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Abstract 

Information is capital; disk space is a mere commodity. Versioning file sys
tems offer an appealing storage model that prevents users from uninten
tionally deleting or overwriting important data by transparently retaining 
old versions. However, improving storage reliability by adding versioning to 
a file system is problematic in two important ways. First, the complexity 
of file systems and the operating systems in which they reside leaves data 
vulnerable to bugs and viruses, even when versioning is added. Second, the 
mission-critical nature of file systems makes users and OS vendors justifiably 
hesitant to adopt new file system features like versioning, regardless of the 
potential benefits they might provide. 

This thesis presents VDisk, a block layer system capable of providing 
file-grain versioning to existing, unmodified file systems. VDisk features a 
novel division of labor to enhance security and reliability. Write-access to 
versioned data is restricted to two very simple, reliable, file system agnostic 
components: a block logger and a log cleaner. These crucial components 
are isolated in a virtual machine, where they are protected from the errors 
and attacks that plague operating systems. More complicated, untrusted, 
read-only utilities operate in user space. These utilities, which are free to use 
sophisticated, off-the-shelf tools not appropriate for trusted kernels, support 
version browsing and reconstruction without degrading system reliability. 

VDisk employs a policy-driven approach to block reclamation. A reten
tion policy specifies a set of constraints that describe which file versions must 
be retained and which need not be. A user-space tool periodically invokes 
the secure cleaner by submitting a set of delete requests along with a proof 
that these requests satisfy the retention policy. The secure cleaner verifies 
the proof and reclaims the specified blocks if applicable. Experimental re
sults show that the cleaner is capable of reclaiming more than 80% of logged 
data. 
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Chapter 1 

Introduction 

1.1 Motivation 
Computers have become repositories for a variety of information, including 
business records, intellectual property, and sentimental keepsakes. Some of 
this information has direct financial value; some of it is invaluable; all of 
it is entrusted to computers, which must store it securely and dependably. 
Computers are quickly becoming an integral component of every aspect of 
our lives, but they are only truly useful insofar as we can trust them to 
operate correctly. Storage subsystems, which are responsible for ensuring 
data persistence, have thus become one of the most crucial components of 
computing environments. 

Advances in hardware technology have resulted in storage systems with 
capacities commensurate to the value of the data they are meant to retain. 
Hard drives have become so affordable and so capacious that in many cases 
they can take the place of slower, more cumbersome tertiary storage devices 
such as magnetic tape drives. This surplus of disk space has introduced new 
opportunities for improving storage reliability—and increased the complex
ities of doing so: modern storage systems must now be capable of scaling to 
immense proportions and supporting large numbers of users. 

The complexities involved in providing reliable storage on a vast scale 
have become onerous to system administrators. While the cost of hard 
drives has decreased significantly in the past years, the cost of storage ad
ministration has not. In fact, the cost of administration has been estimated 
to exceed the price of storage hardware by several hundred percent [19]. 
Increased system administration is undesirable not only because it increases 
costs, but also because it increases the potential for human error, thereby 
reducing system reliability. 

Modern hardware is no longer the primary cause of data loss; recent 
studies impute 60% to 80% of data loss to human error, software defects, 
virus attacks, power failures and site failures [63]. The users themselves can 
constitute a surprisingly hazardous threat to data: in addition to erroneously 
deleting important files, users may intentionally modify a file one day only to 
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Chapter 1. Introduction 

find themselves desperate for the or ig inal version a week later. A dependable 
storage system charged wi th . the task of protect ing da ta from a l l dangers is 
thus charged w i t h the task of protect ing users from themselves. 

D a t a is valuable, disk space is cheap, adminis t ra t ive complexit ies are 
burdensome, and users are fall ible. These trends suggest the need for a new 
mode l of da ta storage; a na tu ra l design response is to provide l ibera l undo 
capabil i t ies by t ransparent ly increasing da ta redundancy at the expense of 
increased storage requirements. 

1.2 Data Versioning 

Vers ioning ut i l i t ies use the abundance of storage capaci ty available to m o d 
ern machines to preserve mul t ip le versions of impor tan t da ta . Vers ion ing 
is a general service that can be provided by a number of entities, i nc lud 
ing user-space applicat ions, v i r t u a l and on-disk file systems, and block-level 
drivers. T o be effective, a versioning u t i l i t y should operate t ransparent ly 
and automatical ly , thereby reducing the potent ia l for human error. T o be 
dependable, a. versioning u t i l i t y should be except ional ly s imple. 

A number of versioning file systems [13, 23, 34, 39, 47, 53] have been 
created to provide users w i t h a new mode l for da ta management. Vers ion ing 
file systems main ta in mul t ip le versions of files: the current version is func
t iona l ly ident ical to conventional files, whi le older versions are immutab le 
and often h idden du r ing no rma l operat ion. Users can browse a file's h is tory 
and revert to an older copy at any t ime. M a n y vers ioning file systems also 
provide ex t ra features, such as the ab i l i ty to s t ipulate per-file or per-file-
group retention policies [47] and the ab i l i ty to t ransparent ly compress o ld 
versions [34]. 

Vers ioning file systems provide r ich functionali ty, bu t the in t r ins ic com
plexi ty of these systems significantly compromises their dependabil i ty . F i l e 
systems export sophist icated interfaces and must suppor t paral le l , asyn
chronous interactions w i t h bo th appl ica t ion and block layer code. T h e file 
system constitutes a fundamental component of most opera t ing systems; its 
performance must be fine-tuned, wel l coordinated, and u t te r ly reliable to 
ensure the integri ty of the system. Moreover , i t is except ional ly difficult, i f 
not impossible , to verify the correctness of file system code w i t h formal au
d i t ing . E v e n ext3 [1], a mature file system renowned for i ts rel iabi l i ty , is not 
flawless: mode l checking has been used to uncover five correctness errors i n 
this file system, inc lud ing one that resulted i n permanent da t a loss [62]; i t is 
l ikely that callow versioning file systems would require years of wide-spread 
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use and refinement to achieve even this imperfect level of dependability. For 
these reasons, operating system vendors and users are typically very reluc
tant to adopt new file systems, even when they offer innovative and enticing 
features. 

User-level applications like C V S [18] and P R C S [30] and stackable file 
systems such as VersionFS [34] and Wayback [13] add a degree of flexibil
ity not attainable by on-disk file systems, as these higher-level systems can 
be used to provide versioning to extant file systems. However, versioning 
applications fail to provide the transparency required of a truly dependable 
system because they leave the user responsible for initiating data preser
vation. Moreover, both applications and stackable file systems rely upon 
underlying file systems to maintain important versioning information—and 
thus can be no more secure than the on-disk systems over which they oper
ate. 

1.3 Secure Logging 

File system undo capabilities protect data by interposing an extra level of in
direction between users and data, much in the same manner that the recycle 
bin metaphor protects against undesired deletions by requiring an additional 
confirmation of a user's intent. In a trusted environment, this extra layer 
of insulation is often enough to prevent the destruction of important data. 
However, in a less sheltered environment, all the effort invested in retaining 
versioned data might go for naught if the data is not carefully secured. 

If a versioning system supports the removal of versioned data—and for 
the sake of practicability, it must somehow do so—it runs the risk of suc
cumbing to the very dangers it seeks to protect against. Although users 
would conceivably be more circumspect when deleting a file's version history 
than they would when performing common file system operations, the pres
ence of a mechanism which is capable of destroying version histories poses 
the same dangers to versioned data that conventional file system operations 
pose to unversioned data: in both cases, there exists the same potential for 
the erroneous loss of data, and, perhaps more importantly, there exists the 
same susceptibility to the malicious destruction of data. 

Version histories can be valuable for a number of reasons. In addition 
to protecting users from their own mistakes, version histories can be used 
to audit compromised systems. Version histories can record the actions 
of viruses and other malware, and they can be used both to discover the 
system vulnerabilities exploited by such agents as well as to recover from 
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the harmful consequences engendered thereby—but only if they survive the 
attack. If version histories are not protected, viruses could cover their trails 
by destroying versioned data, rendering log-based recovery impossible. 

To guard against both incidental and malicious data destruction, ver
sioned data must be protected. In particular, untrusted processes should 
never be capable of overwriting or deleting versioned data. This implies that 
only privileged, dependable processes should have write-access to versioned 
data. There are number of methods by which versioning can be imple
mented, but given the complexity and vulnerability of large code-bases, the 
most secure way to implement versioning is to do so at the lowest possible 
level. 

A dependable system is one in which all functioning components are 
trusted to adhere to their intended purposes. A vulnerability in any one 
component may be propagated throughout the entire system, undermining 
the system's dependability. To reduce or eliminate the vulnerabilities of a 
system, it is beneficial to minimize the trusted computing base (TCB) of the 
system, thereby minimizing the probability that the system is reliant upon 
a faulty component. 

The process of data versioning admits of a natural division into two tasks: 
version preservation and version browsing. In an ideal world, users would 
neVer be compelled to delete data, but even the immense storage capacity 
provided by modern hard disks is not infinite; thus, a third task must be 
supported by any practical versioning system: version pruning. 

File systems perform all of these tasks as a single, monolithic unit. The 
complexity of these systems derogates from the appeal of including them in 
a trusted computing base. If versioning is to be implemented in a depend
able manner, it should be done below the file system, at the block layer. 
The block layer interface is very narrow: block-level. drivers deal only with 
raw blocks of data and remain blissfully ignorant of complicated file system 
semantics. This tractable interface enables the development of block-level 
services that are much simpler than their bulky file system counterparts and 
therefore much easier to audit for correctness. 

The T C B of a file system includes the file system itself, the kernel, the 
device drivers, and the device hardware; a failure in any one of these com
ponents could result in the irretrievable loss of data. Block-level drivers are 
situated much, closer to hardware and thus suffer from far fewer vulnerabili
ties than file systems. Moreover, the situation of drivers beneath the kernel 
makes it possible to completely isolate these extensions from the operating 
system. Wi th the use of virtual machine monitors (VMMs) such as Xen [7], 
block-level drivers can be hermetically isolated, protected by the V M M from 
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the vagaries of kernel operations. 
However, new difficulties arise when endeavoring to offer satisfactory 

functionality from the block layer. Conventional block layer versioning sys
tems like Clotho [19] and Peabody [32] can only provide coarse-grain ver
sioning of logical volumes. These systems are compatible with a number 
of existing file systems, and their trusted computing bases are significantly 
smaller than those of versioning file systems, but their limited version brows
ing and version pruning facilities yield sub-par utility. Users predominantly 
interact with storage systems at the granularity of files, and thus a truly 
effective versioning system should support versioning on a per-file basis. 

The challenge, then, to providing a dependable versioning system is to 
achieve file versioning at the block layer. Moreover, the extra complexity 
required to support file versioning should not detract from the system's 
reliability. 

Wi th these considerations in mind, we have designed and implemented 
the Versioning Disk (VDisk), a dependable versioning system. The most 
notable characteristic of VDisk is its stratified design: to improve depend
ability, we have incorporated only the simplest mechanisms into the critical 
components of VDisk; complicated—and possibly undependable—tasks are 
executed in user space, where they can cause no harm. 

VDisk executes as a block-level driver, and is therefore compatible with 
multiple file systems. The critical components of VDisk include a simple log
ging utility and a secure log cleaner. File system writes are routed through 
the VDisk driver, which simply appends these writes to an immutable log 
before passing the requests down to the underlying device driver. While 
this approach requires the duplication of all disk writes, it has the advan
tage of leaving the original on-disk file system layout unmodified, meaning 
that VDisk does not introduce new vulnerabilities into existing file systems. 

To support version browsing at a per-file granularity, an untrusted user-
space application uses the logged data to reconstruct file versions. There are 
numerous advantages to performing reconstruction in user space. For one, 
user-space development is much simpler than kernel development. Powerful 
debuggers and a protected execution environment greatly ease the coding 
process. As well, user space applications can leverage a plethora of tools not 
available to kernel modules. For example, we use a relational database to 
organize log metadata, which greatly simplifies file reconstruction. Finally, 
because the reconstruction process never modifies the log, it is incapable of 
erroneously or maliciously destroying logged data, and thus poses no risks 
to the system's dependability. 

A concern for all versioning systems is resource management. Even with 
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cheap, abundant storage, disk space will ultimately need to be reclaimed. 
This imposes new dependability issues, as any process which modifies ver
sioned data introduces potential dangers. However, following our stratified 
design approach, we have faced this challenge by dividing version prun
ing into two sub-tasks: an untrusted and innocuous user-space application 
makes suggestions about what data is eligible for deletion, while a simple, 
secure cleaner verifies that these suggestions adhere to the system's retention 
policies and performs the deletions. In this manner the advantages of user-
space development can be exploited without introducing new vulnerabilities 
into the trusted logging subsystem. 
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Related Work 

The tremendous value of data stored on modern computers has motivated 
the creation of a number of tools designed to preserve electronic documents. 
User-initiated applications such as C V S [18], RCS [56], and P R C S [30] facil
itate the maintenance and organization of file versions by allowing users to 
commit important versions of selected files to a repository. These applica
tions are particularly useful in well-managed, dynamic environments where 
users a make conscious effort to retain important file versions, but they fail 
to provide the transparency and security required of a truly dependable ver
sioning system. Snapshotting, checkpointing, and transparent versioning at 
or below the file system layer preserve data versions automatically and thus 
reduce the potential for human error. In addition to providing increased 
protection of important user documents, comprehensive versioning systems 
are useful in other domains, such as post-intrusion analysis [14, 60] and 
kernel debugging [28]. 

However, the increased functionality obtained by implementing version
ing in the kernel does incur a cost. Adding code to file systems and kernels 
increases the difficulties of technology adoption and introduces potential new 
security holes. Moreover, the typically vast size and complexity of these 
systems makes any formal verification of their correctness extremely diffi
cult, thereby diminishing their trustworthiness. These predicaments have 
prompted the development of new technologies—such as gray-box design 
and trusted computing infrastructures—that can be used to mitigate the 
difficulties of kernel expansion. 

2.1 Snapshot Utilities 

Snapshot utilities support the coarse-grain versioning of data. Such utilities 
enable the periodic creation of file system images, allowing for the production 
of a series of instances from a file system's history which can be accessed 
online or archived in tertiary storage. These utilities do not support the 
versioning of individual files and do not maintain comprehensive histories 
of file system activities: each snapshot preserves the entire file system state 
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at a single instant, but any data updates made between two snapshots are 
irrecoverable. 

The Write Anywhere File Layout system ( W A F L ) [24] was designed to 
operate as a dedicated network storage appliance interfaced via NFS [46]. 
W A F L ' s hierarchical block layout enables the rapid generation of file system 
snapshots: given a live block tree, a read-only snapshot can be made simply 
by copying the root node of the tree. Subsequent writes to the live tree 
are done in a copy-on-write fashion so that the data blocks referenced by 
the snapshot's tree are not overwritten. Modified blocks are written to 
new locations on the disk, and all intermediary nodes linking the leaf to 
the root must be updated to reflect these relocations; these updates are 
buffered with non-volatile R A M and batched to improve efficiency. W A F L ' s 
block reallocation scheme sets a hard limit on the number of concurrent 
snapshots the system can support. Each block is tracked with a 32-bit 
reference counter, with each bit indicating the block's allocation status in 
exactly one snapshot. Thus the system can only support 32 snapshots at 
any given time, a limitation which makes W A F L ill-suited for a number of 
versioning scenarios, including landmark preservation [47] and post-intrusion 
analysis. 

W A F L achieves efficient snapshotting because of its unconventional, hi
erarchical block store. Traditional U N I X file systems are intellectual descen
dants of the Berkeley Fast File System [31] and as such share a common disk 
layout which is significantly different than that of W A F L . F F S was designed 
to minimize disk seeks, the slowest of disk operations. Adhering to the as
sumption that a directory and the files it contains wil l often be accessed 
concurrently, F F S endeavors to place the data blocks which compose these 
objects together on the same disk cylinder, hoping thereby to curtail disk 
seeks. The Sprite Log-structured File System (LFS) [44] takes a radically 
different approach to disk layout. Positing that the majority of file system 
reads can be served by ever-growing in-memory file caches, the designers of 
L F S made optimizing disk writes their main priority. In L F S , disk writes 
are organized sequentially and sent to the disk in batches: many individual 
file system updates are clustered into a single large write, which is appended 
to a contiguous region of the disk. This process ensures that collections of 
multiple small writes, which may have required many disk seeks in F F S , wil l 
be written to one region by L F S and wil l thus require far fewer seeks. 

The consequences of this design are manifold. Most notably, data is 
not directly overwritten—once committed to disk, data blocks remain im
mutable until they are ultimately reallocated by a system cleaner. L F S can 
thus be considered an implicit versioning system, and indeed, L F S makes 
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good, if limited, use of its versioning capabilities. L F S supports the notion 
of checkpoints, or positions in the log which contain consistent instants of 
the system's data and metadata. If a machine shuts down while the on-
disk representation of L F S is inconsistent, it is possible to revert to a recent 
consistent state simply by returning to the last checkpoint. 

Although L F S contains the information required to support a more com
prehensive versioning policy, it only preserves two checkpoints. Blocks not 
belonging to these checkpoints must be reallocated to ensure the availability 
of contiguous extents for efficient writes; this process of reallocation entails 
new difficulties. In particular, much effort must be expended by the L F S 
cleaner to determine which segments of the disk contain blocks that are no 
longer referenced by current files. This cleaner, which operates as a separate 
background process, transfers the live data from multiple segments into a 
few segments; the remaining empty segments are then available for reallo
cation. However, this cleaner is the source of some controversy, as it has 
been found to decrease overall file system performance by more than 34% 
in transactional environments, with the cleaner accounting for up to 80% of 
data written to disk [48, 49]. The advantages and new capabilities provided 
by L F S thus come with a concomitant increase in complexity. 

A variety of systems provide snapshotting functionality similar to that 
of W A F L and L F S [11, 25, 29, 33, 38, 41, 59]. While the individual designs 
of these systems vary widely, they all share the common goal of provid
ing coarse-grain, system-wide versioning. This type of versioning can be 
useful, but it cannot provide sufficient guarantees against inadvertent data 
loss. To provide absolute protection of important data from malicious and 
unintended deletion, a more exhaustive approach is required. 

2.2 Versioning File Systems 

Versioning file systems employ a copy-on-write strategy to create versions 
on a per-file, rather than a per-system, basis, thereby creating much more 
detailed histories of file system activities. Resource management is a key 
challenge faced by versioning file systems—even on modern, capacious disks, 
the retention of every version of every file will ultimately result in a complete 
exhaustion of storage space. A number of versioning file systems have been 
designed and implemented, each offering its own unique advantages and 
drawbacks. 

The Cedar File System [23] was one of the first file systems to automati
cally preserve immutable versions of files. Cedar is a distributed file system 
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designed to support file sharing between multiple concurrent users. Files in 
Cedar are designated local or remote; users operate directly on local files, 
and can choose to share them by copying them to a remote file server. A l l 
remote files are retained automatically, but local versions are silently pruned 
according to a simple per-file policy. 

Elephant [47], which operates beneath FreeBSD's Vir tual File System 
layer, creates a new file version upon the first write to an opened file. A l l 
subsequent writes before the file is closed are performed on the new version. 
Elephant supports the application of sophisticated versioning policies to 
make the best use of storage space. These policies, which include Keep One, 
Keep A l l , Keep Safe, and Keep Landmarks, can be applied on a per-file or 
per-file-group basis. Keep One retention only preserves the current version 
of a file, while Keep A l l retention preserves all versions of a file. Keep 
Landmarks employs a heuristic to retain important milestone versions of a 
file while reclaiming all others. The heuristic is based on the assumption 
that minor differences between infrequently accessed versions lose meaning 
to the user as the files age. Thus for very old versions, only relatively stable 
instances—i.e., those that come at the end of a spurt of revisions and remain 
unchanged for a substantial period of time—should be retained,-while for 
recently accessed files, all versions should be retained. The Elephant cleaner 
cleans a file by examining the log of inodes which represents its version 
history and reclaiming eligible versions. Files are selected for cleaning on the 
basis of a heuristic value which is updated on every file close. File cleaning 
in Elephant is significantly easier than segment cleaning in L F S , because the 
Elephant cleaner need only read file metadata to perform its duty, while the 
L F S cleaner must read entire segments and rewrite live blocks. 

Elephant was built from scratch to provide versioning from within the 
file system; the adoption of Elephant thus requires the replacement of ex
isting, tried and true file systems with a new, untested system. In contrast, 
VersionFS [34] is implemented as a stackable file system and operates within 
the V F S layer, making it compatible with all standard on-disk file systems. 
VersionFS adopts a copy-on-change policy to reduce the amount of redun
dant data stored in file versions and supports the transparent compression 
of versioned files. 

In a similar vein, Wayback [13] logs all version changes in user space, 
relying on a kernel module to intercept file system calls and trap to the 
application-layer server. Both VersionFS and Wayback operate above on-
disk file systems, and as such can be used to incorporate versioning function
ality into any existing file system. However, the inability of these systems to 
directly control on-disk data structures poses new problems, as they are in-
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capable of preventing stale file versions from polluting the kernel page cache; 
moreover, VersionFS cannot guarantee that a file's inode number wil l remain 
constant throughout its lifetime, a property required for compatibility with 
N F S . 

Ext3cow [39, 40] is a modification of ext3 that makes use of retrofitted 
on-disk ext3 inodes to accommodate the additional metadata required for 
maintaining versions, thereby reducing the maximum supportable file size 
by 16%. Ext3cow can provide transparent snapshot capabilities as well as 
individual file versioning. Unlike Elephant, ext3cow is an extension of a 
popular, robust file system. This approach both simplified the implemen
tation of ext3cow and reduced the amount of new code required to achieve 
versioning. However, ext3cow suffers from the same compatibility issues as 
Elephant—neither of these on-disk file systems can provide general version
ing services to arbitrary file systems. 

The Comprehensive Versioning File System [53] was designed with secu
rity as a top priority. C V F S operates below S4 [54], a self-securing, dedicated 
storage server, and is accessed via NFS [46]. To facilitate post-intrusion anal
ysis and auditing, C V F S maintains copies of all data and metadata written 
to disk for a predetermined period of time, known as the detection win
dow. This system allows administrators to investigate the propagation of 
malicious data and thereby determine the source of a system's ailments. Be
cause C V F S maintains versions of every write to disk, it must take special 
care to optimize the storage of versioned data. In particular, C V F S in
troduces metadata journaling and multiversion b-trees to reduce metadata 
storage requirements, which could otherwise equal the storage requirements 
of the data itself. 

2.3 Block Logs 

While it is intuitive to offer file versioning at the file system level, there 
are advantages to be gained in providing data versioning from beneath file 
systems. A mechanism that can export versioning capabilities to any number 
of file systems can provide a degree of flexibility and simplicity not achievable 
by monolithic file systems. One means of providing flexibility is the use of 
stackable or user-space versioning systems like VersionFS and Wayback. A 
simpler approach is to offer versioning at the block level. 

Clotho [19], which was designed to exploit the increasing computing 
power of storage systems, supports versioning of volumes. Clotho is imple
mented as an addition to the block layer, and as such can operate beneath 
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any file system. Clotho organizes data into extents, introducing a level of 
indirection between logical and physical block addresses. Like W A F L , ver
sioning in Clotho is achieved by writing versions of data blocks to new disk 
locations and updating the mapping to reflect these relocations. Clotho is a 
snapshot system, and can be configured to create read-only snapshots of an 
entire volume upon the execution of any number of file system operations, 
including file writes. Snapshots are accessed through virtual devices: each 
snapshot results in the creation of a new, read-only virtual device, which 
can be mounted and browsed in the conventional manner. 

Peabody [32] is a block-level logging utility designed to operate on network-
attached storage systems. Peabody preserves data by appending all writes 
to an on-disk log in a manner similar to that of L F S . For any file system 
with a consistency checker, Peabody can provide undo capabilities by simply 
rolling the log back to the desired time and using file system tools to verify 
system consistency; if the target time cannot be made consistent, the log 
can be rolled forward or backward until consistency is achieved. Peabody 
employs a number of optimizations, such as content hashing and silent write 
prevention, to avoid redundant writes to the log, thereby reducing the size 
of the log. 

While Peabody relies upon content hashing to limit log size explosion, a 
different approach has been employed with modified R A I D arrays. T R A P [63], 
or Timely Recovery to Any Point-in-time, systems store block histories by 
retaining exclusive-ORs of consecutive block versions. Due to a strong con
tent locality, these exclusive-OR delta chains can represent version histories 
with extreme concision. Workloads studied in [63] exhibited only 5% to 
20% bit changes between consecutive block versions. This small variance re
dounds to exclusive-ORs consisting primarily of zeros, which can be greatly 
compacted through simple run-length encoding. Version reconstruction is 
achieved by traversing these delta chains, applying the exclusive-OR of each 
version against the next successive version, until the desired state is reached. 

A l l of these block-level loggers are oblivious to file system semantics, 
making them compatible with a number of different file systems. This ne
science of file system semantics greatly simplifies the task of data preser
vation. However, none of these block-level utilities support versioning at 
a per-file granularity; thus the flexibility and simplicity achieved by these 
systems comes with restricted functionality. 
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2.4 Gray-Box Systems 
A significant problem faced by systems researchers is the difficulty of con
vincing users to adopt new technologies. Many innovative ideas have been 
sent quietly to their graves because of the difficulty of incorporating them 
into widely used systems. Gray-box technologies [5] have been designed 
to allow researchers to implement new ideas on commodity systems with
out modifying kernel code. This technique both improves the adoptability 
of new technologies and avoids the introduction of new vulnerabilities into 
heavily distributed kernels. The knowledge which can help to turn black-
box systems into gray-box systems is obtained from three main sources: an 
a priori understanding of the system's algorithms, controlled observation of 
the system's performance, and inferences of the system's internal state. 

Semantically Smart Disks [52] present a prime example of the power 
of gray-box techniques. Typical operating systems provide a very narrow 
interface between file systems and block-level I /O . This interface is useful 
in that it greatly simplifies block-level drivers, which need only deal with 
blocks of raw data. However, it also limits the functionality that typical 
block-level drivers can provide, because it hides all information of higher 
level abstractions, such as files and directories, from the drivers. Gray-
box techniques can be used to reacquire this knowledge at the block layer. 
When a semantically smart disk is installed, a five phase process is executed 
to discern the location of important file system structures on disk. A n 
application-layer process probes the gray-box system by executing a number 
of carefully planned file system functions while a block-level module observes 
the read and write requests which are consequently sent to the disk. B y 
combining these observations with a deep understanding of supported file 
system algorithms, the module can infer the type of the file system which is 
using the disk, and can thus perform file system-aware optimizations at the 
block level without modifying the kernel's block-level interface. 

A convincing use of file system knowledge at the block layer can be 
found in D - G R A I D [50], a driver which exploits knowledge provided by 
gray-box techniques to optimally organize file system objects for use with 
R A I D [37] systems. R A I D systems stripe data across multiple disks to 
improve performance. Data is often replicated on multiple disks to reduce 
the potential for data loss upon disk failure, but because R A I D controllers 
operate beneath the block-layer interface, they are typically unable to stripe 
and replicate data intelligently. For example, if a file composed of multiple 
blocks is striped across multiple disks, a failure of any one of these disks 
(assuming no replication) will render the file unusable, even though the 
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majority of its data is still accessible. D - G R A I D uses its knowledge of file 
system semantics to ensure that all data blocks associated with a file are 
stored on the same disk; thus the failure of a disk wil l only result in the loss 
of files which are entirely stored on that disk, rather than resulting in the 
loss of any file which has even a single block stored on the disk. This system 
is a pointed example of the enhancements achievable through a multi-level 
implementation of block layer mechanisms. 

2.5 System Logs 

Versioning file systems provide typical users with an obvious benefit: the 
ability to undo any file system operation. Data versioning can also enhance 
system security by enabling post-intrusion analysis and recovery. 

Chronus [60], which operates within a /iDenali virtual machine [61], 
records all changes made to the disks of its descendant V M s in an append-
only log. If a child V M begins malfunctioning, an analysis of the log can 
expose the cause of the error and enable a reversion to the last functioning 
disk state, effectively undoing the problem. Chronus uses a binary search 
trial and error method to automate this analysis, rebooting its child V M 
with different versions of the disk until the problematic change is found. 

ReVirt [14], implemented as a part of U M L i n u x [9], logs non-deterministic 
events of guest operating systems. This log can then be used to replay 
the guest operating system's activities instruction by instruction. The log 
only maintains a history of events that cannot be reproduced during the re-
enactment process. Similarly, BackTracker [27] logs higher-level operating 
system events and objects. This log can be used to generate an easy-to-
read flow-chart which graphs the actions of intruders and the objects they 
affected, helping administrators determine what system vulnerabilities were 
exploited during an attack. 

Operator Undo [8] uses time-travelling disks to provide system-wide undo 
functionality to administrators. Designed as a general infrastructure for sup
porting application-neutral undos, Operator Undo provides an interface for 
recording system actions, which are described as an abstract verb data struc
ture. Front-end proxies are charged with marshalling application-specific 
data into verbs; Operator Undo records these verbs and can use them to 
rewind to previous system states and to replay system activities, incorpo
rating repairs made along the way. 

14 



Chapter 2. Related Work 

2.6 Trusted Computing 

While gray-box technologies attempt to extend kernel functionality without 
introducing new kernel code, their applications are limited; some features 
simply cannot be implemented without modifying the kernel. But while 
kernel changes may, in some cases, be inevitable, the impact of these changes 
can often be mitigated. One strategy for facilitating kernel modification is 
to isolate the existing, robust, trusted code from the new, experimental, 
potentially incorrect extensions. 

Terra [21] is a framework intended to facilitate trusted computing on 
commodity hardware. Citing the complexity of full-featured operating sys
tems as an inherent limitation of assurance, Terra's designers strove to min
imize the trusted computing base of sensitive applications by simulating 
closed platform functionality with virtual machines. Terra isolates critical 
applications within specialized, trusted domains, which can employ user-
specified customized operating systems to provide optimal security. These 
trusted domains are protected from malicious tampering by a Trusted Vir
tual Machine Manager. In addition, Terra provides an attestation interface 
which enables the verification of critical applications through the use of 
certificates documenting the validity of applications, drivers, firmware and 
hardware. 

Nooks [55] aims to transparently isolate kernel code from modules and 
drivers, which are responsible for a significant proportion of crashes in com
modity operating systems [10, 35]. Although this isolation is sought to pro
tect the kernel from extensions rather than vice versa, the principle behind 
Nooks is similar to Terra and other trusted computing frameworks. The 
intention of these systems is to mitigate the danger of executing untrusted 
code by establishing controlled operating environments. Nooks achieves this 
by interposing a management layer between the kernel and its extensions; 
this layer ensures that untrusted extensions operate within protected do-, 
mains. Any undesired operations attempted by extensions can be prevented 
or reversed by the management layer, thus shielding the kernel from erro
neous extensions. Nooks is based on the observation that in commodity 
systems, the majority of bugs are introduced by drivers, and thus the ker
nel should be protected from extensions, while Terra endeavors to protect 
critical, thoroughly audited applications from large, complicated operating 
systems. 

The primary intention of the Exokernel [17] is to enable application-
level management of operating system resources. Advocates of end-to-end 
design [45] maintain that although a single, monolithic operating system 
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can provide satisfactory functionality to a broad range of applications, its 
performance for any particular application is often hindered by unnecessary 
generality. The Exokernel therefore endeavors to grant applications as much 
leeway as possible in designing and managing system abstractions such as 
inter-process communication and virtual memory. Library operating sys
tems run in the address space of the applications they support, and can 
be optimized for individual performance requirements. A low-level exoker
nel controls resource allocation and revocation, maintaining equity between 
competing library operating systems. Library operating systems can create 
rich system abstractions to facilitate application development and execu
tion; the exokernel, however, remains ignorant of the semantics of such ab
stractions. The exokernel enforces resource protection by evaluating simple 
predicates, provided by library operating systems, which express resource re
quirements in a language that the low-level exokernel can understand. This 
infrastructure allows the exokernel to protect system resources without un
derstanding their application-level semantics. The exokernel thus isolates 
the complexity of richly featured operating systems from the mechanism 
responsible for protecting system resources, greatly reducing the trusted 
computing base of the system's critical components. 

While the Exokernel supports customized library operating systems, it 
is incompatible with unmodified commodity operating systems. In contrast, 
Xen [7] has sought to provide some of the same features as the Exokernel 
while supporting standard operating systems such as Linux and Microsoft 
X P . Xen, a virtual machine monitor, is designed specifically for the x86 
architecture. Xen paravirtualizes hardware by providing very slightly modi
fied interfaces to guest operating systems. The Xen hypervisor can support 
multiple guest operating systems simultaneously; each guest OS operates in 
its own isolated domain, and is protected by the hypervisor from all other 
guest operating systems. Additionally, Xen supports the isolation of individ
ual device drivers; any driver can operate in complete isolation by running 
in its own virtual machine [20]. Guest operating systems communicate with 
these isolated drivers via an asynchronous device channel primitive which is 
offered by the hypervisor. This isolation enables Xen to protect guest oper
ating systems and device drivers from each other; as well, the device channel 
which links these two entities can be redirected to user space processes in 
the driver's domain, thus facilitating the implementation of virtual devices 
from the application layer [58]. 
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2.7 Summary 
The increasing value of digital information has motivated the design of a 
number of systems intended to preserve on-disk data. Many file systems pro
vide snapshotting functionality, allowing users to revert to previous system 
images to recover old data. More comprehensive systems decrease version 
granularity by retaining all versions of all files, or by enforcing user-specified 
policies to retain important files. Versioning can also be provided by block 
layer systems, which are generally oblivious to file system semantics and can 
thus provide volume or virtual disk versions to a number of unmodified file 
systems. Gray-box technologies have explored methods for providing some 
file system information to the block layer without modifying existing kernel 
code. 

In addition to providing users with file system undo capabilities, ver
sioning file systems (or time-travelling disks) can be used to increase system 
security by enabling post-intrusion analysis and recovery. Versioning sys
tems designed for such security applications must retain all versions of all 
data and must handle version deletion in a secure manner to prevent mali
cious users from erasing incriminating evidence. 

Empirical evidence shows that in typical commodity systems, kernel ex
tensions such as drivers significantly reduce system dependability. Con
versely, the complexity of monolithic kernels diminishes their appeal for use 
with truly critical applications. In both cases, increased dependability can 
be achieved by isolating the untrusted code; virtual machine monitors pro
vide an ideal infrastructure with which to enforce this isolation. 
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Secure V e r s i o n i n g 

Versioning systems provide an attractive model for data storage. The abun
dant disk capacity available to modern systems has made traditional storage 
models, in which data is frequently destroyed in order to reclaim disk space, 
obsolete. Modern users should enjoy the confidence that, barring a disk 
failure, all data entrusted to the storage subsystem will be available under 
any circumstances—including user error. 

There are a number of different manners in which the versioning model 
can be implemented, each with its own particular strengths and weaknesses. 
Current versioning systems suffer from one of two major shortcomings: in
adequate security and inadequate utility. The problem faced by versioning 
system designers consists of coupling adequate flexibility with unimpeach
able reliability. 

3.1 The Ideal Versioning System 

As evidenced by the previous chapter, versioning systems come in a variety 
of guises, from user-space applications to block-level drivers. For purposes 
of comparison and conceptualization, it is useful to enumerate a prioritized 
list of criteria by which to judge different designs. These ideal standards, 
listed below in descending order of importance, provide a vocabulary with 
which to conduct a rigorous evaluation of current systems and a means of 
articulating the abstract concepts from which an ideal versioning system can 
be composed. 

Reliability: The degree to which a system can be relied upon to store and 
retrieve all data entrusted to it. 
The primary goal of a versioning system is to safeguard data; thus 
we must first and foremost evaluate a versioning system according to 
its ability to reliably do so. A susceptibility to undesired loss of data 
constitutes an intolerable flaw. 

Security: The degree to which a system can survive malicious attacks. 
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If a principal danger to data lies in buggy software, a no less insidious 
threat lurks behind every firewall: a menagerie of viruses, spyware, 
malware and other malicious entities pose a real hazard to users' data, 
and thus a versioning system should protect against these dangers as 
much as possible. u 

Flexibility: The degree to which versioning services can be adjusted to 
satisfy users' needs. 

Versioning systems should accommodate users' needs rather than the 
converse. Systems which impose unnecessary or cumbersome restraints 
upon users are less appealing than systems which afford users as much 
freedom as possible without introducing vulnerabilities. 

Adoptability: The ease with which a versioning system can be incorpo
rated into a working system. 

A system can be useful only insofar as it is used. If the difficulties 
of transitioning to a system are too great, it wil l quickly be relegated 
to the software graveyard, there to be mourned by its creators and 
forgotten. The ideal versioning system should easily integrate with 
current working systems. 

Efficiency: The degree to which a versioning system impacts system per
formance. 

While it is accepted that the costs associated with data versioning are 
warranted by the services rendered, ideal versioning systems should 
impose minimal performance degradation, both in terms of time and 
space. 

Put concisely, the ideal versioning system should reliably protect data 
from both users and malicious software, offer users an appropriate degree 
of flexibility, and integrate easily into current working systems without im
posing burdensome overhead. Even given the number and variety, of current 
versioning systems, no existing solution presently satisfies all of the above 
criteria. 

3.2 Existing Systems 

There are two general classes of versioning systems: those which operate on 
file system objects, and those which operate on disk blocks. Each of these 
classes is broad enough to contain a number of diverse systems, but each 
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represents a fundamental design choice that significantly impacts the degree 
to which a system can satisfy the proposed criteria. 

3.2.1 File-Level Versioning Systems 

File-level versioning systems can be implemented as user-space applications, 
stackable file systems, or on-disk file systems. These systems deal with file 
system objects like directories and files, and as such are ideally situated 
to provide versioning at a per-file granularity—and because users typically 
interact with the storage subsystem by manipulating individual file system 
objects, per-file versioning is more appropriate than, say, per-volume or per-
disk versioning. 

Additionally, file-level versioning systems can enforce per-file policies. 
For instance, Elephant [47] allows users to specify version retention policies 
on a per-file or per-file-type basis. This is useful because the value of indi
vidual files is often related to their file types; for example, word processing 
documents are often much more valuable to a user than cached H T M L ob
jects. Another example of the advantages of versioning on a per-file basis 
can be found in VersionFS [34], which uses its knowledge of file system ob
jects to employ a copy-on-change (rather than copy-on-write) approach to 
versioning. W i t h copy-on-change, version histories are saved as delta chains 
of individual versions, and no two versions contain redundant data. This 
approach, which requires a knowledge of file system objects, reduces the 
amount of storage space required to maintain version histories. 

Stackable file systems like VersionFS and Wayback [13] are highly adopt-
able, as they are compatible with a number of existing file systems. However, 
these systems have limited control of data structures maintained by the ker
nel and on-disk file systems. For this reason, these types of systems cannot 
prevent stale file versions from polluting the kernel's page cache; nor can 
they manage the allocation of inode numbers to ensure that file identifiers 
remain stable for use with systems like N F S . On-disk file systems like Ele
phant and ext3cow [39] have the ability to manage kernel data structures, 
and can thus make better use of the page cache and inode numbers. How
ever, these systems are not compatible with other file systems, and are thus 
not easily adopted. 

A l l file-level versioning systems, by virtue of their awareness of file sys
tem objects, share one common trait: complexity. File systems are large 
and complicated; they export rich interfaces, and are oftentimes used in 
unexpected ways; and they maintain a significant amount of sophisticated 
metadata to manage the objects they support. For these reasons, file systems 
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are notoriously difficult to construct, and even well-established, thoroughly-' 
tested file systems like ext3 [1], JFS [2], and ReiserFS [4] have been found 
to contain logical errors capable of wiping out important data [62]. 

In general, file-level versioning systems are particularly well-suited to sat
isfy the flexibility and efficiency criteria listed above. Per-file policies allow 
file-level systems to provide rich, customizable functionality while minimiz
ing the overhead required to do so. User-level applications and stackable file 
systems satisfy the adoptability criterion, as they are compatible with mul
tiple file systems, but they incur slight performance penalties in doing so. 
On the other hand, on-disk file systems make better use of kernel data struc
tures, but are not amenable to incremental adoption. Finally, all file-level 
versioning systems suffer from considerable reliability and security issues, as 
the complexity of such systems can introduce significant vulnerabilities. 

3.2.2 Block-Level Versioning Systems 

Block-level versioning systems like Clotho [19] and Peabody [32] operate 
beneath file systems and offer versioning at a per-volume or per-disk granu
larity. Unlike file-level versioning systems, block-level systems are generally 
incapable of supporting per-file policies. These systems deal exclusively with 
blocks, and this limitation is a double-edged sword: on the one hand, pro
viding versioning at the block layer is much simpler than doing so at the file 
system layer, but on the other hand, block-level versioning often provides 
unsatisfactory utility. 

Typical usage scenarios for versioning systems include allowing users to 
recover an individual file that has been erroneously destroyed. They do not 
often include recovering entire logical volumes. However, most conventional 
block-level versioning systems impose precisely this constraint; for instance, 
if a user wishes to roll back to a previous version of a single file with the 
Peabody system, she must roll the entire file system back to the time of 
interest and then wait for a file system consistency checker to verify that 
the disk is valid at the chosen time. There are applications, like kernel 
debugging and post-intrusion analysis, which can benefit from such coarse-
grain version recovery, but for the common case of browsing the versions of 
one or a few files, this approach is cumbersome. 

Additionally, block-level versioning systems often end up storing much 
more data than do file-level versioning systems. File systems always write 
data in units of blocks; this means that changing even a single byte of a file 
results in an entire block—up to as much as 4 KB—being written to disk. 
File-level versioners like VersionFS can avoid retaining redundant data by 
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analyzing file system objects, but block-level versioners are less capable of 
doing this and thus typically retain entire blocks. However, recent work 
in block-level delta-chaining has been shown to dramatically reduce block 
log sizes at the expense of an increased latency for random access to block 
versions [63]. 

Given a finite storage capacity, a versioning system's recovery window— 
or the period in which it can guarantee the recovery of a file version—is 
inversely proportional to the rate at which its log grows [53]; thus, the ability 
of a versioning system to support arbitrary version recoveries hinges upon 
its ability to curb log growth. Block-level versioning systems are particularly 
susceptible to log size explosions, and thus their efficacy is closely related to 
their ability to effectively manage storage space. 

Block-level versioning systems do enjoy a few advantages over file-level 
versioning systems: block-level systems, due to their nescience of file system 
semantics, are compatible with a number of different file systems, and thus 
are adopted more easily than many versioning file systems; block-level sys
tems do not pollute the page cache with stale data, nor do they alter the 
operation of the file systems they support; and the location of block-level 
systems beneath the kernel allows prudent users to isolate these versioning 
systems from erroneous or malicious impingements from higher-level soft
ware. In fact, block-level versioning systems can be made simple enough 
that they can be confidently included in a trusted computing base, thereby 
bolstering the security and reliability of the system. 

The biggest advantage of versioning at the block layer is the increased 
reliability and security obtained by doing so. Block-level versioning systems 
are much simpler than versioning file systems, they are protected by a nar
row, tractable interface, and they can be further isolated through standard 
trusted computing techniques—in short, they are considerably superior to 
file-level versioning systems both in terms of reliability and security. As 
well, they are compatible with multiple file systems and are thus more eas
ily adopted than many versioning file systems. However, they often suffer 
from poor flexibility, as they typically only offer versioning at an unaccept-
ably coarse granularity, and they are unable to implement per-file policies 
and optimizations. 

3.3 S u m m a r y 

When the value of data is significant, the primary criteria by which a ver
sioning system should be evaluated are reliability and security. File-level 
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versioning systems, due to their inherent complexity, are simply unable to 
provide optimal reliability and security. A n ideal versioning system should 
be simple enough that its correctness can be verified a priori through au
diting, but the complexity of richly-featured file systems precludes any con
fident verification of their correctness. 

Block-level versioning systems, due to their simplicity, can be certified 
as correct, but—also due to their simplicity—they cannot provide adequate 
versioning functionality. The instant a versioning mechanism is saddled 
with the responsibility of understanding files and their metadata—requisite 
knowledge for supporting per-file policies—its reliability decreases. 

Table 3.1 summarizes the differences between the various types of ver
sioning systems and indicates the need for a hybrid approach. In particular, 
the reliability, security, and adoptability of block-level versioning systems 
should be combined with the flexibility and utility of file-level systems. 

Table 3.1: Comparison of Versioning System Attributes 
Reliabil ity Security Flexibi l i ty Adoptab i l i ty Efficiency 

User-space tools • • • 
Stackable F S • • • 
On-disk F S • • 
Block-level systems • • • 
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Design 

Secure versioning compels a stratified design. The mechanisms responsible 
for safeguarding data must be simple, perspicuous, modular—and isolated 
from the more complicated, less reliable mechanisms that are required to 
provide adequate utility. 

VDisk achieves this separation of responsibilities by isolating the mech
anisms which have write-access to versioned data. VDisk consists of three 
primary components: a secure logging module, a version reconstruction util
ity, and a secure log cleaner. Only the logging module and the cleaner have 
write access to versioned data; these two units perform only simple tasks, 
and compose the trusted component of the entire system. The version re
construction process, which reads from the log but never writes to it, is the 
only component of the system which deals with file system objects. It is 
separated from the critical components and thus does not introduce vulner
abilities to the system. 

4.1 Version Preservation 

For maximum reliability, security, and adoptability, VDisk provides ver
sioning from the block layer. To achieve this, a simple logging utility is 
situated beneath the file system as a virtual device driver in an isolated 
virtual machine. All write requests pass through this utility, where they are 
duplicated; one instance of the request is relayed to its original destination 
on the file system disk, while the other is appended to a secure log on a 
separate partition. 

Conventional block layer logging utilities like Clotho [19] avoid duplicat
ing write requests by introducing a level of indirection between file systems 
and the disk: write requests to logical block addresses are redirected to 
available physical locations, and all subsequent read requests to those log
ical blocks are mapped onto their corresponding physical addresses. This 
scheme is attractive because it obviates copy-on-write penalties by perform
ing updates to the metadata that describes the logical-to-physical mapping. 
However, it poses two problems: it can vitiate any work done by file sys-
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tems to achieve spatial locality, and it introduces new potentials for data 
loss—if the logical-to-physical mapping ever becomes corrupted, the entire 
file system could be lost. 

Moreover, maintaining this indirection is a complicated task; to guaran
tee integrity in the face of arbitrary system failures, the logical-to-physical 
mapping must be handled with extreme care. Journaling and transactional 
semantics could be adopted to ensure mapping metadata is committed to 
disk appropriately, or perhaps a block-level consistency checker could be im
plemented to facilitate recovery from system failures, but something must 
be done to protect the mapping metadata. For this reason, VDisk does not 
interpose an extra level of indirection. Instead, it takes a performance hit to 
ensure the integrity of the file system's on-disk layout by duplicating write 
requests. Every write request thus commits data to both the original file 
system disk and the secure log. 

The VDisk log consists of a metadata log and a data log. For each request 
submitted to VDisk 's data log, a small entry is added to the metadata log 
which describes the salient features of the request—namely, the file system 
block address, the log block address, the size of the request, and the time at 
which it was committed; these entries also contain a flag byte used by the 
cleaner to record block deletions. 

The log disk partition is sub-divided into large, fixed-sized segments that 
are threaded together on three lists: the metadata log, the data log and the 
free list. The metadata and data logs are written in append-only fashion, 
with new segments allocated from the free list when needed. 

4.1.1 Log Isolation 

The simplicity of VDisk 's logging mechanism lends reliability to the system. 
It is reasonably well protected from erroneous higher-level software by the 
narrow block-level interface—no read or write request issued from upper-
layer software can result in the destruction of logged data. However, if 
situated within the kernel, the security of the logging mechanism is limited 
to that of the kernel itself. In particular, if the kernel is compromised, the 
logged data is likewise put at risk. 

To eliminate this vulnerability, the logging mechanism can be placed 
in its own protected domain through the use of a virtual machine monitor 
( V M M ) like Xen [7]. V M M s enable the creation of multiple virtual machines 
on a single computer; each virtual machine is isolated and protected by 
the V M M , which prevents interference from other virtual machines. The 
VDisk logger, which is implemented as a block-level driver, can be placed 
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in its own protected domain; from there it can export its interface to an 
untrusted virtual machine while remaining beyond the control of the kernel 
it services. In this manner, the security of versioned data is decoupled from 
the security of a user's kernel—even a compromised V M operating system 
cannot destroy logged data. This approach is similar to that of S4 [54], 
which uses a network interface to protect its versioning file system. 

4.1.2 Optimizations 

VDisk's logging mechanism benefits significantly in terms of reliability, se
curity, and adoptability by operating at the block layer. However, the con
straints imposed by the simplicity of the mechanism and the narrowness 
of the block-level interface present a few impediments to achieving opti
mal performance. The most notable obstacle is the necessity of writing 
data twice—this requirement alone immediately halves the available bus 
bandwidth of the original system. While this bandwidth reduction substan
tially degrades throughput for bandwidth-bound workloads, the application-
perceived penalty of VDisk is much smaller for seek-bound workloads. VDisk 
writes its data sequentially, while in many cases file systems scatter their 
writes across the disk; the time required for these file system disk seeks often 
almost completely overshadows the increased latency introduced by VDisk 's 
duplicated writes. In addition to imposing temporal overhead, versioning 
data at the granularity of entire blocks can lead to explosions in log size, as 
even single-byte updates in the file system will result in entire blocks being 
written to disk. 

To address the write performance issue, a lazy writeback approach could 
be adopted during bursty writes. When the logger is barraged with many 
writes in a short period of time, instead of immediately writing data to the 
log, it can add a small entry to an in-memory hash table indicating the file 
system block addresses and timestamps of the writes. During the burst, all 
writes to distinct block addresses can be copied to the log lazily; only when 
multiple blocks are written to the same address do the older versions need 
to be logged punctually. When the bursty period has passed, the logger can 
then copy all blocks listed in the hash table from the file system partition into 
the log without having to compete with the file system for disk bandwidth. 
This optimization could improve performance for cases in which large files 
are being written to disk, as such scenarios typically do not entail multiple 
writes to a single block address. However, this technique would introduce 
extra overhead when blocks are rewritten within a bursty period, as this 
wil l require reading the old versions of the blocks from disk before the new 
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versions can be committed. We have not implemented this optimization. 
To limit log size explosion, we have implemented a content-hashing mech

anism to avoid retaining redundant data. File systems often send superfluous 
data to the disk; for instance, creating a file with the ext2 file system results 
in seven 4 K B blocks being sent to disk, only one of which actually contains 
the contents of the file [32]. The other six blocks are metadata blocks, of 
which only a few bytes per block—128 bytes in the case of the inode block, 
one bit each in the case of the inode and data bitmap blocks—have actually 
been updated as a result of creating the file. If this superfluous data can be 
recognized as redundant, it need not be preserved. To this end, the VDisk 
logger compares certain write requests to a table of content summaries of 
recently-read blocks; if the summary of a block being written to disk is 
identical to its corresponding cached summary, it need not be logged. 

In general, this strategy could impose a security vulnerability, as the 
accuracy of the log would be dependent upon the cryptographic strength 
of the hash function used: if a malicious agent could alter a data block in 
such a way that the new, corrupted block hashed to the same summary as 
its original block, the agent could modify files in the file system without 
the changes being logged. This could be protected against by making a full 
comparison of the blocks whose hashes are identical, but this would require 
either an extra disk read to fetch the original block, or a much larger memory 
footprint to cache recently read blocks. 

While data blocks are vulnerable to such attacks, it seems unlikely that a 
malicious agent would be able to modify inode blocks in such a manner that 
it could realize its sinister ambitions—by creating new inode blocks whose 
hashes collide with those of their original counterparts—without corrupting 
the file system. That is, it would be highly infeasible to perform many 
unlogged operations before the entire file system became useless. Thus, 
there is less of a security concern in applying this optimization to inode 
blocks. 

Even limiting content hashing to inode blocks can result in significant 
improvements: inodes are updated frequently, and the blocks in which they 
reside can quickly become a large portion of logged data—file system meta
data blocks can ultimately require as much disk space as data blocks [53]—if 
they are preserved blindly. Thus in cases in which it is feasible to distinguish 
inode blocks from data blocks at the block layer, as it is with the ext2 and 
ext3 file systems, content hashing can help curtail log growth. 
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4.2 Version Browsing 
VDisk's logging mechanism is simple and file system agnostic. To provide 
adequate utility, a suite of sophisticated user-space tools are relied upon to 
interpret file, system objects like files and directories. These tools combine 
information stored in the log with a deep understanding of file system in
ternals to enable users to interact with versioned file objects rather than 
versioned blocks. These tools never modify the logged data, and can thus 
safely operate outside of the system's trusted computing base. 

4.2.1 User-Space Tools 
The capabilities of VDisk's version browsing tools are not limited merely 
to individual file reconstruction. Theoretically, an entire read-only, user-
space file system could be built on top of the log, providing users with the 
same features as standard file systems. However, considerably more work is 
required to reconstruct a file from the log than is required to read a file from 
a typical file system, as the reconstruction process can involve searching 
large portions of the log for particular versions of particular blocks. A n 
operation such as giving a detailed listing of a directory's contents could 
be prohibitively expensive for a file system built on top of the log because 
the log is temporally structured and may therefore fail to preserve spatial 
locality. This performance penalty could possibly be sufficiently mitigated 
with the use of a relational database to expedite the searching process, but 
for the purpose of our prototype, we decided against implementing an entire 
file system. 

Instead, we provide two reconstruction tools. The first can recover a 
specific version of a specific file; the user indicates a file path and a time, 
and the tool reconstructs the newest version of the file that existed before 
the given time. The second tool is slightly more general: given a file path, it 
lists all versions of that file stored in the log; the user is then able to choose 
one or a number of versions to reconstruct. Similar tools could display or 
reconstruct the contents of a particular directory version. If desired, such 
tools could even reconstruct entire volumes, although in most cases the 
applicability of such coarse-grain reconstruction is limited to highly specific 
tasks like kernel debugging [28] and post-intrusion analysis [14, 27]. 

While the ability to browse a file's version history is crucial, we expect 
that it will not be used very frequently and thus does not warrant optimiza
tions that could adversely affect common operations like reading and writing 
to current file versions. The mechanisms responsible for browsing read-only 
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version histories need not—and indeed should not—be implemented within 
the kernel. 

There is a fundamental difference between current file versions and ver
sion histories: the former are mutable and frequently accessed, while the lat
ter are immutable and infrequently accessed. The latency associated with us
ing current versions needs to be minimized, which is one reason why standard 
file systems are included within the kernel, but there is simply no need to in
clude version browsing mechanisms in the kernel. Moreover, log-structured, 
read-only version histories are amenable to current data management trends 
which make use of powerful indexing tools to organize and search data. Just 
as complicated indexing processes, such as those required by Google's search 
engine, are more appropriately implemented in user space, the tools needed 
to index and browse VDisk 's read-only file histories are better suited to user 
space implementations. 

4.2.2 VDisk Metadata Database 

For the process of reconstruction, the most frequently used portion of the 
log is the VDisk metadata—in particular, file system block addresses and 
timestamps are referred to regularly while interpreting file system objects 
and their versions. As mentioned, VDisk metadata entries are grouped 
together in log segments; these segments are linked together to form the 
entire metadata log. For convenience and efficiency, VDisk 's user-space tools 
copy this metadata log, which typically constitutes less than 0.5% of the log 
for file systems with a 4 K B block size, into a relational database. 

Whenever a user-space tool is used, any new VDisk metadata entries in 
the log are added to the database; the reconstruction tools then deal exclu
sively with the metadata log contained within the database. This greatly 
facilitates the reconstruction process, as the brunt of the work is handled by 
the database, which indexes the log and services queries based on file sys
tem block addresses and timestamp values. Leveraging a relational database 
in the version reconstruction process is just one example of the benefits to 
be gained from implementing version management tools in user space; the 
database could also be used in the implementation of additional features, 
such as content indexing of versioned files. 

4.2.3 File Reconstruction 

The process of file reconstruction is a file system-specific process of scanning 
through the logged data—interpreting file system objects like inodes and 
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directories along the way—until the desired file version is located. It is based 
upon the assumption that all file system metadata is eventually written to 
disk—and duly logged—and can thus be reconstructed to obtain any file 
system object at any time in history. Our reconstruction approach is similar 
in spirit to that of gray-box systems such as D-GRAID [50]. However, while 
D-GRAID uses its understanding of file system data structures to identify 
the type of the file system stored on its disk, VDisk combines a similar 
understanding of data structures with a priori knowledge of the file system 
type to reconstruct file system objects from the block log. 

VDisk can only be used to reconstruct file versions which are commit
ted to disk; versions which are overwritten in memory are irrecoverable. As 
well, while both trusted components of VDisk—namely, the logger and the 
cleaner—are compatible with any file system, the reconstruction tools are 
not; a distinct set of tools must be developed for each supported file sys
tem. However, a collection of auxiliary libraries—such as the VDisk-specific 
interface to the metadata database—can simplify this development process. 

The general algorithm for reconstructing a file version consists of two 
tasks: finding the inode of a file which corresponds to its desired version, 
and collecting the correct versions of the data blocks referenced by the in
ode.1 Most of the work entailed by this algorithm lies in querying the log's 
metadata database in search of entries for particular file system blocks at 
particular times. Relational databases are ideally suited for these types 
of searches, and are thus employed liberally in the implementation of this 
process. 

The first task of the algorithm is similar to the standard path resolution 
algorithm: starting from the root directory, the process checks the contents 
of each directory for the corresponding name listed in the path. If a match is 
found, the process recurses on the newly found directory. If not, the process 
returns a message indicating a failure to resolve the path. 

However, when resolving all versions of a path, this algorithm is com
plicated by the introduction of a new temporal dimension. This means that 
a single path resolution failure does not indicate an absence of the desired 
path—the path could exist in a different version of the file system. Thus 
the path resolution procedure must be repeated on each version of the file 
system until either the path is fully resolved or the given time constraints 
are exceeded. 

For example, to list the contents of a directory that we know existed 
1 This algorithm will also work for file systems that use metadata structures other than 

inodes, like V F A T ; we limit the following discussion to inodes for convenience. 
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at time t, the following query can be used to locate the appropriate root 
directory inode, assuming that the root directory has a block address R and 
the file system adheres to an ordered write model: 

SELECT log_block_address FROM vdiskjnetadata 
WHERE fs .b lock_address = R AND time < t 
ORDER BY time DESC LIMIT 1 -> 

Because we know the directory "existed at time t, we know that the newest 
version of the root directory written before t wil l contain a path to the 
target directory. This query returns the log address of the block containing 
the newest root inode before t with a path to the target directory. Given 
this address, we can find the inode number of the next directory in the 
path, translate this inode number into a block address, and perform the 
next iteration of the path resolution algorithm. 

If we do not know the exact time that a directory existed, this process 
must be modified. For instance, imagine that we are given a time range (£, 
t + 6), and we want to find the newest version of a directory that existed at 
some point within this range. To do this, we would query the database for 
a list of all appropriate root directory versions with the following command: 

SELECT log_block_address FROM vdiskjnetadata 
WHERE fs_block_address = R AND time < t + 5 

ORDER BY time DESC 
Notice that in this case we cannot limit the query to a single result. Instead, 
we must collect a list of root directory versions that were written to disk 
before t + S. We sort this list in reverse chronological order and perform 
the path resolution process on each version until we successfully find the 
target directory. This query places no lower bound on the time of the root 
directory, because even though we are only interested in versions of the 
target directory that existed after time t, it is possible that no versions of 
the root directory were logged between (t, t + S). For instance, if the target 
directory was created at time to such that to « t and the root directory 
persisted unchanged after the creation of the target directory, the newest 
version of the root directory may be much older than the newest version of 
the target directory, since subsequent updates to the target directory will 
not produce new versions of the root directory. Thus lower time bounds for 
the target directory do not always apply to every directory along the target 
path. 

In the most general case, we can search the entire file system history for 
every version of a particular directory. To do this, we generate a list of all 
versions of the root directory: 

SELECT log_block_address FROM vdiskjnetadata 
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WHERE fs_block.address = R ORDER BY time ASC 
While this first query might return a large set of blocks for aged file systems, 
subsequent queries on subdirectories wil l be performed with converging time 
constraints. For example, if the first root version existed at time to but 
the next directory in the target path, residing in block B , was not created 
until time tx, the second query performed in the recursive path resolution 
algorithm need not include the extraneous times: 

SELECT log_block_address FROM vdiskjnetadata 
WHERE fs.block_address = B and time >= tx 

ORDER BY time ASC 
Once the appropriate version of the file's inode is found, the second 

task of reconstruction is commenced: appropriate versions of all the blocks 
referenced by the inode are collected and written in order to a user-specified 
output file. The process of collecting the appropriate versions of blocks is 
simple for file systems which impose order on writeback operations (i.e., 
file systems which flush all data to disk before writing its corresponding 
metadata): given a version of an inode, we simply take the newest versions 
of the referenced data blocks that are older than the inode. For file systems 
that might write metadata blocks to disk before flushing data blocks, this 
process is more complicated. 

Consistency Issues 

To successfully reconstruct file system objects, the VDisk reconstruction 
utility must be able to understand the relationship between versioned blocks 
at any given time. Part of this understanding comes from the file system 
metadata, such as inodes. However, some of it must be inferred from the 
implicit temporal information contained in the log. For example, simply by 
inspecting an inode, the reconstruction utility can determine the addresses 
of any blocks that belonged to a particular file version, but it must infer 
the period in time during which the blocks belonged to that version by 
evaluating the time at which the blocks were written to the log. 

If a file system imposes write ordering, guaranteeing that data is writ
ten to disk before its corresponding metadata, it is straightforward for the 
reconstruction utility to infer the temporal relationships of blocks. Many 
newer file systems do in fact impose such write ordering, as it helps to avoid 
file system inconsistencies during arbitrary system failures. However, some 
file systems, such as ext2, do not impose write ordering, making file recon
struction more difficult. 

Moreover, the write ordering imposed by some file systems does not typ-
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ically preserve application-level consistency. For example, if an application 
writes block A then B of a file, a version of that file that contains the new 
value of B, but not A, is inconsistent. In the VDisk metadata log, these 
writes are represented by two timestamped entries. They are written to the 
log and timestamped, however, in the order the blocks are delivered to the 
block layer, which may be different from the order the application writes 
them if disk writes are asynchronous to the application, as they typically 
are in local Unix file systems. As a result, the log might record B before 
A. If so, VDisk's version reconstruction .mechanism risks delivering an in
consistent version of the file if a user requests a version at a time that falls 
between the timestamps of these two entries. 

For file systems that impose write ordering, this problem is confined to a 
single file. For file systems that do not impose write ordering, inconsistencies 
can extend across multiple files. For example, if an inode is truncated and 
one of its blocks is allocated to a new inode shortly thereafter, the log may 
record two different inodes that reference the same data block at nearly the 
same time. If the time gap between the two inode entries and the data block 
entry is short enough, it is impossible for VDisk to tell whether the block 
version belongs to the old inode or the new one. 

In all of these cases, the problem is resolved if there is a bound on the 
time between when an application writes to a file and when the resulting 
block modifications are written to disk and if there is a period of update 
quiescence for each file that is at least as long as this bound. In this case, 
the version-access tool can ensure consistency by only delivering file ver
sions that have been quiescent for the disk-write-bound period of time. For 
example, most U N I X systems flush dirty, blocks to disk periodically, ev
ery 30 seconds. For these systems, the version-access tool can guarantee 
application-level consistency by restricting the file versions it reconstructs 
to those that remain unchanged for at least 30 seconds. It is easy for the 
tool to establish this constraint by examining the timestamps of metadata 
entries and rolling forward when necessary until the gap between the block 
versions it selects and the next version of those blocks in the log is at least 
30 seconds. 

A potential problem remains, however, for files that are accessed so fre
quently that there are insufficient periods of quiescence or for file systems 
that provide no bound on how long updates can be cached in memory. In 
these cases there is little VDisk can do but rely on higher-level tools to 
determine which reconstructed versions are consistent. 

Fortunately, applications that care about the consistency of disk data 
typically have application-level (or in the case of file system metadata, file 
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system-level) consistency constraints that, when combined with the VDisk 
version information, can be used to extract consistent versions in a straight
forward manner. A n application that uses atomic transactions to update 
a file, for example, places specific ordering constraints on transaction log 
updates and between certain log entries and target-file checkpoints. As a 
result, the transaction log is properly ordered in the VDisk logs and any 
transaction log entry that establishes a consistent checkpoint is properly or
dered with respect to updates to the target file. It is thus straightforward for 
the transaction system's recovery manager to establish version consistency 
in much the same manner it would when recovering from a crash. As an
other example, consider a file updated in append-only fashion. In this case, 
the ordering constraint on VDisk log entries is the logical block number of 
updates and not their timestamp, so the VDisk-log order is irrelevant. 

These consistency issues are an undesired artifact of the difficulties of 
providing file-grain versioning at the block level. Such difficulties can lead to 
situations in which reconstructing data can be difficult, sometimes requiring 
help from higher-level applications—but the data is still available. In con
trast, more complicated versioning file systems are better suited to handle 
these consistency issues, at the cost of a less dependable system. Thus while 
it is less likely that a user will encounter consistency issues with a versioning 
file system, it is arguably more likely that a user wil l encounter security and 
dependability issues, which could result in the irrevocable loss of data. 

4.3 V e r s i o n P r u n i n g 

Version pruning is a sensitive process that must be handled with extreme 
care: an insecure delete mechanism could easily undermine the reliability 
of the entire versioning system. Moreover, providing support for arbitrary, 
user-initiated version pruning would make VDisk susceptible to the very 
dangers that versioning aims to protect against. For these reasons, a more 
structured deletion interface is called for. 

A policy-based deletion scheme is attractive because policies can prevent 
users from erroneously deleting important information. Policies require that 
users articulate retention strategies only once, during log installation; af
ter this, the established policies wil l protect information automatically and 
transparently, even in the event of user error. From a reliability standpoint, 
policies are appealing because they can enable secure version pruning. How
ever, their feasibility as a practical deletion strategy depends upon whether 
or not efficacious policies—i.e., policies that protect important information 
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and enable the reclamation of unneeded blocks—can be suitably expressed. 
To protect against both erroneous and malicious mishaps, VDisk pro

vides a trusted log cleaner, which is responsible for serving all delete re
quests. Before any delete request can be satisfied, the log cleaner must 
verify its legality with respect to the established retention policies. 

The log cleaner is trusted, and as such should be as simple as possible. 
However, it is often difficult to verify that a delete request will not destroy 
important file system information: retention policies can impose sophisti
cated constraints that can be difficult to evaluate, especially at the block 
layer. For this reason, every delete request is couched in terms of a simple 
proof. In addition to describing which blocks should be deleted, this proof 
provides adequate evidence that the deletion is in accordance with the re
tention policies established during the installation of the log. The secure 
cleaner needs only to verify the correctness of the proof and, if appropriate, 
perform the deletion. 

4.3.1 Deletion Proofs 

In designing the secure cleaner, we have again followed a stratified ap
proach. We use an untrusted, user-space application to query the metadata 
database in search of segments that contain a large number of deletable 
blocks according to the policies being used. This application then sends a 
list of proofs to the secure cleaner, which performs the simple verifications 
required to confirm that no important blocks will be deleted. 

In general, much more effort is required to construct proofs than to 
verify them. By separating the tasks of creating and checking proofs, we 
have developed a two-tiered system in which the difficult work is done in 
user space while the critical task of protecting data is reduced to simple 
proof verifications. Our approach is similar to that of Exokernel [17], in 
which a simple resource manager ensures equitable resource allocation by 
evaluating predicates submitted by higher-level systems. 

The feasibility of this approach hinges upon the ability to construct 
proofs which adequately evince the expendability of a block. One possible 
method of expressing these proofs would be to develop a domain-specific 
language in which both block layer and file system layer information could 
be communicated. For instance, upon installing the log, a user could register 
a number of templates with the secure cleaner; these templates could be 
used to verify the type of a particular block and also to extract important 
information from it, such as which other blocks it is dependent upon. If the 
relationships between these templates are adequately described, the secure 
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cleaner could use them to check sophisticated, file system-aware proofs. 
For example, consider a name-based policy that stipulates the retention 

of all versions of any file with a ".doc" suffix while allowing the reclamation 
all other files. With this policy, the simplest way to prove that a block is 
deletable—assuming that files do not share blocks—is to demonstrate that 
it belongs to a file (or file system object) whose name is not suffixed with 
".doc". This entails producing a version of an inode that references the 
block and producing a version of a directory entry that names the inode. 
For complete security, the directory entry must be authenticated as actually 
belonging to the file system metadata (rather than existing as the data 
block of a specially-contrived file); for file systems with dynamic directory 
block addresses, this requires tracing the path of the directory containing the 
proffered entry all the way to some system invariant, such as the root inode 
or superblock, whose address remains constant throughout the lifetime of 
the file system. 

To enforce this policy at the block layer, VDisk's secure cleaner would 
require template functions capable of: 

• authenticating the system invariant (e.g., identifying a block as the 
root directory inode) 

• interpreting inode data block references 

• interpreting directory entries 

• translating the inode identifiers given by directory entries into inode 
block addresses 

With these templates at its disposal, the secure cleaner could verify a 
block's eligibility for deletion by evaluating a proof consisting of a link of 
block addresses, starting with the system invariant and ending with the data 
block in question. The cleaner would authenticate the root directory and 
interpret it to ensure that one of its entries named the inode designated by 
the next block address in the proof; at this point, the cleaner can consider 
that inode authenticated. This process, which is essentially a process of veri
fying the translation of a file system path into a sequence of block addresses, 
would be continued on each successive block in the proof, until the cleaner 
could verify the name and authenticity of the inode which references the 
block to be deleted. Having done this, the cleaner would also have to verify 
that no other versions of the inspected blocks exist with timestamps greater 
than the inspected versions and less than the block to be deleted; this is 
necessary to prove that the correct version of the path is being evaluated 
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and that, for instance, there does not exist a newer version of the path in 
which the target file name has a ".doc" suffix. 

The complexity of implementing this mechanism would vary with file 
systems. For instance, in ext2 and ext3, the first and last template functions 
can be implemented with simple block address evaluations: the root inode 
always has an inode number of two, and inode numbers are deterministically 
mapped to block addresses. For file systems with dynamic inode allocation— 
such as ReiserFS, for example—the process of translating an inode number 
into a block address would involve traversing the inode tree which maps 
inode numbers to block addresses; additional template functions might be 
required to perform this translation at the block layer. 

While templated deletion proofs would enable the enforcement of se
mantically richer retention policies at the block layer, we have excluded file 
system information from our proofs. A central idea of VDisk is to keep crit
ical components as simple as possible, so we have opted not to implement a 
file system-aware cleaner. As Section 7.2.3 shows, this is a viable approach, 
because the secure cleaner is still able to reclaim a substantial number of 
unneeded blocks without interpreting file system semantics. 

Our proofs are limited to ordered lists of block version descriptors, which 
contain a block's file system and log block addresses as well as the time at 
which it was written. This makes the secure cleaner's job exceedingly simple, 
but it imposes the constraint that all retention policies must be expressible 
solely in terms of blocks. 

This proof-based deletion system provides a dependable infrastructure 
that can be used to guarantee the security of every logged block. This 
infrastructure allows users to submit deletion requests at wil l while ensuring 
that any operation that could result in the destruction of logged data must 
be explicitly validated by the secure cleaner. The secure cleaner provides 
reliable protection against both incidental and malicious data destruction by 
evaluating simple proofs, and the logic required to implement this cleaner is 
quite simple; all of the difficult logic is pushed into the user-space process of 
constructing deletion proofs, where an error wil l result in an invalid proof 
rather than the illegal destruction of data. 

4.3.2 Retention Policies 

The secure cleaner is simply an enforcer: it ensures that all deletion requests 
adhere to the retention policies established during the initialization of the 
log. The retention policies are crucial because they must express the rules 
that wil l prevent the loss of important information. Developing general 
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guidelines about which blocks should be eligible for deletion can be a difficult 
task, and in the case of VDisk, this difficulty is exacerbated by the fact the 
these rules must be expressible purely in terms of blocks. 

VDisk's retention policies are derived from a model of file system access 
patterns developed by Elephant [47]. One key notion of this model is that 
important files which are modified by users typically vacillate between two 
states: a volatile state, in which the files are updated frequently as new 
changes are made, and a stable state, in which landmark versions of the files 
persist unmodified for a period of time. Landmark versions are important 
for two reasons: the first is that they seem to indicate versions of files which 
users are satisfied enough with to leave unchanged; the second is that they 
represent versions of files which users are likely to be more familiar with and 
remember for longer periods of time.. Volatile versions of files, on the other 
hand, are not around for very long, and seem therefore to be of less value 
to users, who quickly overwrite them; it also seems less likely that these 
ephemeral versions will stand out in users' minds for very long. As time 
progresses, we expect that the minute differences between various volatile 
versions of a file will fade from a user's memory, while the differences of 
landmark versions will remain more memorable. 

With this model in mind, we have developed two policies, Keep Safe and 
Keep Milestones, which are enforceable from the block layer and which we 
feel will be of value to typical users. These policies can be used individually 
or in conjunction, and additional policies can be added to the system as seen 
fit. 

Keep Safe 

The Keep Safe policy stipulates that any file system update must be re
versible for a specified interval, called the Keep Safe Window. This policy 
is employed by S4 [54], which is intended to support post-intrusion analysis 
and thus must retain all file modifications to enable accurate log replays. 
The Keep Safe policy is also helpful for typical users, as it provides liberal 
undo capabilities [47]. 

To ensure that any file system modification occurring within the Keep 
Safe Window can be undone, it is necessary to keep some block versions 
that are outside of the Keep Safe Window. For example, consider a file that 
has not been modified for one year in system with a Keep Safe Window of 
thirty days. If this file is updated, there will be two versions of it in the 
log: one which is a year old, and one which is current. To ensure that the 
newest update can be undone for thirty days, the year-old version cannot be 
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reclaimed until it is 395 days old, at which point the new update is pushed 
out of the Keep Safe Window and is no longer protected by the Keep Safe 
policy. 

The proof that a block may be deleted according to the Keep Safe policy 
consists a reference to the candidate block and a reference to a proof block, 
which is a different version of the candidate block. The cleaner must verify 
that the following constraints are satisfied: 

1. the candidate block and the proof block both correspond to different 
versions of the same file system address 

2. the difference between the current time and the timestamp of each 
block is greater than the Keep Safe interval 

3. the candidate block is older than the proof block 

If all three of these conditions hold, then the candidate block may be deleted. 
Otherwise, the proof is invalid and the delete request is denied. 

Keep Milestones 

The Keep Milestones policy is similar to the Keep Landmarks policy of 
Elephant [47]. The Keep Landmarks policy retains stable versions of files, 
with the exact definition of "stable" changing as versions age. For example, 
one-month old files may have to persist unchanged for only one day to qualify 
as landmark versions, while one-year old files may have to persist unchanged 
for a month before they are considered landmarks. 

The Keep Landmarks policy operates exclusively on file system objects, 
and is thus difficult to express in the block-level proofs required by VDisk's 
secure cleaner. The Keep Milestones policy is an approximation of the Keep 
Landmarks policy. Because VDisk operates beneath the file system, it has 
no way of ascertaining when a particular file has been closed, and as such, it 
cannot determine what block writes constitute the last update to a particular 
version of a file. It can observe the write patterns to individual blocks, 
however, and any block which goes unmodified for some threshold period of 
time can be considered a milestone block. 

Note that not all milestone blocks necessarily correspond to landmark 
file versions—a volatile file version may contain one block that has persisted 
unchanged for a long period of time—but all landmark files are composed 
entirely of milestone blocks. Thus by retaining all milestone versions of 
blocks, VDisk can ensure that all landmark files wil l be reconstructable. 
However, the Keep Milestones policy will result in the retention of blocks 
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that could have been reclaimed by a file system enforcing a Keep Landmarks 
policy. 

For instance, consider the scenario in which a file, originally composed 
of three blocks, is truncated to a size of zero. In this scenario, a new inode 
for the file will be written to the log upon the truncation, but the three 
truncated blocks will not. If the file persists unchanged in its truncated 
form for an adequate period of time, the Keep Landmarks policy will man
date the retention of the empty file, while the three truncated blocks could 
be reclaimed by the file system. However, the Keep Milestones policy is 
concerned only with block writes: any block that is not overwritten for a 
predetermined amount of time must be retained. Thus, if the three trun
cated blocks are not allocated to a new file and written within the milestone 
window, the Keep Milestones policy wil l mandate the retention of these 
blocks, even though they do not belong to a landmark file version. 

The primary disadvantage of the Keep Milestones policy is that it cannot 
reclaim blocks as aggressively as can the Keep Landmarks policy: due to 
a dearth of file system information, the Keep Milestones policy must be 
conservative in its retention rules. However, this conservatism does result 
in a policy that will retain all landmark file versions, and it is applicable to 
a number of file systems. Moreover, because it can be expressed solely in 
terms of blocks, it fits nicely within the secure framework of VDisk. So long 
as this policy allows for the reclamation of an adequate number of blocks, 
it constitutes an appealing secure deletion policy. 

The conservatism of the Keep Milestones policy arises from an additional 
constraint that is not imposed by the Keep Landmarks policy. According 
to the Keep Landmarks policy with a retention window of S seconds, a file 
version must be retained if it does not change for at least 5 seconds. However, 
an analogous Keep Milestones policy, again with a retention window of 6 
seconds, must impose two constraints: (1) a block version must be retained 
if it does not change for at least S seconds, and (2) a block version must be 
retained if there do not exist two additional versions of the block, one older 
and one newer, that fall within S seconds of each other. 

This extra constraint is required by the Keep Milestones policy because 
the secure cleaner does not distinguish file system inode blocks from other 
data blocks; at the block level all blocks look the same. This poses a potential 
problem for inode blocks, because they store multiple inodes and are thus 
shared among multiple files. 

For example, consider the following update sequence to two files X and 
Y that share an inode block: extend X at t\, extend Y at ti, extend X 
at £3. Figure 4.1 shows the four inode block versions this sequence would 
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Figure 4.1: Inode Block Example 

produce in the log. Assume the milestone interval for this example is S. 
At first glance, it seems that only the block version at time t% should be 
retained, because no other block versions persist unchanged for longer than 
6 seconds. However, the version of file X that was extended at time t\ 
persisted unchanged for more than 6 seconds, and so its inode, which exists 
in the block versions at t\ and t^, must be retained. With the extra Keep 
Milestones constraint, the block version at to must be kept because no older 
versions of the block exist; the version at t\ may be deleted because it is 
bracketed by two versions that are within one milestone period of each other, 
while the version at time ti must be kept because (after the version at t\ 
is deleted) it is not similarly bracketed; and the version at tz must be kept' 
because there is no newer version of the block. 

Because blocks can be shared between files, it is not sufficient merely to 
keep entire block versions that persist unchanged for the milestone interval: 
VDisk must retain any portion of any block that persists unchanged for the 
interval. The milestone proof constraints guarantee that this requirement 
is upheld by retaining the first and last version in each sequence of versions 
that exist within the same milestone interval. Any byte of any intermediate 
block in such a sequence will either be identical to the corresponding byte 
of the first version in the sequence, or identical to the corresponding byte of 
the last version in the sequence, or different than the corresponding bytes 
of both the first and the last versions in the sequence. In the first two cases, 
the block can be deleted because it contains redundant data. In the last 
case, the block can be deleted because it did not persist unchanged for the 
milestone interval. 

A milestone policy for a candidate block version must contain a reference 
to two proof block versions. The secure cleaner verifies the Keep Milestones 
constraints by reading the metadata entries of the candidate block and its 
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two proof blocks and ensuring that the following criteria hold: 

1. all three entries correspond to different versions of the same file system 
block address 

2. the candidate entry's timestamp falls within the range defined by the 
two proof blocks' timestamps 

3. the difference of the two proof blocks' timestamps is less than the 
milestone interval 

If these constraints are not satisfied, the secure cleaner denies the request. 

Combination of Policies 
Both the Keep Safe and the Keep Milestones policies can be used individu
ally, but we feel they are better used in conjunction. A Keep Safe retention 
period—perhaps of one week, or one month—can be established, within 
which all versions of all blocks are retained. After this period, blocks can 
be reclaimed according to the Keep Milestones policy. This combines the 
liberal undo capabilities of Keep Safe with a more selective retention policy 
for older files in an attempt to find a reasonable balance between storage 
reclamation and data preservation. 

4 . 3 . 3 Security Issues 

VDisk's secure cleaner must be capable of operating correctly and pro
tecting data even if the user-space tool misbehaves or is compromised. The 
secure cleaner overcomes its distrust of the user-space tool by using retention 
policies, translated into the form of block constraints, to verify each proof 
submitted from user space before any block is deleted. While.the secure 
cleaner expects that the proofs it receives wil l be valid, there are a number 
of reasons why this might not always be the case. 

In the simplest scenario, the user-space tool might construct an erroneous 
proof. For instance, when constructing a milestone proof for a block with 
file system address B, a bug in the user-space tool might cause it to submit 
a proof referencing a version of block with address B'. Because a milestone 
proof requires references to three different versions of the same file system 
block address, the secure cleaner would quickly find that this proof is invalid 
and would therefore deny the delete request. 

A more insidious scenario could arise if the user-space tool was compro
mised. For example, an attacker might construct a list of proofs in which 
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Figure 4.2: Block Version Timeline 

certain entries have been omitted in an attempt to fool the secure cleaner 
into marking blocks as eligible for deletion when they are not. However, the 
secure cleaner can survive such an attack because the algorithm for enforcing 
the block policies is such that any omissions can only result in the reten
tion of blocks which would otherwise be eligible for deletion, and never the 
converse. The milestone check is implemented by comparing a given block 
to a previous version and a newer version; if a malicious process provided 
a list which omitted a block's true previous version and- instead indicated 
an even older version, this would only increase the interval between the two 
proof block versions, reducing the chances that the candidate block could 
be deleted. Similarly, an attacker could not achieve the illegal deletion of a 
block by providing an inaccurate reference to a newer version, because doing 
so would again increase the interval between the two proof blocks. 

However, the Keep Milestones policy does allow some room for manipula
tion by an attacker. For example, consider the case illustrated in Figure 4.2, 
in which four versions of a block are written to the log at times to through 
£3. The version at time to must be retained because there is no earlier ver
sion, and the version at time £3 must be retained because there is no newer 
version. There is some ambiguity concerning the versions at times t\ and t^-
if they are both retained, they are both eligible for deletion, but when one 
of them is deleted, the other must be retained. In a sense, block reclamation 
is a contract: the secure cleaner will allow the deletion of some blocks, so 
long as doing so will not disrupt the invariant that one version of a block 
is retained for every milestone interval in the log that contains one or more 
versions of that block. In this example, an attacker could contrive to have 
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either the version at t\ deleted, or the version at ti deleted, but she could 
not have both versions deleted. 

This is still in accordance with the Keep Milestones policy—which man
dates that any block version which goes unchanged for 5 seconds must be 
retained—because if some portion of the version at time t\ did not change 
for 6 seconds, it must be identical to the corresponding portion of either 
the version at time to o r ti, and similarly, if some portion of the version 
at time ti remained unchanged for 6 seconds, it must be identical to the 
corresponding portion of either the version at time t\ or £3. Thus any im
portant information that would have been retained by keeping the block 
version at ti will likewise be retained by keeping the block version at ti, 
and vice versa. However, if an attacker made incriminating changes at t\ 
and overwrote them at ti, she could destroy the evidence of her attack by 
deleting the version at t\ and retaining the version at ti. 

This illustrates an important characteristic of the Keep Milestones pol
icy: it does not guarantee the specific times at which block versions wil l be 
retained, but it does guarantee the retention of block versions which persist 
unchanged for a sufficiently long time. This policy is clearly not appropriate 
for post-intrusion analysis, as any changes made between milestone versions 
of blocks will not be retained. 

As well, the Keep Milestones policy is susceptible to an attack in which 
an intruder could cause a file that would otherwise become a milestone file 
to be reclaimed. To achieve this, the attacker would have to update a user's 
file version within the milestone interval of its last milestone version and 
then ensure that the file persisted unchanged for the rest of the milestone 
interval. At this point the intruder's version is a milestone version and the 
user's is not, though it would have been without the intruder's update. The 
user's version is retained for the Keep Safe period, but following this, the 
user's version can be deleted without violating the Keep Milestones policy. 

Keep Milestones thus provides a weaker intrusion detection window once 
the Keep Safe interval has expired. Nevertheless, it is weakened by a declar
ative constraint that limits the versions that can be deleted. The constraint 
ensures, for example, that once a version becomes a milestone it is invulner
able to attack. We hope that this principled approach to version deletion 
wil l be of substantial benefit in limiting the damage an intruder can inflict 
even after the Keep Safe interval. 

VDisk's deletion proofs allow the secure cleaner to evaluate a block's 
eligibility for deletion without expending a lot of effort. In the case of 
milestone proofs, the secure cleaner is spared the effort of scanning the 
metadata log in search of a block's previous version and its next occurring 
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version; instead, this work is done in user space with the aid of a relational 
database, while the secure cleaner's task is limited to performing a few simple 
verifications. Even when dealing with erroneously or maliciously constructed 
proofs, the secure cleaner is able to quickly determine whether or not a block 
is really eligible for deletion. 

4.4 S u m m a r y 

VDisk is designed to provide secure, reliable versioning. To attain this goal, 
we have isolated the critical components of VDisk. The mechanisms which 
constitute potential vulnerabilities to the system, namely the logger and the 
cleaner, perform only very simple tasks. These mechanisms are so simple 
that they can be audited for correctness and confidently included in the 
system's trusted computing base. Furthermore, these mechanisms can be 
protected by a virtual machine monitor, and can thus safeguard versioned 
data even when a user's kernel has been compromised. This simplicity and 
security is achieved at the expense of write throughput. 

While the critical components of VDisk remain ignorant of file system 
semantics, user-space utilities make use of a thorough understanding of file 
system internals to enable the reconstruction of individual file versions. The 
process of file reconstruction entails querying the log for desired block ver
sions, which are interpreted as file system objects to produce the desired 
files or directories. While file reconstruction can be an involved process, it 
does not modify versioned data and thus does not introduce reliability or 
security vulnerabilities. 

Because user-initiated storage space reclamation can constitute a signif
icant threat to versioned data, we have designed an automated log cleaning 
process. A secure log cleaning mechanism operates from within the trusted 
computing base to enforce deletion policies and protect against erroneous or 
malicious delete requests. A n untrusted user-space application is responsible 
for the more difficult tasks of locating segments which wil l most benefit from 
cleaning and providing the secure mechanism with proofs of each block's el
igibility for deletion. 
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Algorithm Details 
VDisk logs blocks rather than file system objects, but a primary objective 
of VDisk is to support file system-level versioning and cleaning. To achieve 
this, some means of translating the block log into a file system history is 
necessary. This process of translation is of course highly dependent upon 
file system characteristics. There are two aspects of some file systems that 
can make this translation particularly difficult: a lack of write ordering [51], 
and the sharing of blocks by multiple file system objects. 

Newer file systems, such as ext3 and Reiserfs, impose constraints on the 
order in which data is written to disk. To aVoid inconsistencies, these file 
systems ensure that when a metadata object references data blocks, the data 
blocks are committed to disk before the metadata blocks. VDisk can use 
these ordering constraints to make important inferences about the sequence 
of file system operations captured in a log. However, some older file systems, 
such as ext2, do not impose any write ordering constraints, thereby reducing 
the amount of information available to VDisk during file reconstruction. 

Additionally, some of the policies employed by VDisk 's secure cleaner 
work best under the assumption that blocks are not shared between files. 
While this is typically the case for data blocks, it is not for metadata blocks. 
Because most file descriptors are significantly smaller than a block, file sys
tems tend to pack multiple descriptors into a single block. For this reason, 
special care must be taken when designing VDisk 's retention policies. 

This chapter presents a formal description of some of VDisk 's algorithms 
and provides a more detailed discussion of the difficulties mentioned above. 

5.1 Notation and Definitions 

• A block variable B is defined by the tuple &(A,L,T) . where 

- A indicates a file system block address 

- L indicates a block log location 

- T indicates a block timestamp value 
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• A block instance is a block variable whose parameters are bound. 
Block instances are represented with lowercase parameter variables: 
J5 ( a i f ) . Block variables may also be only partially bound. For example, 
B(a,L,T) represents the set of all blocks with file system block address a; 
this set may contain many block instances with different log locations 
and timestamp values, and thus these parameters are left in uppercase, 
indicating their free status. 

• A n asterisk next to a block instance indicates that the block is live: 

BtaUM —> - ^ W ) K a = h) A (** > *»)) 

• A subscripted set variable contains exactly the number of elements 
indicated by its subscript: 

Sn —» |5 n | = n (5.2) 

• A X B denotes that A immediately precedes B. That is, there is no 
block instance C with a file system block address identical to A which 
existed after A and before B: 

(A«,ia,ta) 1 B{b<kM) —> - 3 C ( C , / C ) f c ) [ ( c = a) A {ta <tc< tb)} (5.3) 

• B<5>( 0 i ; , t ) denotes that B( a ,( , t) is a milestone block version with a mile
stone lifetime 5. The formal definition of a milestone block is given in 
Section 5.3.3. 

• A file system with n blocks is defined by the set FS where 

FSn = {B{0tL,T),B{hLJ),...,Bin_.hL,f)} (5.4) 

• The most recent version of a file system of n blocks is thus denned as 

FSn - { B ( 0 , ( o , t o ) ' - B ( * l , « i , t i ) ' - ' - B ( n - l , « „ _ i , t n - i ) } ( 5 - 5 ) 

• A file set FF is defined by the tuple FF(M>D), where 

- M = the set of all block instances that compose the file's descrip
tors 

— D = the set of all block instances that compose the file's data 
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Unlike a file system, the size of a file set is not constant. In particular, 
the file set grows as new blocks are allotted to the file. 

• A file instance is a subset of the corresponding file set. For simplicity, 
we assume that a file's metadata will comprise one or a fraction of one 
block, while a file's data wil l comprise an arbitrary number of blocks. 
A file instance is defined by the tuple F(M(., t;)tD,tf)i where 

— tf is the instance time of the file 

— M(j( . t . ) is the block instance that contains the file's descriptor at 
time tf 

— D is the set of all blocks that compose the file's data at time tf 

It is not necessary that all blocks within the set F share the timestamp 
value tf of the file itself. Rather, 

VB ( a , , i t )[(B ( o ,« i 0 e Fn) — ((r- < */)A-.3BW t > t t )[(6 = o )A(f< tb < tf)])], 

or 
V£(„,«,t) [(BiaU) e >„) — (B{a,i,t) * */)] (5-6) 

• When we speak of the size of a file, we refer to the number of data 
blocks which belong to the file at any given instant. A file F with 
n data blocks is denoted Fn, where Fn = (M^;.^.),Dn,t). The most 
recent version of the file is denoted F*. 

• Note that a file instance is live if and only if 

V f l W , o [ B W , t ) 6 f » ^ B w , f c ) ] (5-7) 

5.2 File Reconstruction 

Given a time tf and a file descriptor block address i, we reconstruct the file 
F{M{i<L<T),Dn,ts) as follows: 

1. We find the file descriptor block M ^ ^ ^ ) which is closest in time to, 
but earlier than, tf. 

2. From the file descriptor, we determine the set Dn, which enumerates 
the blocks contained in the file instance F at time U. That is, 

Dn = { B(0,L0,T0),B(l,Li,Tl)' -> B(n-l,Ln-i,Tn-i)} 
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3. Finally, we collect one instance of each block enumerated by Dn. Each 
block instance should have a timestamp value which appropriately 
corresponds to fj. 

As noted in Equation 5.6, not all block instances in Dn wil l necessarily 
have timestamp values of U. In fact, depending on the file system's write 
ordering, the timestamp values of the block instances described by the file 
descriptor block instance M ^ ; ^ ) may not even be less than U—that is, 
some file systems may write a file's metadata to disk before writing its data 
to disk. For this reason, choosing appropriately correspondent timestamp 
values for file reconstruction is not always a trivial process. 

We consider two common write ordering models, based on the journaling 
modes of ext3: writeback and ordered. 

5.2.1 Ordered Models 

File systems adhering to an ordered model write a file's data blocks to disk 
before writing its metadata blocks. This ensures that file metadata will 
never reference stale data blocks, even in the case of an arbitrary system 
failure. ext3's ordered mode adheres to this model. 

Under this model, file reconstruction is simple: to choose data block 
instances which appropriately correspond to a file's metadata block instance, 
we merely choose the data block instances which were written immediately 
prior to the metadata block instance in question. That is, for a reconstructed 
file F(MiiM,ti),Dn,tf) 

B { a U ) e Fn —-> [B{aU) r< M{iMi)] (5.8) 

This method is guaranteed to reconstruct a consistent file (with respect to 
the file system, but not necessarily the application), because the presence 
of a file descriptor block instance in the log indicates that all data block 
instances to which it refers have already been committed to disk. 

5.2.2 Writeback Models 

File systems adhering to a writeback model impose no write ordering. After 
an unexpected system failure, file descriptors may reference data blocks 
which were not committed to disk before the failure; such files are said to 
contain stale data. ext3's writeback mode and ext2's only mode adhere to 
this model. 
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Under this model, file reconstruction is more difficult, because the pres
ence of a file descriptor block instance M ^ ; . ^ ) in the log does not guarantee 
that all the data block instances to which it refers have timestamp values 
less than or equal to £j. Thus under such a model, 

_'(-B(a,i>t) G F ( M w . M ) , D n , t s ) • iB(aU) ^ MWi,t<)])-

In this case, determining which data block instances compose the set Dn 

is not simple, because some data block instances may be much older than 
M(itiuti) while others might be slightly newer. However, we have developed 
a heuristic to simplify the task. 

Linux kernels provide a dedicated process which is responsible for peri
odically flushing dirty buffers to the disk to limit data loss upon a system 
failure. This process, known as pdflush, is triggered by the occurrence of one 
of two events: 

1. The number of dirty buffers in the kernel exceeds a predetermined 
threshold value 

2. The flush timer expires 

In typical kernel configurations, the flush timer is set to 30 seconds (tft = 
30). This sets an upper bound on the extent to which a file's metadata can 
precede its data in reaching the disk: 

V £ ( 0 i W 6 F(Miili^Dnttf)[t < (U + tft)} (5.9) 

To reconstruct a file in this case, we take ti as our reference point. For 
each file system block address j referenced by the descriptor block Mtitlitti), 
there are three possible scenarios: 

1. -.35 (a,j o,t o)[(a = i )A( t „> t0 ] 

In this case we choose B ( 0 | j o j t o ) such that B r< M . 

2- -3B'a,iaita)Ka = j)r\{ta<U)] 

In this case we choose B ( 0 ) j 0 i t o ) such that (a = j) A -^3B(bjbitb)[(b = 
j)/\(tb<ta)\ 

3- 3B(„ ,M o ) , B (bM„)K a = b = j) A (ta <U< %)} 

This case is ambiguous: perhaps block instance B^,lb,tb) belonged to 
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the file at time t/ but was not committed to disk until pdflush was trig
gered by a timer expiration, or perhaps block instance B(b,lb,tb) w a s n ° t 
added to the file until some time after tf. 

In some scenarios, file system-specific information can be used to re
solve the difficulty. For instance, if M ( i ] ( . t . ) contains a generation 
identifier, we can find the first version of M^p) with the same gen
eration number. Cal l this origin block descriptor M(iti0ttoy, if there are 
no data block instances with file system address j existing in the log 
after (t0 — t/t) and before ti, then we know that all block instances 
of address j existing before ti did not belong to file F(M T.),£>„,*/)• 
That is, 

VB ( a,M )(a = j)[{t <{t0 - tft)) —> (B{aM $ F{M{IAIH)TDNTTF))} 

In this case, we can ignore B ( a ) j 0 ) t o ) and choose B(bilbitby 

If no heuristics can be used to accurately resolve the problem, the 
reconstruction program must inform the user of the situation. For 
convenience, the program can present multiple reconstructed versions 
and allow the user to choose the desired result. 

5.3 Log Cleaning 

Log cleaning is a critical task and thus must be trusted. In order to improve 
reliability, the cleaning mechanism should be as simple as possible. We 
provide three retention policies, Keep Safe, Keep Milestones, and Keep Safe 
+ Keep Milestones, which are enforced by a simple kernel component. 

5.3.1 Keep Safe 

The Keep Safe policy is quite simple: any file system update must be re
versible throughout the established retention interval 53. 

Given a block instance -B(a,(,t)> a Keep Safe window 5S, and a current 
time tcur, the following suffices as proof that -B(a,i,t) is deletable according 
to the Keep Safe policy: 

Deletable(B(atitty) <—> (tcur — t > 6a)A 

3B{bihitb) [(a = b) A (tb >t) A {tcur -tb> 6a)} (5.10) 
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5.3.2 Keep Landmarks 

Elephant's Keep Landmarks policy retains versions of files that persist un
changed for a predetermined period of time [47]. Given a file set FF, the 
Keep Landmarks policy mandates the retention of every block instance ref
erenced by a file instance of FF that persisted unchanged for 5i seconds. 
Block instances belonging to FF which last less than Si seconds before being 
overwritten can be deleted. That is, 

V5(a,i,t) e FF[Deletable(B(aM) > 

3B(btkM[B{bilbitb) e FF A (a = b) A (0 < tb - t < St)\] (5.11) 

5.3.3 Keep Milestones 

VDisk's deletion proofs must be couched exclusively in terms of blocks. 
However, as is evident from Equation 5.11, the landmark deletion proof 
requires some means of expressing file sets and their relationships to block 
instances. For this reason, we have developed the Keep Milestones policy, 
which is an approximation of the Keep Landmarks policy. 

The goal of the Keep Milestones policy is to preserve all landmark ver
sions of files; however, the policy is applied to blocks. The file system layer 
retention semantics are not quite as simple as the block layer semantics. 

For the sake of security, it is acceptable if the Keep Milestones policy 
mandates the retention of blocks that would have been deletable according 
to the Keep Landmarks policy. However, the Keep Milestones should not 
result in the reclamation of any file not reclaimed by the Keep Landmarks 
policy. 

For a file version to be designated a landmark version, the entire file, 
including its descriptor block, must have persisted unmodified for some pe
riod of time Sm. For a file instance to remain unmodified, all of the data 
block instances which it comprises must remain unmodified. That is, 

F<5m>(M,Dn,tf) * (yB(a,l,t) £ • f 1 <(5 m >(M,D„ , t / ) [B<6m>(aM]) (5-12) 

Thus to approximate the Keep Landmarks policy, the Keep Milestones pol
icy retains all versions of all milestone blocks. 

Naive Keep Milestones 

The Naive Keep Milestones policy operates under the assumption that 
blocks are not shared between files. This policy retains all block versions 
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which persist unchanged for a significant period of time. More specifically, 
we define a milestone period, 5m seconds; if any block remains alive for 
longer than 5m, it will not be reclaimed during the cleaning process. That 
is, for all blocks 5( 0 , i„,t a ) contained in the log, 

(^3B(b,U6)[(a = b) A (*a < h < ta + Sm)}) —» B < S m > { a M a ) (5.13). 

Note that by Equation 5.1, this policy will retain all five versions of all 
blocks. 

Full Keep Milestones 

If the assumption that files obtain exclusive ownership of their blocks holds, 
then the Naive Keep Milestones policy described above wil l guarantee the 
retention of all landmark files. However, while this assumption does hold for 
data blocks in most file systems, it often does not hold for metadata blocks. 
This poses a problem for the Naive Keep Milestones policy. 

Consider two distinct file sets FFX(M{a L T)IDX)
 a I 1 d FF2(M{A L T),D2)- These 

file sets represent two individual files, but both files have file descriptors lo
cated in the same block M^L<Ty 

Assume that a file instance F\ contained in FF\ remains unchanged long 
enough to become a landmark file; thus, the Keep Milestones policy should 
retain the block M^^T) a n d all the data block instances belonging to Fi. 
However, if block M(A,L,T) * s frequently updated due to changes in the file 
set FF2, it is possible that no milestone version of block M^i^p) will exist 
in the log. 

To protect against unwanted deletions, the Naive Keep Milestones policy 
must be modified. Not only must it keep all blocks that remain unchanged 
for 5m seconds; it also must retain the last block instance written within 5m 

of the previous retained version of that block. This stipulation is necessary 
because it is possible that a portion of the block instance belonged to one 
file and persisted unchanged for 5m seconds even though other portions of 
the block, which may have belonged to different files, did not. Thus, for all 
block instances B(o,«0,i0), 

~"3B(b,ib,tb),B(ctlCltc)[(a = b = c) A (tb < ta < tc) A (tc -tb< 6m)} —• 

B<Sm>(a,la,ta) (5: 1 4 ) 

Wi th this policy, any file descriptor which remains unchanged for Sm 

seconds will be retained, regardless of how frequently the block in which it 
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resides is updated. In the case of FFi^M(a L T),DX)
 a n d FF2(MIA^LXT),D2)> O N E 

version of M( a Jr T) will be retained for every 5m seconds it is written, regard
less of how many times F F 2 ( M ( o L T),D2) modifies its metadata. Thus, the 
inode for FFi<M(a L T),Di)> which remained constant for at least <5m seconds, 
will be available for file reconstruction. 

Finally, as proof that a block instance £(a,(0,ta) is deletable according to 
the full keep milestone policy, the following must hold: 

Deletable(Bfatiatta)) <—> 

3 B ( 6 i , 6 i t t ) , B ( C i , C i t c ) [ ( o - b = c) A (tb < ta < te) A (tc -tb< 5m)] (5.15) 
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Implementation 
We have implemented a functional VDisk prototype for the 2.6 Linux kernel. 
The system comprises three primary components: a logging mechanism, a 
file reconstruction utility, and a secure log cleaner. Both the logging mech
anism and the log cleaner are implemented within a single kernel module, 
while the reconstruction utility is implemented as a user-space application. 
The current prototype supports both ext2 and ext3 file systems [1], 

6.1 The Logger 
The VDisk logging mechanism is implemented as a block-level kernel mod
ule. The module obtains exclusive access to two devices, one containing the 
file system and the other containing the log, and exports a third virtual 
device to the kernel. This latter is the only device made visible to users, 
and it exports a standard block layer interface—the logging mechanism itself 
is completely transparent. This is achieved by creating virtual data struc
tures identical to those of a real disk; in particular, the module registers a 
standard request queue with the kernel, to which all IO requests are sent. 

6.1.1 The Linux Block Layer 

The Linux block layer relies upon a sophisticated mechanism to organize 
disk accesses in an attempt to mitigate the onerous performance penalties 
incurred by disk seeks. Rather than immediately performing reads and 
writes as they are requested by higher level applications, the kernel places 
these requests on a special per-volume request queue, where customizable 
algorithms can order and merge these requests to reduce the number of 
required seeks before sending them to the disk. 

Requests contain a linked list of bios, which describe the mapping be
tween memory pages and disk sectors. Each bio contains a reference to a 
block device, a disk address, a size, and a vector of tuples describing pages, 
offsets and lengths; these pages are mapped onto a contiguous range of disk 
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Figure 6.1: The VDisk Device 

sectors. Two requests can be merged if the union of their individual maps 
is a contiguous disk region. 

When a request is finally submitted to a disk driver, the driver works 
through each bio of the request, transferring data as necessary. The driver 
signals the completion of a data transfer via a reference to a callback function 
included in the bio structure. 

6.1.2 The VDisk Device 

Just like other devices, the VDisk logging mechanism maintains its own 
request queue. Unlike other devices, however, VDisk's request queue does 
not correspond to a specific device, and requests sent to the VDisk module 
are not merged or sorted in VDisk's request queue. Rather, IO requests are 
immediately duplicated, remapped, and redirected to the request queues of 
both the underlying file system device and the log device. These duplicated 
requests are then optimized for their particular devices. 

VDisk achieves this by duplicating and modifying the bios it receives 
before they are merged to create requests. The original bios are already 
mapped to the correct disk sectors of the underlying file system device, 
and need merely be redirected to that device. The duplicated bios, which 
are intended for the log, must be remapped to appropriate sector addresses 
within the log and then redirected to the log device. 
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The VDisk module contains a simple block allocator that partitions the 
disk into large segments and allocates blocks consecutively from within these 
segments, resulting in optimal writes to contiguous disk addresses. When 
a new bio is to be added to the log, the allocator returns the offset within 
the current segment, or, if more room is needed, it allocates a new segment 
and updates the segment bitmap. After a new segment is allocated, the 
block allocator writes the old segment's reference count to a special segment 
descriptor at the end of the segment; this count is used later by the secure 
cleaner to ensure that only empty segments are reclaimed. 

. A metadata entry is then created, containing the sector address returned 
by the allocator, the sector address of the original file system device, the time 
of the write, the size of the write, and a flag used by the secure cleaner to 
indicate whether the written blocks have been reclaimed. Metadata entries 
are written to segments just as are data entries; however, segments contain
ing metadata entries never contain data entries, enabling rapid scanning of 
metadata entries. Metadata segments are joined in a linked list to enable 
easy scanning of the entire metadata log. 

Bios are duplicated in a zero-copy manner; this means that both bio 
copies share references to common pages. Consequently, these bios must 
by synchronized with each other—the original bio cannot be returned to 
the file system, where its pages may be overwritten with new data, until 
both bios have been successfully committed to their disks. To achieve this, 
VDisk updates the callback function pointer of each bio to reference its 
own function. When the two underlying device drivers have completed the 
requested IO operations, they signal these completions by calling VDisk's 
callback function; not until both bios have completed does VDisk inform the 
file system, via the original callback function, that the request is finished. 

The VDisk device also maintains a superblock which describes the cur
rent state of the log, including details such as the total number of segments, 
the number .of free segments, the address of the first metadata segment, and 
the addresses of the current data and metadata segments and their offsets. 

In the simplest case, adding an entry to the log requires one immedi
ate write: the data. Metadata writes are buffered in memory before being 
written to disk in batches. If a new segment is allocated, this requires two 
more writes: both the segment bitmap and the previous segment's reference 
count must be written to disk. For this reason, VDisk attains optimal per
formance with large segments—the default segment size is 32MB. Finally, 
the superblock,and the current segment reference count are flushed to disk 
periodically. 
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VDisk and Xen 

To isolate the logging mechanism, VDisk is placed in its own protected 
domain with the help of the Xen virtual machine monitor [7]. This is ac
complished quite easily: the VDisk device is installed in Domain 0 (the 
management guest operating system) of the Xen system, and from here 
it exports its interface to untrusted guest operating systems. These guest 
operating systems can access the virtual VDisk device just as if it were a 
standard block device, but they are unable to access the actual disk which 
contains the VDisk log. 

Content Hashing 

We have implemented the content-hashing optimization mentioned in Sec
tion 4.1.2. To do this, we maintain a small in-memory hash table. To reduce 
memory requirements, this table can be made arbitrarily small, and thus it 
may be susceptible to collisions. Whenever inode blocks are read from disk, 
we create MD5 [42] digests of their contents and store these summaries, 
along with their sector addresses, in the hash table. When inode blocks are 
written, we first check for their summaries in the hash table; if their sum
maries are found to exist—and are identical with summaries of the blocks to 
be written—the blocks need not be committed to the log. If the summaries 
are different, the stale summaries in the hash table are replaced by the new, 
up-to-date summaries of the data to be written to disk. 

To get the greatest benefit from this technique, we compare data at the 
granularity of sectors (512 bytes). This may result in only a few sectors 
of a large bio needing to be written to disk, meaning that the bio must be 
split up into multiple smaller bios, with the unnecessary data elided; each 
of these new bios requires its own entry in the metadata log. 

As mentioned in Section 4.1.2, this strategy could pose a security vul
nerability if applied to data blocks. For file systems like ext2 and ext3, we 
are able to distinguish data blocks from inode blocks simply by evaluating 
their file system block addresses. These file systems allocate a static number 
of inodes when the disk is formatted, and these inodes are located in prede
termined locations on the disk; bios mapped to these locations are known to 
contain inodes. For file systems with dynamic inode allocation, this strategy 
will not work. 
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6.2 The Reconstruction Utility 

V D i s k ' s reconstruct ion u t i l i t y is implemented as a user-space appl icat ion 
and makes l ibera l use of a M y S Q L [3] relat ional database. T h e database 
contains a copy of the metadata log; each t ime the reconstruct ion u t i l i t y is 
used, i t compares the database metadata log to the or ig ina l , and updates the 
database as necessary. A s wel l , the u t i l i t y relies upon a file system-specific 
l i b ra ry to locate and interpret file system objects. O u r prototype supports 
bo th the ext2 and ext3 file systems [1]; the file system l ib ra ry provides 
funct ions to translate sector addresses to file system block numbers , to read 
superblocks, group descriptors, and inodes, to translate inode numbers to 
block addresses, and to translate logical file offsets into file system block 
addresses, among other things. F ina l l y , the ut i l i t y relies upon yet another 
l ib ra ry to interface w i t h the log itself; methods for reading and seeking are 
prov ided by this l ibrary. 

6.2.1 The ext2 and ext3 File Systems 

T h e ext2 and ext3 file systems are bo th intel lectual descendants of the Berke
ley Fast F i l e System [31]. ext2 and ext3 share near ly ident ica l da ta s t ruc 
tures and disk layout, the p r imary difference between them be ing the ad 
d i t ion of journa l ing i n ext3. Journa l ing can either be done on a separate 
device or i n a file, and does not change the s t ruc tura l aspects of the system. 
It can, however, change semantic propert ies. In part icu lar , some modes of 
journa l ing impose wr i te order ing constraints, requi r ing that da ta be wr i t ten 
to disk before metadata . As ide from this difference, the file reconstruct ion 
a lgor i thms for ext2 and ext3 are ident ica l . 

These file systems organize the disk into a number of block groups. Each 
block group contains a number of metadata blocks at the beginning of the 
group; this metadata includes: the file system superblock; group descriptors; 
inode and block b i tmaps ; an inode table, wh ich contains a l l the inodes of 
the group; and the da ta blocks. B o t h the superblock and the group descr ip
tors are universal , and are copied i n each block group for redundancy ; the 
b i tmaps , inode table and da ta blocks are unique to a given block group. 

B o t h the inode and block b i tmaps are l im i ted i n size to exact ly one 
block; thus the m a x i m u m number of da ta blocks (and inodes) a block group 
can contain is equivalent to the number of bits in a single file system block. 
T h e inode table is a contiguous array of inodes, and is stat ica l ly a l located. 
Inodes are assigned logical inode numbers, and given such an inode number , 
an mode's locat ion on disk can be determined through a s imple ca lcu lat ion. 
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Every file is identified by a unique inode. The inode contains a tree of 
pointers to the data blocks which compose the file; typical configurations 
allocate twelve direct pointers, one indirect, one doubly indirect, and one 
triply indirect pointer per inode, with indirect pointers referencing indirect 
blocks, which are arrays of block references. 

Directories are represented as files. The data blocks of a directory contain 
specially formatted directory entries, each of which contains a file's name 
and inode number, with one directory entry describing each file contained 
within the directory. 

6.2.2 The Reconstruction Algorithm 
The reconstruction algorithm begins by determining the file system block 
address of the root directory's inode. For ext2 and ext3, the inode number 
of the root directory is always two. After translating this inode number into 
a block address, the utility queries the database for all metadata entries 
corresponding to the address and containing appropriate time stamp values. 
These metadata entries describe the locations of blocks in the log which 
contain root inodes. These inodes—and their data blocks—are read from 
the log and scanned in search of the target file or directory. If the target 
is found, its inode number is converted to a block address and the path 
resolution continues. If not, the path resolution for this version of the root 
has failed, and the next version of the root is checked, until a match is found 
or the time constraints are exceeded. 

The most generic reconstruction utility will search all versions of the file 
system between two given times and return a list of the times at which a 
target file existed; the user can then choose to reconstruct one or a few of 
these versions. To compile this list, the utility creates a temporary database 
table containing the metadata entries that describe the path to each target 
file; this is .done in one pass through the metadata log. A n advantage to 
this approach is that it expedites future searches along the same path, as 
all the requisite information can be retrieved directly from the temporary 
table rather than by repeating the path resolution procedure. 

To reconstruct a file, the utility translates each logical block address into 
a file system block address with the help of the file system specific library, 
and then translates each file system block address into a log block address 
by querying the database. 

60 



Chapter 6. Implementation 

6.3 The Cleaner 

The VDisk cleaner comprises two components, a user-space tool that does 
most of the work, and a simple kernel module which enforces the system's 
deletion policies. The cleaner employs a simple mark and sweep algorithm. 

6.3.1 The Segment Analyzer 
VDisk's log is cleaned on a per-segment basis. A segment is cleaned by mov
ing any blocks that are not eligible for deletion to a different segment; when 
all such blocks have been thus transferred, the segment can be reclaimed 
by the segment allocator and subsequently used to store new data. This 
process of transferring live blocks can be onerous, and should be avoided as 
much as possible. The segment analyzer can reduce the impact of cleaning 
by choosing to clean only those segments that have a small number of live 
blocks, much as the LFS [44] cleaner endeavors to process only relatively 
empty segments. However, while the LFS cleaner—one of the more com
plicated components of LFS—is implemented inside the kernel, the VDisk 
segment analyzer operates in user space. 

When a segment is chosen for cleaning, the segment analyzer compiles a 
list of proofs for each data entry contained in the segment. A proof contains 
enough information for the secure log cleaner to easily verify that its corre
sponding data entry is in fact eligible for deletion according to the various 
system policies. The segment analyzer compiles this list with the help of 
the database. 

For the Keep Milestones policy, the analyzer creates a list of proofs sorted 
by file system block address; each proof contains all instances of a given file 
system block address sorted by time, as well as a reference 'to two blocks 
not contained in the segment: the newest version of the block contained in 
the preceding segment, and the next version of the block address contained 
in the succeeding segment. If these versions do not exist, special null values 
are inserted into the proof. This list is then passed to the secure cleaner, 
which will visit each entry referenced by the list to evaluate its eligibility for 
deletion and mark it appropriately. 

This list is passed to the secure cleaner via the Linux sysf s interface, 
which allows kernel modules to export virtual files that can be read from 
and written to by user-space applications. When these files are written, the 
data is not stored on any disk but is instead passed directly to the module. 
This interface facilitates the transmission of-large quantities of data from 
user space to the kernel, and it is used by VDisk to pass large lists of proofs. 
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Note that while the secure cleaner will evaluate every item in a proof, 
it does not scan the actual log itself. This allows for the strategic omission 
of entries on the part of the segment analyzer. For instance, if more so
phisticated retention policies are desired by a user, perhaps stipulating that 
files with a particular name should never be deleted, the segment analyzer, 
which operates in user space and understands file system semantics, can en
sure that the log entries which compose such files are never included in the 
deletion lists. B y doing so, the segment analyzer can ensure that these en
tries will never be marked as eligible for deletion and wil l thus be retained, 
even if they might have been deletable according to the lower-level block 
retention policies. However, the converse does not hold. That is, while the 
segment analyzer can retain blocks which are eligible for deletion, it cannot 
delete blocks which are not eligible for deletion. 

If a kernel is compromised and the segment analyzer is corrupted, these 
higher-level retention policies cannot be enforced by the secure cleaner; how
ever, the low-level, block-oriented policies such as Keep Safe and Keep Mile
stones are enforced at all times, regardless of the state of the segment ana
lyzer. 

6.3.2 The Secure Cleaner 

When the segment analyzer has compiled a list of proofs for a given segment, 
it passes it to the secure cleaner via the cleaner's special sysfs attribute 
file. The list of proofs contains the locations within the metadata log of all 
metadata entries that need to be inspected; thus the secure cleaner is spared 
the task of scanning the log sequentially, as it can jump exactly to the correct 
location for every inspection. In general, the secure cleaner expects that the 
list it receives wil l be valid; it must simply verify that there are no mistakes 
in the list and mark blocks which are eligible for deletion by setting a bit in 
their metadata entries. 

If during this process the cleaner discovers a discrepancy between the list 
and the log, it returns an error to the user-space application. For instance, 
if the list indicates that a metadata entry at a given address should refer 
to a block address it does not, the secure cleaner fails that proof, ceases 
processing the list, and returns an error. If the list of proofs is sorted by 
time—as it should be—an error encountered midway through the list will 
not affect any of the antecedent proofs. If the list is partially ordered such 
that the first few proofs are correct but later proofs are incorrectly ordered, 
the unordered proofs could take one of two forms: they could reference block 
versions with the same file system block addresses described by the previous, 
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ordered proofs, or they could reference different blocks. The former case 
amounts to an omission of blocks from the proof list, which, as discussed 
in Section 4.3.3, will not result in the loss of milestone information. The 
latter case concerns blocks which do not belong to the previously validated 
proofs, and thus will not affect their validity. Consequently, any processing 
completed before an ordering discrepancy is encountered, is still valid and 
does not need to be undone. 

After the all entries of a segment have been inspected, the segment can 
be cleaned. When instructed to do so, the secure cleaner will scan through a 
metadata segment, checking the status of each entry. Any entry that is not 
marked as deletable is moved to a new segment, and the reference count of 
its original segment is decremented by one. When a data segment's reference 
count reaches zero, it is known to contain no live data blocks and can thus 
be reclaimed by the segment allocator. 
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Evaluation 

Secure versioning primarily consumes two system resources: 10 bandwidth 
and storage space. In addition, the use of Xen to isolate VDisk can also 
impact the overall performance of a system. VDisk 's 10 bandwidth con
sumption is manifested in reduced write throughputs and increased write 
latencies. Because VDisk duplicates every disk write, it is susceptible to 
substantial throughput reductions in some usage scenarios. As well, logging 
writes at the block layer requires significantly more storage than a typical, 
non-versioning system. 

We have conducted a number of experiments with VDisk to empirically 
quantify the overheads it imposes. To measure 10 bandwidth costs, we 
have used two synthetic benchmarks: Bonnie+-|- [12], a bandwidth-intensive 
benchmark, and PostMark [26], a seek-intensive benchmark. B y testing 
VDisk with these benchmarks, we gain insight into the performance degra
dation incurred by secure logging for various types of 10 operations. To 
measure storage space requirements, we have replayed an N F S trace col
lected by Daniel Ellard at Harvard [15]. Replaying this trace with V D i s k . 
enables us to ascertain the rate at which logged data grows under real-world 
usage patterns; it also allows us to test VDisk's reclamation policies to de
termine how much data can be securely deleted. 

Finally, we investigated the time required to reconstruct file versions. 
The work involved in file reconstruction depends upon both the length of 
the target path and the size of the log. We modified PostMark to create 
file system images of varying size and depth to evaluate the typical cost of 
reconstructing a file from a relatively large log. 

7.1 Temporal Overhead 

VDisk imposes substantial overhead to raw disk writes. This overhead can 
affect users by degrading application performance. However, given the high 
costs of disk 10 in general, operating systems expend much effort to avoid 
disk accesses, and these efforts protect users from VDisk 's performance 
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penalties just as they protect users from standard disk performance penal
ties. 

In this section, we measure the performance of VDisk as perceived from 
the application layer. All experiments were conducted with a 1GHz Pentium 
III machine with two 320GB IDE disks, one containing an ext2 file system 
with a 4KB block size and the other containing the VDisk log with a 32MB 
segment size; each disk provides a raw IO bandwidth of approximately 15 
MB/s. Experiments were run on the native machine and in a Xen 3.0 virtual 
machine; both the native and virtual machines were configured with 512MB 
of RAM. On the native machine, a standard-2.6 Linux kernel was used, while 
in Xen, a 2.6 XenoLinux kernel was used. 

7.1.1 Bonnie++ 

Bonnie++ is a benchmark designed to test file system bandwidth. We con
figured Bonnie+-(- to operate on a 1GB file. The benchmark consists of five 
stages: the file is written one character at a time; the file is deleted and 
then written one block at a time; the file is rewritten one block at a time 
(note that this requires one read and one write per block); the file is read 
one character at a time; and finally, the file is read one block at a time. In 
each of these stages, the file is processed sequentially. To better observe the 
effects of disk seeks on VDisk's performance, we added one additional stage, 
in which block writes were performed at random offsets within the file. 

Figure 7.1 shows the results of the Bonnie++ benchmark. Each value 
in the graph is the average of 20 runs; the maximum relative standard 
deviation across all tests was 3.06%. As is expected, the effect of VDisk on 
disk reads is negligible; this is because the original file system image is kept 
intact, and reads are passed directly to the underlying disk without any extra 
processing. For sequential writes, VDisk halves the system's throughput, as 
all data is written to disk twice. This is the worst-case scenario for VDisk, 
but it is only likely to occur in specific cases, such as when a large file is 
being copied. When working with applications that do not often perform 
of this type of sustained, sequential write, users will not experience such a 
substantial degradation in performance. 

In the third stage of the test, in which blocks are written randomly, 
VDisk imposes a 14% reduction in throughput compared to a raw disk. 
This is due to the fact that, unlike sequential writes, which are throughput-
limited, random writes are seek-limited. While writes to the file system are 
scattered randomly across the disk, writes to VDisk's log are sequential, 
and thus incur a much smaller performance penalty. The reduction in bus 
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Figure 7.1: Bormie+-1- Benchmark Results 

bandwidth imposed by VDisk is almost completely overshadowed by the 
seek overhead of the file system disk, and thus both the raw disk and VDisk 
perform very similarly in this scenario. 

Likewise, the performance of VDisk in the fourth stage of the test, in 
which blocks are rewritten, is closer to that of the raw disk. In this stage, 
VDisk only incurs a performance penalty for half of the disk operations— 
the writes—while both systems perform almost identically for the reads. 
Thus the user-perceived throughput overhead of VDisk in this case is only 
37%, rather than the 51% and 50% overheads incurred during the sequential 
character and block writes, respectively. 

It is interesting to observe that the impact of the Xen virtual machine 
monitor is minimal, and in the case of sequential writes, even improves 
performance. This improvement is an artifact of Xen's strategy of sacrificing 
latency for throughput. In a Xen virtual machine, write requests are slightly 
delayed in the guest kernel in order to improve batching; when they finally 
reach the underlying device, they are often much larger than their native 
kernel counterparts, and can thus improve performance. 
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7.1.2 PostMark 

PostMark was designed by Network Appliances to simulate an email server. 
To do this, PostMark creates a large number of text files of various sizes and 
performs a large number of 10 transactions on these files. More specifically, 
during the transaction stage, PostMark either reads from, appends to, or 
deletes an existing file, or creates a new file. Whereas Bonnie++ performs 
a stress-test of the 10 system's throughput by preforming sequential reads 
and writes, PostMark mimics slightly more realistic usage patterns by ran
domly accessing a large number of files, and is thus a better measure of a 
system's seek performance. We configured PostMark to create 20,000 files 
between 0.5KB and 10KB in size and perform 50,000 transactions with an 
even read/write ratio, resulting in about 270MB of file system data being 
written to disk. 

Figures 7.2 and 7.3 display the averaged results of twenty PostMark 
trials. The maximum relative standard deviation for all trials was 1.44%. 
As can be seen in Figure 7.2, VDisk performs similarly to the raw disk 
in this benchmark, imposing a 9.7% increase in overall time in a native 
Linux environment. As in the random block write stage of Bonnie++, the 
PostMark benchmark is seek-limited, and the time required to seek in the 
original file system disk almost completely overshadows the time needed 
to perform the extra sequential writes to the VDisk log. This is further 
evinced by Figure 7.3, which shows that VDisk imposes a 10% overhead in 
write throughput. Notice that the write throughput achieved by PostMark 
with a raw disk is just 1.5MB per second, as opposed to the 12MB per 
second achieved by Bonnie++. 

As with Bonnie++, Xen imposes very little overhead in the PostMark 
benchmark. While a raw disk in native Linux slightly outperforms a raw 
disk in a Xen guest domain, VDisk actually performs better in the guest 
domain than it does in native Linux. The throughput achieved with VDisk 
in Xen is higher than that achieved in native Linux, again due to Xen's 
strategy of batching writes in the guest domain before submitting them to 
the disk. 

7.1.3 Discussion 

VDisk's strategy of duplicating all disk writes imposes a substantial overhead 
to throughput-limited disk operations. Bonnie-r-+ verifies the expectation 
that performing large, sequential writes with VDisk will take approximately 
twice as long as doing so with a raw disk. However, as can be seen in the 
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PostMark Benchmark Results: Time 
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Figure 7.2: PostMark: Time 
PostMark Benchmark Results: Throughput 
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Figure 7.3: PostMark: Throughput 
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random write test of Bonnie++ and the PostMark tests, VDisk has a much 
smaller impact on seek-limited disk writes. 

The degree to which VDisk wil l degrade performance thus hinges upon 
the frequency with which large, sequential writes are performed under typi
cal workloads. A number of studies have been conducted with the intent of 
investigating file access patterns, and the general consensus of these efforts 
is that most file accesses are made to small files [6, 22, 36]. 

Baker et al. found that the majority of sequential file transactions in 
their traces were small, with about 80% of these runs transferring less than 
10KB [6]. However, the size of the larger files in this trace were so large 
that at least 10% of all bytes were transferred in sequential runs larger than 
1MB. Note that in these traces, sequentiality is determined with respect to 
logical file block numbers rather than physical block addresses. 

This study also found that while most file accesses were made to small 
files, most bytes were transferred to or from larger files. In a more recent 
study, Vogels corroborates this observation, finding that most sequentially 
transferred bytes belong to files greater than 10KB in size [57]. In Vogels' 
study, the relative size of large files increased by an order of magnitude 
over those in Baker's study, growing to 100-300MB for scientific computing 
workloads. 

Most large files in Vogel's study were system files such as executable 
binaries, dynamic loadable libraries, and font files; typically, larger files were 
not read and written in their entirety, but were instead accessed in small 
chunks at a time, often via memory-mapped IO. Similar access patterns for 
large files were observed by Roselli [43], who found that the majority of bytes 
in files larger than 100KB were accessed randomly. Moreover, in Roselli's 
N T workload, about 60% of bytes accessed were done so randomly. This 
number is similar to results found in an analysis of the E E C S trace [16], 
although it is substantially higher than the other workloads analyzed by 
Roselli. 

Modern text and image editors typically update files by deleting old ver
sions and replacing them with new versions. This results in a large number 
of file deletions and creations [22], with the latter typically involving sequen
tial writes to logical block numbers. Again, the size of most created files is 
small [22], meaning that most creations do not entail large sequential writes. 
Gibson and Miller found that while 25% of modifications in their traces were 
made to files that were larger than 64KB, most file modifications increased 
file sizes by less than 1 K B at a time [22]. 

These studies indicate that most of the time, users interact with small 
files. Document editing applications often rewrite previous versions of files 
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w i t h newer versions, resul t ing i n a high number of deletions and creations of 
smal l files. Larger files often account for the major i ty of bytes transferred, 
but these files are typ ica l ly accessed piecemeal i n a r a n d o m fashion, and, 
as i n the case of executables and l ibraries, are often opened for reads only. 
These trends suggest that for m a n y — i f not most—scenarios i n wh ich users 
interact w i t h the file system, V D i s k w i l l impose overhead s imi lar to that 
exhibi ted by the P o s t M a r k benchmark. 

7.2 Spatial Overhead 
To gain insight into the rate at wh ich V D i s k ' s log w i l l grow and the efficacy of 
our reclamat ion policies, we have made use of the E E C S N F S trace [15]. T h e 
E E C S trace collected N F S usage statistics of the p r i m a r y home directory 
server of Harvard ' s computer science faculty and research groups. T h i s 
server was used for research, software development and course work, s tor ing 
home directories and shared project and da ta files. T h e aggregate capaci ty 
of users' loca l disks exceeded the capacity of the server, and its role was 
p r i m a r i l y one of faci l i ta t ing shar ing across mul t ip le accounts and preserving 
backups. T h e trace contained 317 unique user IDs . 

T o replay the trace, we converted the logged N F S commands into loca l 
file system operations, which.were then executed synchronously on a loca l 
disk w i t h an ext2 file system w i t h a block size of 4 K B . W e replayed the first 
57 days of this approximate ly eleven week trace. 

7.2.1 Log Growth 

Figure 7.4 displays the da i ly growth of bo th the file system and the log 
du r ing the trace; the figure also includes the size of the log when a l l versions 
of the superblock and group descriptors are omi t ted . W h i l e the file system 
grew to just over 5 0 G B dur ing the trace, at an average of about 1 G B per 
day, the block log exploded to nearly nine t imes that size, at an average of 
almost 8 G B per day. F igu re 7.5 shows the growth of the log and file system 
normal ized to the 317 unique u i d values contained i n the trace. 

M e t a d a t a blocks consti tute a large por t ion of the block log. M a n y impor 
tant file system blocks, such as the superblock and group descriptor blocks, 
are flushed to disk u p o n any file system state changes, consuming a sub
s tant ia l por t ion of the block log. A s Table 7.1 shows, over one quarter of 
the log is composed of versions of file system blocks zero th rough four, out 
of a to ta l of 14,801,516 dis t inct file system block addresses wr i t t en du r ing 
the trace. 
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Table 7.1: The Most Frequently Written Block Addresses 
FS Block Address Number of Versions Percentage of Log 

0 15,606,469 13.36% 
2 4,823,655 4.13% 
1 4,331,214 3.71% 
4 3,931,097 3.37% 
3 2,664,172 2.28% 

886,018 225,614 0.19% 
6,291,456 181,009 0.15% 

However, while versions of these few file system block addresses make up 
a large proportion of the log, the majority of block addresses were written 
to only once during the trace. Figure 7.6 displays the number of writes per 
file system block address: just over 70% of all file system block addresses 
were written once, and over 95% were written less than ten times. 

This evidence suggests that filtering strategies for reducing the log size 
should be targeted towards the few select file system block addresses with 
high write frequencies, where significant improvements can be realized, but 
that the majority of block addresses are not amenable to such strategies 
because they are written so rarely. 

7.2.2 Content Hashing 

Figure 7.7 illustrates the efficacy of content hashing in reducing log growth. 
This plot displays the growth of the the log during the first day of the trace. 
B y the end of the day, 4,630,712 blocks had been written to the log. We 
re-ran this one day trace with two hashing policies: the first hashed only 
inode sectors, while the second hashed both inode sectors and the sectors 
composing file system blocks zero through four, which contain the superblock 
and group descriptors. 

W i t h both policies, we used a hash table of 256KB to store 128-bit M D 5 
content summaries of targeted sectors as they were read from disk. When 
hashing only inodes, there were 492,304 writes to targeted sector addresses, 
of which 450,417—or 91%—were identical to their hashed counterparts and 
were not written to the log. When hashing file system blocks zero through 
four as well as inode blocks, there were 2,061,016 writes to target sector 
addresses, of which 1,899,042—or 92%—were identical to their hashed coun
terparts. 

Hashing just inode blocks resulted in a modest log size reduction of 
about 10% at the end of one day, while hashing the superblock and group 
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descriptors along with inode blocks resulted in a more substantial reduc
tion of 41%. Content hashing was particularly effective in this experiment 
because writes were performed synchronously, resulting in a large number 
of metadata blocks being flushed to disk with minimal changes. Further 
gains could be obtained with the use of delta-encoding to store these small 
changes in units more compact than sectors (512 bytes). 

7.2.3 Block Reclamation 

VDisk's block retention policies are based upon block lifetimes: according 
to the Keep Milestones policy, block versions that are overwritten in a short 
period of time are eligible for reclamation. Thus to evaluate the efficacy of 
this policy in reducing log size, it is instructive to investigate the distribution 
of block lifetimes. 

Block Lifetimes 

Figure 7.8 presents the block lifetimes we observed when replaying the E E C S 
trace. Almost 82% of blocks logged during this trace were overwritten in 
under one second. This number is higher than that reported in an analysis 
of five days of the same trace in [16] because our replay of the trace includes 
block writes required for file system metadata updates that are not explic
itly included in the N F S log (versions of block addresses zero through four 
alone constitute 11% of blocks overwritten in one second). Moreover, it is 
significantly higher than the 20% reported in Roselli's analysis of different 
traces [43]. However, both our trace replay and the analysis in [16] show 
that 90% or more of blocks in the E E C S trace are overwritten within an 
hour, while between 70% and 80% of blocks in four out of five of the traces, 
analyzed by Roselli are overwritten within an hour. This suggests that with 
even a very small milestone window, a large portion of VDisk 's log can be 
reclaimed by the secure cleaner. 

Landmark Retention Policy 

In order to evaluate the efficacy of a file system-aware retention policy, we 
applied a simulated landmark policy to every file of the N F S trace. The 
simulation only processed data blocks belonging to files; it did not account 
for any file system metadata blocks. 

Figure 7.9 displays the number of blocks retained by the landmark policy 
with landmark windows of one hour, one week, four weeks, and nine weeks. 
The nine week case illustrates the optimal scenario for the landmark policy; 
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Cumulative Histogram of Logged Block Lifetimes 
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Figure 7.8: Block Lifetimes 

with this landmark window, only files that remained alive throughout the 
entire trace are retained. Wi th a one hour landmark window, 62% of data 
blocks can be reclaimed; this number increases to 64% with a landmark 
window of nine weeks. 

Milestone Retention Policy 

Figure 7.9 displays the results of applying the milestone retention policy to 
our log with various milestone windows. The majority of blocks that were 
retained were done so because they constituted either the first or last version 
of their file system block addresses, and under the milestone policy, these 
versions must be retained regardless of their lifetimes. This is not surprising, 
because, as we have already seen from Figure 7.6, 70% of block addresses 
were written to only once during the trace. Using a milestone window of nine 
weeks illustrates an extreme case in which all retained blocks are either the 
first or last versions of their file system block addresses, because the entire 
trace fits within the window. This case exhibits the maximum number of 
deletable blocks for the trace. 

Using a milestone window of just one hour, 81% of logged blocks can 
be reclaimed. Using the best-case milestone window of nine weeks, 84% 
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Figure 7.9: Version Cleaning 

of logged blocks can be reclaimed. These results are consistent with the 
general characteristics of the workload: typically, blocks are either rewritten 
immediately or they are written less than three times during the entire trace. 

Discussion 

In general, both the milestone and the landmark retention policies allow for 
the reclamation of a large proportion of versioned data. Due to the high 
number of blocks with short lifetimes, this is not surprising. Although the 
milestone retention policy exhibits a. higher reclamation percentage than 
the landmark policy, this is primarily due to the huge number of file system 
metadata blocks, i.e., blocks zero through four, written during the trace 
replay. 

It is interesting to observe that both policies retain nearly the same 
number of blocks. W i t h a one hour window, the milestone policy retains 
approximately 10% more blocks than the landmark policy, and this number 
decreases to just 2.15% with a four week window. Although our simulation 
of the landmark policy did not account for file system metadata blocks, 
we expect the overhead required for these blocks wil l be quite low, as the 
average number of retained file versions with a landmark window of one hour 
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is 1.11%. 
However, it should be noted that our simulation of the landmark policy 

did not exploit one of the key capabilities of the Elephant file system, which 
is the support for per-file-group policies. Had we restricted our landmark 
simulation from versioning certain types of files, such as executable binaries 
and H T M L objects, the number of blocks retained by the landmark policy 
would have been smaller. Thus our analysis represents an upper bound of 
the number of blocks retained by the landmark policy. 

While the milestone policy is obliged to be more conservative than the 
landmark policy in order to ensure the preservation of landmark files, the 
bimodal write patterns exhibited by the E E C S workload mitigate the penal
ties incurred by this conservatism. The milestone policy mandates that both 
the first and the last version of any block address must be retained, but the 
majority of block addresses retained by both policies were only written to 
once, resulting in similar performance for both policies. For the same reason, 
both policies are nearly as effective with a stability window of one hour as 
they are with a window of nine weeks. The vast majority of blocks reclaimed 
by either policy are overwritten in under one hour, and blocks that survive 
this initial hour tend to live for a long time. 

Figure 7.10 shows the rate at which VDisk 's log would grow if it was 
cleaned daily according to the landmark and milestone policies with a sta
bility window of one hour. Both the landmark and milestone policies dra
matically curtail log growth, keeping the log size to within just 36% and 
50% of the original file system size, respectively. 

7.3 File Reconstruction 

The time required to reconstruct a file version is dependent upon a number of 
variables. Some of these variables relate to file system properties, such as the 
depth of the target file's path, the number of files contained in each directory 
along that path, the number of versions of each file system object visited, and 
the period of time over which these versions existed. Other variables relate to 
block layer properties, such as the size of the log and the number of versions 
of each block address of interest. Due to the variability of the work involved 
in reconstructing a file, it is difficult to perform a universal evaluation of 
the reconstruction utility. However, some performance characteristics can 
provide a general insight into the time required to reconstruct versions. 
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Figure 7.10: Log Growth With Cleaning 

7.3.1 General Performance Characteristics 

VDisk's reconstruction utilities support two tasks: reconstructing a single 
file version at a specified time, and finding all versions of a file given a 
specified name and time range. The first task is straightforward: the newest 
version of each directory along the path is searched, until the path is fully 
resolved and the target file's inode number is obtained, or the resolution 
fails. Thus, resolving one version of a path requires at least two metadata 
database queries for each directory along the target path: one to translate 
the file system block address of the directory's inode into its corresponding 
log block address, and one to perform similar translations for each of the 
directory's data blocks. Likewise, searching a directory requires at least 
two log reads: one to read the directory's inode, and one for each of its 
data blocks. The time required to resolve a single path version is dependent 
predominantly upon the size of the metadata log, the length of the path, 
and the average size of each directory along the path. 

The second task, finding all versions of a file name, is the most taxing 
task performed by the file reconstruction utility. Visiting each directory 
along the path to be searched requires searching through each version of 
that directory between the given time boundaries. Clearly, the longer the 
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taxget path, the more work required to reconstruct a file. 
In addition to the depth of the target path, another key variable of this 

task is the average size of each directory visited. Obviously, the more entries 
contained in a directory, the more time required to perform a linear search 
of the directory. However, the versioning of directories presents yet another 
dimension of overhead: any time a new file is added or removed from a 
directory, a new version of the directory is created; this new version must 
also be searched during the path resolution process. Updating a directory 
can not only increase the time required to search the directory, it increases 
the number of versions of the directory which must be searched. 

Providing time constraints to the reconstruction utility can often dra
matically reduce the time required to reconstruct a file, as these time con
straints can reduce the number of versions of path directories that need to 
be searched. 

The slowest single operation performed during file reconstruction is query
ing the metadata database. This is especially true when the database is 
large. A new query must be performed any time a new file system block 
address is encountered during the path resolution process. However, an op
timization exists for the file reconstruction process: once a target inode is 
found, we generate a temporary table containing the file system block ad
dresses of each block in the file. We then take the cross product of this table 
with the metadata table, limiting the results to the newest block versions 
that are older than the inode. This technique allows us to translate all of a 
file's file system block addresses into log block addresses with a single query. 

7.3.2 Specific Performance Profiling 

We used a modified version of the PostMark benchmark to quantify the 
time required to reconstruct file versions under a few specific scenarios. We 
forced PostMark to perform all writes synchronously, thus ensuring that 
every file version accessed in memory was committed to disk. We configured 
PostMark to write to 10,000 files distributed evenly across 50 directories, 
with a maximum path depth of 10. This produced about 5,500,000 distinct 
file versions, committing 45.07GB of data to the log. 

Path Resolution 

The path resolution process can be greatly expedited by a few well-chosen 
indexes. For instance, a user-space tool could periodically traverse recently 
logged file system versions, recording path names and inode numbers for 
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Figure 7.11: Path Resolution 

each file and directory it encounters along the way; this index could com
pletely obviate the path resolution process during later reconstruction re
quests. While we have not implemented this inode index, we do rely upon 
two M y S Q L indexes—keyed on target-disk sector IDs and timestamps—to 
speed the path resolution process; building these indexes for this experiment 
required 115.56 seconds and 197.04 seconds, respectively, and the combined 
size of these indexes was 206.7MB. 

Figure 7.11 shows the times required to resolve paths of various depths 
from the log, given the approximate times at which each target version 
existed. The time required to reconstruct every version of a target path was 
substantially longer, ranging from 88.33 seconds for a one-directory path to 
989.33 for a ten-directory path. 

File Reconstruction 

Once a file's inumber is known, the process of reconstructing a file version is 
simple: the file system address of each block contained in the file (including 
the inode and indirect pointer blocks) must be mapped to its corresponding 
log address via the metadata database. 

A naive implementation of this translation process could query the database 
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Figure 7.12: File Reconstruction 

once for each block in the file. Such an approach would yield reconstruc
tion times scaling linearly in proportion to the number of required queries. 
The power of user-space indexing techniques is manifested when a more 
sophisticated translation approach is adopted. B y using the cross product 
optimization mentioned above, all data block translations can be achieved in 
a single database query. Figure 7.12 shows the times required to reconstruct 
file versions of various sizes, ranging from 1 K B to 10MB. As the figure shows, 
the cross product optimization results in low reconstruction times even for 
large files. 

7.4 Summary 
Because VDisk duplicates all disk writes, bus bandwidth is reduced by 50% 
compared to a standard disk. For bandwidth-limited applications, this re
dounds to a 50% reduction in performance. However, many file system op
erations are seek-limited, and the delays associated with these seeks can al
most completely overshadow the reduction in bandwidth imposed by VDisk, 
resulting in performance degradations closer to 10% or 15%. 

In addition to the cost of duplicating file system writes, VDisk 's cleaner 
imposes overhead when reclaiming segments. In the case of the E E C S trace, 
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daily cleaning of the.log with a milestone window of one hour results in the 
need to relocate 4.72MB of data per user per day. The amount of data that 
must be relocated depends upon the efficacy of the retention policy; for this 
trace the milestone policy was particularly effective at reclaiming blocks, 
allowing for the reclamation of more than 80% of the log and resulting the 
need to relocate the other 20% of the log during the cleaning process. 

Versions of the superblock and group descriptors accounted for more than 
25% of the log. As these blocks are not necessary for version reconstruction, 
they can be safely filtered during logging, reducing both the storage space 
and write bandwidth consumed by VDisk. 

While comprehensive logging resulted in a log that was nearly nine times 
larger than the file system, filtering and cleaning drastically reduce the size 
of the log. B y employing these techniques, VDisk was able to limit the size of 
the log to roughly 1.5 times the size of the file system during the two month 
trace. During these two months, the file system grew by about 3 M B per 
user per day, while the log, when omitting superblock and group descriptor 
versions, grew by an average of 18.46MB per user per day, with a maximum 
daily increase of 91.59MB. Thus, for workloads similar to the E E C S trace, 
users should expect a regularly cleaned log to consume 125% per month of 
the disk space consumed by the file system, and at least 100MB of free space 
should be reserved to accommodate daily log growth in between cleanings. 
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Future Work and Conclusion 

8.1 Future Work 
A key issue in implementing secure logging is minimizing storage require
ments. Comprehensive logging at the block level can result in log size explo
sions, thereby reducing the system's version retention window. A n impor
tant area of future research is thus exploring techniques to reduce VDisk 's 
log growth. Additionally, useful new features, such as version content in
dexing, are viable additions to VDisk due to its stratified design. 

8.1.1 Block Delta-Chaining 

Recent work in RAID-based block versioning has uncovered a highly effec
tive means of limiting block log sizes [63]. B y storing block versions as run-
length encoded delta chains, the T R A P versioning system has managed to 
dramatically reduce storage requirements. Wi th some modifications, VDisk 
could make use of this technology. The reduced log size would come with an 
increased latency in accessing file histories because block versions could no 
longer be read directly but would instead have to be reconstructed. However, 
if versions are not accessed frequently, this increased latency could be more 
than acceptable for a significantly reduced log size. A n ideal compromise 
might be to retain full versions of file system metadata, such as inode blocks, 
to enable rapid browsing of versioned directories, while storing data blocks 
as delta-chains. Additionally, VDisk 's reclamation scheme would need mod
ifications before it could accommodate delta-chaining: deleting intermediary 
block versions in a delta chain would require reconstituting and retaining 
the full version of the block existing at the end of the deleted interval to 
preserve the accessibility of newer versions of the block. 

8.1.2 Templated Retention Policies 

As mentioned in Section 4.3.1, one method of communicating a block's eligi
bility for deletion would be to use a domain-specific language. File systems 
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could register, a set of templates with VDisk's secure cleaner; these templates 
could be used by VDisk to extract important higher level information from 
blocks while still remaining file system agnostic. With this information, 
powerful new retention policies could be implemented, enabling the secure 
cleaner to recycle a greater number of blocks, as well as potentially allowing 
the enforcement per-file retention policies from the block layer. 

8.1.3 Vers ion Content Indexing 

VDisk's log-based structure lends itself quite nicely to a version indexing 
scheme: whereas in typical file systems, periodic indexing must be applied 
to various updated files scattered across a file system, with VDisk it could 
simply be applied to the tail of the log. By indexing file histories, VDisk 
could provide users with a means of rapidly searching old versions. This 
capability could greatly facilitate the process of recovering older files. And 
thanks to VDisk's stratified design, this version indexer could be imple
mented entirely in user space. 

8.2 Conclusion 
By retaining a history of file system operations, versioning systems protect 
users against incidental destruction of data. Versioning systems can come in 
a number of forms, including user-space applications, stackable and on-disk 
file systems, and block-level systems. Because of their relative simplicity, we 
maintain that block-level versioning systems can provide a higher degree of 
reliability and security than can file systems, and are thus better suited to 
protect important information. 

Due to an ignorance of file system semantics, typical block-level ver
sioning systems only provide coarse-grain versioning. To remedy this, we 
present VDisk, a secure, block-level versioning system that is able to pro
vide fine-grain, per-file versioning. The most notable aspect of VDisk is its 
stratified design: critical code which has write-access to versioned data is 
implemented in a simple, protected module, while more complicated code is 
implemented in user space, where it cannot endanger versioned data. This 
design greatly reduces VDisk's trusted computing base. 

VDisk comprises three components: a secure logger, an untrusted file 
reconstruction utility, and a secure cleaner. Both the logger and the cleaner 
are protected from malicious agents by a virtual machine, meaning that 
VDisk can protect versioned data even if the operating system it services is 
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compromised. The extreme simplicity of these protected components lends 
reliability to the system. 

VDisk provides per-file version reconstruction with the help of a user-
space utility. W i t h read-only access to VDisk's log, this utility is capable 
of reconstructing individual file versions. Additionally, an untrusted user-
space application is responsible for initiating the reclamation of unneeded 
logged blocks. This application searches the log for segments which wil l 
benefit from cleaning, and constructs proofs evincing each block's eligibility 
for deletion. Proofs must be verified by the secure cleaner before the blocks 
they describe can be deleted; this allows the cleaner to enforce retention 
policies which prevent the destruction of important information. 

While the cost of duplicating all disk writes reduces data bus through
put by 50%, the typical user-perceived overhead of VDisk is closer to 15%. 
Many applications are seek-bound rather than throughput-bound; while file 
system disks are slowed by performing many seeks, VDisk 's disk minimizes 
seek overhead by writing data contiguously. Consequently, in many cases, 
VDisk 's overhead is almost completely overshadowed by the file system 
seeks. Additionally, we found that with the E E C S workload, content hash
ing can reduce log growth by up to 40%, while VDisk 's retention policies can 
reclaim nearly 80% of data written to disk while still preserving important 
landmark files. 
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