching through each version of
that directory between the given time boundaries. Clearly, the longer the

78

Chapter 7. Evaluation

taxget path, the more work required to reconstruct a file.
In addition to the depth of the target path, another key variable of this

task is the average size of each directory visited. Obviously, the more entries
contained in a directory, the more time required to perform a linear search
of the directory. However, the versioning of directories presents yet another
dimension of overhead: any time a new file is added or removed from a
directory, a new version of the directory is created; this new version must
also be searched during the path resolution process. Updating a directory
can not only increase the time required to search the directory, it increases
the number of versions of the directory which must be searched.

Providing time constraints to the reconstruction utility can often dra
matically reduce the time required to reconstruct a file, as these time con
straints can reduce the number of versions of path directories that need to
be searched.

The slowest single operation performed during file reconstruction is query
ing the metadata database. This is especially true when the database is
large. A new query must be performed any time a new file system block
address is encountered during the path resolution process. However, an op
timization exists for the file reconstruction process: once a target inode is
found, we generate a temporary table containing the file system block ad
dresses of each block in the file. We then take the cross product of this table
with the metadata table, limiting the results to the newest block versions
that are older than the inode. This technique allows us to translate all of a
file's file system block addresses into log block addresses with a single query.

7.3.2 Specific Performance Profiling

We used a modified version of the PostMark benchmark to quantify the
time required to reconstruct file versions under a few specific scenarios. We
forced PostMark to perform all writes synchronously, thus ensuring that
every file version accessed in memory was committed to disk. We configured
PostMark to write to 10,000 files distributed evenly across 50 directories,
with a maximum path depth of 10. This produced about 5,500,000 distinct
file versions, committing 45.07GB of data to the log.

Path Resolution

The path resolution process can be greatly expedited by a few well-chosen
indexes. For instance, a user-space tool could periodically traverse recently
logged file system versions, recording path names and inode numbers for

79

Chapter 7. Evaluation

Figure 7.11: Path Resolution

each file and directory it encounters along the way; this index could com
pletely obviate the path resolution process during later reconstruction re
quests. While we have not implemented this inode index, we do rely upon
two M y S Q L indexes—keyed on target-disk sector IDs and timestamps—to
speed the path resolution process; building these indexes for this experiment
required 115.56 seconds and 197.04 seconds, respectively, and the combined
size of these indexes was 206.7MB.

Figure 7.11 shows the times required to resolve paths of various depths
from the log, given the approximate times at which each target version
existed. The time required to reconstruct every version of a target path was
substantially longer, ranging from 88.33 seconds for a one-directory path to
989.33 for a ten-directory path.

File Reconstruction

Once a file's inumber is known, the process of reconstructing a file version is
simple: the file system address of each block contained in the file (including
the inode and indirect pointer blocks) must be mapped to its corresponding
log address via the metadata database.

A naive implementation of this translation process could query the database

80

Chapter 7. Evaluation

File Reconstruction Times
2.81 , ,

.4I , , .
1KB 10KB 100KB 1MB 10MB

File Size (log scale)

Figure 7.12: File Reconstruction

once for each block in the file. Such an approach would yield reconstruc
tion times scaling linearly in proportion to the number of required queries.
The power of user-space indexing techniques is manifested when a more
sophisticated translation approach is adopted. B y using the cross product
optimization mentioned above, all data block translations can be achieved in
a single database query. Figure 7.12 shows the times required to reconstruct
file versions of various sizes, ranging from 1 K B to 10MB. As the figure shows,
the cross product optimization results in low reconstruction times even for
large files.

7.4 Summary
Because VDisk duplicates all disk writes, bus bandwidth is reduced by 50%
compared to a standard disk. For bandwidth-limited applications, this re
dounds to a 50% reduction in performance. However, many file system op
erations are seek-limited, and the delays associated with these seeks can al
most completely overshadow the reduction in bandwidth imposed by VDisk,
resulting in performance degradations closer to 10% or 15%.

In addition to the cost of duplicating file system writes, VDisk 's cleaner
imposes overhead when reclaiming segments. In the case of the E E C S trace,

81

Chapter 7. Evaluation

daily cleaning of the.log with a milestone window of one hour results in the
need to relocate 4.72MB of data per user per day. The amount of data that
must be relocated depends upon the efficacy of the retention policy; for this
trace the milestone policy was particularly effective at reclaiming blocks,
allowing for the reclamation of more than 80% of the log and resulting the
need to relocate the other 20% of the log during the cleaning process.

Versions of the superblock and group descriptors accounted for more than
25% of the log. As these blocks are not necessary for version reconstruction,
they can be safely filtered during logging, reducing both the storage space
and write bandwidth consumed by VDisk.

While comprehensive logging resulted in a log that was nearly nine times
larger than the file system, filtering and cleaning drastically reduce the size
of the log. B y employing these techniques, VDisk was able to limit the size of
the log to roughly 1.5 times the size of the file system during the two month
trace. During these two months, the file system grew by about 3 M B per
user per day, while the log, when omitting superblock and group descriptor
versions, grew by an average of 18.46MB per user per day, with a maximum
daily increase of 91.59MB. Thus, for workloads similar to the E E C S trace,
users should expect a regularly cleaned log to consume 125% per month of
the disk space consumed by the file system, and at least 100MB of free space
should be reserved to accommodate daily log growth in between cleanings.

82

Chapter 8

Future Work and Conclusion

8.1 Future Work
A key issue in implementing secure logging is minimizing storage require
ments. Comprehensive logging at the block level can result in log size explo
sions, thereby reducing the system's version retention window. A n impor
tant area of future research is thus exploring techniques to reduce VDisk 's
log growth. Additionally, useful new features, such as version content in
dexing, are viable additions to VDisk due to its stratified design.

8.1.1 Block Delta-Chaining

Recent work in RAID-based block versioning has uncovered a highly effec
tive means of limiting block log sizes [63]. B y storing block versions as run-
length encoded delta chains, the T R A P versioning system has managed to
dramatically reduce storage requirements. Wi th some modifications, VDisk
could make use of this technology. The reduced log size would come with an
increased latency in accessing file histories because block versions could no
longer be read directly but would instead have to be reconstructed. However,
if versions are not accessed frequently, this increased latency could be more
than acceptable for a significantly reduced log size. A n ideal compromise
might be to retain full versions of file system metadata, such as inode blocks,
to enable rapid browsing of versioned directories, while storing data blocks
as delta-chains. Additionally, VDisk 's reclamation scheme would need mod
ifications before it could accommodate delta-chaining: deleting intermediary
block versions in a delta chain would require reconstituting and retaining
the full version of the block existing at the end of the deleted interval to
preserve the accessibility of newer versions of the block.

8.1.2 Templated Retention Policies

As mentioned in Section 4.3.1, one method of communicating a block's eligi
bility for deletion would be to use a domain-specific language. File systems

83

Chapter 8. Future Work and Conclusion

could register, a set of templates with VDisk's secure cleaner; these templates
could be used by VDisk to extract important higher level information from
blocks while still remaining file system agnostic. With this information,
powerful new retention policies could be implemented, enabling the secure
cleaner to recycle a greater number of blocks, as well as potentially allowing
the enforcement per-file retention policies from the block layer.

8.1.3 Vers ion Content Indexing

VDisk's log-based structure lends itself quite nicely to a version indexing
scheme: whereas in typical file systems, periodic indexing must be applied
to various updated files scattered across a file system, with VDisk it could
simply be applied to the tail of the log. By indexing file histories, VDisk
could provide users with a means of rapidly searching old versions. This
capability could greatly facilitate the process of recovering older files. And
thanks to VDisk's stratified design, this version indexer could be imple
mented entirely in user space.

8.2 Conclusion
By retaining a history of file system operations, versioning systems protect
users against incidental destruction of data. Versioning systems can come in
a number of forms, including user-space applications, stackable and on-disk
file systems, and block-level systems. Because of their relative simplicity, we
maintain that block-level versioning systems can provide a higher degree of
reliability and security than can file systems, and are thus better suited to
protect important information.

Due to an ignorance of file system semantics, typical block-level ver
sioning systems only provide coarse-grain versioning. To remedy this, we
present VDisk, a secure, block-level versioning system that is able to pro
vide fine-grain, per-file versioning. The most notable aspect of VDisk is its
stratified design: critical code which has write-access to versioned data is
implemented in a simple, protected module, while more complicated code is
implemented in user space, where it cannot endanger versioned data. This
design greatly reduces VDisk's trusted computing base.

VDisk comprises three components: a secure logger, an untrusted file
reconstruction utility, and a secure cleaner. Both the logger and the cleaner
are protected from malicious agents by a virtual machine, meaning that
VDisk can protect versioned data even if the operating system it services is

84

Chapter 8. Future Work and Conclusion

compromised. The extreme simplicity of these protected components lends
reliability to the system.

VDisk provides per-file version reconstruction with the help of a user-
space utility. W i t h read-only access to VDisk's log, this utility is capable
of reconstructing individual file versions. Additionally, an untrusted user-
space application is responsible for initiating the reclamation of unneeded
logged blocks. This application searches the log for segments which wil l
benefit from cleaning, and constructs proofs evincing each block's eligibility
for deletion. Proofs must be verified by the secure cleaner before the blocks
they describe can be deleted; this allows the cleaner to enforce retention
policies which prevent the destruction of important information.

While the cost of duplicating all disk writes reduces data bus through
put by 50%, the typical user-perceived overhead of VDisk is closer to 15%.
Many applications are seek-bound rather than throughput-bound; while file
system disks are slowed by performing many seeks, VDisk 's disk minimizes
seek overhead by writing data contiguously. Consequently, in many cases,
VDisk 's overhead is almost completely overshadowed by the file system
seeks. Additionally, we found that with the E E C S workload, content hash
ing can reduce log growth by up to 40%, while VDisk 's retention policies can
reclaim nearly 80% of data written to disk while still preserving important
landmark files.

85

Bibliography

[1] The ext2/ext3 file system, http://e2fsprogs.sf.net.

[2] The I B M journaling file system for linux. http://www-124.ibm.com/jfs.

[3] M y S Q L , http://www.mysql.com.

[4] ReiserFS. http://www.namesys.com.

[5] Andrea C. Arpaci-Dusseau and Remzi H . Arpaci-Dusseau. Information
and control in gray-box systems. In Symposium on Operating Systems
Principles, pages 43-56, 2001.

[6] Mary G . Baker, John H . Hartman, Michael D . Kupfer, Ken W . Shirriff,
and John K . Ousterhout. Measurements of a distributed file system. In
SOSP '91: Proceedings of the thirteenth ACM symposium on Operating
systems principles, pages 198-212. A C M Press, 1991.

[7] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, T i m Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and
the art of virtualization. In Symposium on Operating Systems Princi
ples, pages 164-177, New York, N Y , U S A , 2003. A C M Press.

[8] Aaron B . Brown and David A . Patterson. Undo for operators: Building
an undoable e-mail store. In USENIX Annual Technical Conference,
pages 1-14, 2003.

[9] Kerstin, Buchacker and Volkmar Sieh. Framework for testing the fault-
tolerance of systems including OS and network aspects. In Third IEEE
International High-Assurance Systems Engineering Symposium, pages
95-105, 2001.

[10] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Daw
son R. Engler. A n empirical study of operating system errors. In
Symposium on Operating Systems Principles, pages 73-88, 2001.

86

http://e2fsprogs.sf.net
http://www-124.ibm.com/jfs
http://www.mysql.com
http://www.namesys.com

Bibliography

[11] S. Chutani, O. T . Anderson, M . L . Kazar, B . W . Leverett, W . A . Ma
son, and R. N . Sidebotham. The Episode File System. In Proceedings
of the USENIX Winter 1992 Technical Conference, pages 43-60, San
Fransisco, C A , U S A , 1992.

[12] Russel Coker. The bonnie++ home page.
http://www.coker.com.au/bonnie++.

[13] Brian Cornell, Peter Dinda, and Fabian Bustamante. Wayback: A
user-level versioning file system for linux. In USENIX Annual Technical
Conference, FREENIX Track, 2004.

[14] George W . Dunlap, Samuel T. King , Sukru Cinar, Murtaza A . Bas-
rai, and Peter M . Chen. ReVirt : Enabling intrusion analysis through
virtual-machine. logging and replay. SIGOPS Operating Systems Re
view, 36(SI):211-224, 2002.

[15] Daniel Ellard. Trace-based analyses and optimizations for network stor
age servers. PhD thesis, Harvard Computer Science Technical Report
TR-11-04, May 2004.

[16] Daniel Ellard, Jonathan Ledlie, P i a Malkani, and Margo Seltzer. Pas
sive nfs tracing of email and research workloads. In Second Annual
USENIX File and Storage Technologies Conference (FAST'03), pages
203-216, March 2003.

[17] Dawson R. Engler, M . Frans Kaashoek, and James O'Toole Jr. Exok
ernel: A n operating system architecture for application-level resource
management. In Symposium on Operating Systems Principles, pages
251-266, 1995.

[18] Per Cederqvist et al. Version Management with CVS. Network Theory
Limited, 2002.

[19] Michail D. Flouris and Angelos Bilas. Clotho: Transparent data ver
sioning at the block I /O level. 12th NASA/IEEE Conference on Mass
Storage Systems and Technologies, 2004.

[20] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, Andrew
Warfield, and. Mark Williamson. Safe hardware access with the xen
virtual machine monitor. In The First Workshop on Operating Sys
tem and Architectural Support for the On Demand IT Infrastructure
(OASIS-2004), October 2004.

87

http://www.coker.com.au/bonnie++

Bibliography

[21] Tal Garfinkel, Ben Pfaff, J im Chow, Mendel Rosenblum, and Dan
Boneh. Terra: A virtual machine-based platform for trusted comput
ing. In Proceedings of the 19th ACM Symposium on Operating Systems
Principles, pages 193-206, 2003.

[22] Timothy J . Gibson and Ethan L . Miller. Long-term file activity patterns
in a unix workstation environment. In The Fifteenth IEEE Symposium
on Mass Storage Systems, March 1998.

[23] David K . Gifford, Roger M . Needham, and Michael D . Schroeder. The
cedar file system. Communications of the ACM, 31(3):288-298, 1988.

[24] Dave Hitz, James Lau, and Michael Malcolm. File system design for an
NFS file server appliance. In Proceedings of the USENIX Winter 1994
Technical Conference, pages 235-246, San Fransisco, C A , U S A , 17-21
1994.

[25] James E . Johnson and Wil l iam A . Laing. Overview of the Spiralog File
System. Digital Technical Journal of Digital Equipment Corporation,
8(2):5-14, 1996.

[26] Jefferey Katcher. Postmark: A new file system benchmark. Technical
Report TR3022. Network Appliance Inc, October 1997.

[27] Samuel T. K ing and Peter M . Chen. Backtracking intrusions. In Sym
posium on Operating Systems Principles, pages 223-236, 2003.

[28] Samuel T . King , George W. Dunlap, and Peter M . Chen. Debugging
operating systems with time-traveling virtual machines. In The 2005
Annual USENIX Technical Conference, Apr i l 2005.

[29] Edward K . Lee and Chandramohan A . Thekkath. Petal: Distributed
virtual disks. In Proceedings of the Seventh International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 84-92, Cambridge, M A , 1996.

[30] Josh MacDonald, Paul N . Hilfinger, and Luigi Semenzato. P R C S : The
project revision control system. Lecture Notes in Computer Science,
1439:33+, 1998.

[31] Marshall K . McKusick, Wil l iam N . Joy, Samuel J . Leffler, and Robert S.
Fabry. A fast file system for U N I X . Computer Systems, 2(3):181-197,
1984.

88

Bibliography

[32] Charles B . Morrey III and Dirk Grunwald. Peabody: The time travel
ling disk. In IEEE Symposium on Mass Storage Systems, pages 241-253,
2003.

[33] James H . Morris, Mahadev Satyanarayanan, Michael H . Conner,
John H . Howard, David S. Rosenthal, and F . Donelson Smith. Andrew:
a distributed personal computing environment. Communications of the
ACM, 29(3):184-201, 1986.

[34] K . Muniswamy-Reddy, C. P. Wright, A . Himmer, and E . Zadok. A
versatile and user-oriented versioning file system. In Third USENIX
Conference on File and Storage Technologies (FAST 2004), San Fran
cisco, C A , U S A , March /Apr i l 2004. U S E N I X Association.

[35] Brendan Murphy and Bjorn Levidow. Windows 2000 dependability. In
IEEE International Conference on Dependable Systems and Networks,
June 2000.

[36] John K . Ousterhout, Herve Da Costa, David Harrison, John A . Kunze,
Mike Kupfer, and James G . Thompson. A trace-driven analysis of the
U N I X 4.2 B S D file system. In SOSP '85: Proceedings of the tenth ACM
symposium on Operating systems principles, pages 15-24. A C M Press,
1985.

[37] David A . Patterson, Garth Gibson, and Randy H . Katz. A case for
redundant arrays of inexpensive disks (RAID). In SIGMOD '88: Pro
ceedings of the 1988 ACM SIGMOD International Conference on Man
agement of Data, pages 109-116, New York, N Y , U S A , 1988. A C M
Press.

[38] Hugo Patterson, Stephen Manley, Mike Federwisch, Dave Hitz, Steve
Kleiman, and Shane Owara. SnapMirror: File-system-based asyn
chronous mirroring for disaster recovery. In First USENIX Conference
on File and Storage Technologies, 2002.

[39] Zachary Peterson and Randal Burns. Ext3cow: a time-shifting file
system for regulatory compliance. ACM Transactions on Storage,
1(2):190-212, 2005.

[40] Zachary Peterson, Randal Burns, Joe Herring, Adam Stubblefield, and
Aviel Rubin. Secure deletion for a versioning file system. In The Fourth
USENIX Conference on File and Storage Technologies. U S E N I X Asso
ciation, December 2005.

89

Bibliography

[41] Dave Presotto, Rob Pike, Ken Thompson, and Howard Trickey. Plan
9: A distributed system. In Sprint 1991 EurOpen, May 1991.

[42] Ron Rivest. The M D 5 message-digest algorithm. I E T F R F C 1321, april
1992.

[43] Drew Roselli, Jacob Lorch, and Thomas Anderson. A comparison of
file system workloads. In USENIX 2000 Technical Conference, pages
41-54, 2000.

[44] Mendel Rosenblum and John K . Ousterhout. The design and implemen
tation of a log-structured file system. A CM Transactions on Computer
Systems, 10(l):26-52, 1992.

[45] Jerome H . Saltzer, David P. Reed, and David D . Clark. End-to-end
arguments in system design. ACM Transactions on Computer Systems,
2(4):277-288, Nov 1984.

[46] Russel Sandberg, David Boldberg, Steve Kleiman, Dan Walsh, and
Bob Lyon. Design and implementation of the sun network filesystem.
In Summer USENIX Conference, pages 119-130, June 1985.

[47] Douglas S. Santry, Michael J . Feeley, Norman C. Hutchinson, Alistair C .
Veitch, Ross W . Carton, and Jacob Ofir. Deciding when to forget in the
Elephant File System. In Symposium on Operating Systems Principles,
pages 110-123, 1999.

[48] Margo I. Seltzer, Kei th Bostic, Marshall K . McKusick, and Car l Staelin.
A n implementation of a log-structured file system for U N I X . In
USENIX Winter, pages 307-326, 1993.

[49] Margo I. Seltzer, Kei th A . Smith, Hari Balakrishnan, Jacqueline Chang,
Sara McMains, and Venkata N . Padmanabhan. File system logging
versus clustering: A performance comparison. In USENIX Winter,
pages 249-264, 1995.

[50] M . Sivathanu, V . Prabhakaran, A . Arpaci-Dusseau, and R. Arpaci-
Dusseau. Improving storage system availability with D - G R A I D . In
Third USENIX Conference on File and Storage Technologies (FAST
2004), pages 15-30, March 2004.

[51] Muthian Sivathanu, Lakshmi N . Bairavasundaram, Andrea C. Arpaci-
Dusseau, and Remzi H . Arpaci-Dusseau. Life or death at the block-level.

90

Bibliography

In Symposium on Operating Systems Design and Implementation, pages
379-394, 2004.

[52] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici, T im
othy E . Denehy, Andrea C. Arpaci-Dusseau, and Remzi H . Arpaci-
Dusseau. Semantically-smart disk systems. In Second USENIX Con
ference on File and Storage Technologies (FAST 2003), March 2003.

[53] Craig A . N . Soules, Garth R. Goodson, John D. Strunk, and Greg
Ganger. Metadata efficiency in versioning file systems. In Second
USENIX Conference on File and Storage Technologies (FAST 2003),
San Francisco, C A , U S A , 2003.

[54] John D. Strunk, Garth R. Goodson, Michael L . Scheinholtz, Craig A . N .
Soules, and Gregory R. Ganger. Design and implementation of a self-
securing storage device. In Symposium on Operating Systems Design
and Implementation, pages 165-179, October 2000.

[55] Michael M . Swift, Brian N . Bershad, and Henry M . Levy. Improving the
reliability of commodity operating systems. In 19th ACM Symposium
on Operating Systems Principles, October 2003.

[56] Walter F . Tichy. R C S : A system for version control. Software—Practice
and Experience, 15(7):637-654, 1985.

[57] Werner Vogels. File system usage in windows nt 4.0. In SOSP '99:
Proceedings of the seventeenth A CM symposium on Operating systems
principles, pages 93-109. A C M Press, 1999.

[58] Andrew Warfield, Steven Hand, Ken Fraser, and T i m Deegan. Facil
itating the development of soft devices. USENIX Annual Technical
Conference, General Track, pages 379-382, 2005.

[59] Andrew Warfield, Russ Ross, Keir Fraser, Christian Limpach, and
Steven Hand. Parallax: Managing storage for a million machines.
In The 10th USENIX Workshop on Hot Topics in Operating Systems
(HotOS-X), June 2005.

[60] Andrew Whitaker, Richard S. Cox, and Steven D. Gribble. Using time
travel to diagnose computer problems. In Symposium on Operating
Systems Design and Implementation, pages 77^90, 2004.

91

Bibliography

[61] Andrew Whitaker, Richard S. Cox, Marianne Shaw, and Steven D.
Gribble. Constructing services with interposable virtual hardware. In
First Symposium on Networked Systems Design and Implementation,
pages 169-182, 2004.

[62] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi.
Using model checking to find serious file system errors. In Symposium
on Operating Systems Design and Implementation, pages 273-288, De
cember 2004.

[63] Qing Yang, Weijun Xiao, and J in Ren. TRAP-array: A disk array
architecture providing timely recovery to any point-in-time. In ISC A
'06: Proceedings of the 33rd International Symposium on Computer
Architecture, pages 289-301, 2006.

92

