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ABSTRACT

Dynamic slicing is a widely used technique for program analy-
sis, debugging, and comprehension. However, the reported
slice is often too large to be inspected by the programmer.
In this work, we address this deficiency by hierarchically ap-
plying dynamic slicing at various levels of granularity. The
basic observation is to divide a program execution trace into
“phases”, with data/control dependencies inside each phase
being suppressed. Only the inter-phase dependencies are
presented to the programmer. The programmer then zooms
into one of these phases which is further divided into sub-
phases and analyzed. We also discuss how our ideas can be
used to augment debugging methods other then slicing (such
as “fault localization”, a recently proposed trace comparison
method for software debugging).

Categories and Subject Descriptors

D.3.4 [Programming Languages|: Processors—Debuggers;
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Testing tools, Tracing

General Terms

Experimentation, Measurement, Reliability

Keywords
Debugging, Dynamic Slicing, Phase Detection

1. INTRODUCTION

Dynamic slicing [2, 13] is a well-known technique for pro-
gram analysis and comprehension. Given a program P, an
input I and an “observable error”, dynamic slicing can be
used to find out statements of P executed under input [
which can be responsible for the error (via control or data
flow). Typically, the “observable error” is specified as a slic-
ing criterion (I,v) — a variable v and a line number /. Thus,
if the value of variable v in line number [ is “unexpected” we
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perform slicing w.r.t. the criterion (I,v). The resultant slice
can be inspected to explain the reason for the unexpected
value. Dynamic slicing naturally corresponds to the notion
of debugging — it tries to find out the reason for an unex-
pected variable value (like an unexpected output) for a given
test input. However, for most real programs, the dynamic
slices are too large for humans to inspect and comprehend.
So, we either need to prune dynamic slices or we need tools
to help a programmer understand a large dynamic slice.

In this paper, we take the second route. However, our
method can be combined with techniques for pruning a dy-
namic slice (such as the recent work [29]). We build a dy-
namic slicing method where the human programmer is grad-
ually exposed to a slice in a hierarchical fashion, rather than
having to inspect a very large slice after it is computed. The
key idea is simple — we systematically interleave the slice
computation and comprehension steps. Conventional works
on slicing have only concentrated on the computation of the
slice, comprehension of the slice being left as a post-mortem
activity. In our work, we integrate the two activities in a
synergistic fashion as follows.

e Computation of the slice is guided (to a limited ex-
tent) by the human programmer so that very few con-
trol/data dependencies in a large slice need to be ex-
plored and inspected.

The programmer’s comprehension of the slice is greatly
enhanced by the nature of our slice computation which
proceeds hierarchically. Thus, for programs with long
dependence chains, this allows the programmer to grad-
ually zoom in to selected dynamic dependencies.

To understand the potential benefits one can gain from
our method, let us examine the reasons which make the
comprehension of dynamic slices difficult.

e Many programs have long dependence chains spanning
across loops and function boundaries. These depen-
dence chains are captured in the slice. However, the
slice being a (flat) set of statements, much of the pro-
gram structure (loops/functions) is lost. This makes
the slice hard to comprehend.

e Programs often also have lot of inherent parallelism.
So, a slice may capture many different dependence

chains.

We now discuss how hierarchical computation/exploration
of slices can help programmers to comprehend large slices
containing these two features — (a) long dependence chains,



and (b) many different dependence chains. Figure 1(a) shows
an example program with a long dependence chain. Con-
sider an execution trace of the program ...3,4,5,6 — where
lines 3,4,5,6 of Figure 1(a) are executed. Slicing this exe-
cution trace w.r.t. the criterion (line6,y) (i.e., the value
of y at line 6) yields a slice which contains lines 3,4,5,6
as well as lines inside the body of the functions f1, f2, f3.
In other words, since the slice is a (flat) set of statements,
the program structure is lost in the slice. This structure is
explicitly manifested in Figure 1(b), where we show the de-
pendence chain in a hierarchical fashion. In other words, the
dependencies inside the functions f1, f2, f3 are not shown.
Here, a hierarchical exploration of the dependence chains
will clearly be less burdensome to the programmer. Thus,
in Figure 1(b), by inspecting the dependencies hierarchi-
cally, the programmer may find it necessary to inspect the
dependencies inside a specific function (say f2). As a result,
we can avoid inspecting the dependence chain(s) inside the
other functions (in this case f1, f3).

Now, let us consider programs with many different depen-
dence chains. Figure 2(a) shows a schematic program with
several dependence chains, and hence substantial inherent
parallelism. If the slicing criterion involves the value of y in
line 6 — we need to consider the dependencies between y
and z3, y and x2, as well as, y and x1. These three depen-
dencies are shown via broken arrows in Figure 2(b). Again,
with the programmer’s intervention, we can rule out some
of these dependencies for exploration and inspection.

1 public static void main(String[] args) {
2
3 x1=f1();
4 x2 = f2(x1);
5 x3 = f3(x2);
6 y=x3;
¥
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Figure 1: (a) A program with a long dynamic depen-
dence chain (b) The corresponding phases. Dashed
arrows represent dynamic dependencies that a pro-
grammer needs to follow for debugging. The re-
ported variables for each phase appear in italics.

In summary, our method works as follows. Given an exe-
cution trace (corresponding to a program input) containing
an observable behavior which is deemed as an “error” by
the programmer, we divide the trace into phases. This di-
vision is typically done along loop/procedure/loop-iteration
boundaries so that each phase corresponds to a logical unit
of program behavior. Only the inter-phase data and control
dependencies are presented to the programmer; the intra-
phase dependencies are completely suppressed. The pro-
grammer then identifies a likely suspicious phase which is
then subjected to further investigation in a similar man-
ner (dividing the phase into sub-phases, computing depen-

1 public static void main(String[] args) {
2
3 x1 =f1();
4 x2 = 12();
5 x3 =13();
6 y =x1+x2+x3;
}
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Figure 2: (a) A program with inherent parallelism
(several dynamic dependence chains) (b) The corre-
sponding phases. Dashed arrows represent dynamic
dependencies that a programmer needs to follow for
debugging. The reported variables for each phase
appear in italics.

dencies across these sub-phases and so on). This process
continues until the error is identified. Of course, an under-
lying assumption here is that the programmer will be able
to identify the erroneous statement once this statement is
pinpointed to him/her.!

One may comment that such a hierarchical exploration
of dynamic dependencies involves programmer’s interven-
tion, whereas conventional dynamic slicing is fully auto-
matic. Here we should note that, the process of error detec-
tion by using/exploring a dynamic slice involves a huge man-
ual effort; the manual effort in exploring/comprehending the
slice simply happens after the computation of the slice. In
our hierarchical method, we are interleaving the computa-
tion and comprehension of dynamic dependencies. As in
dynamic slicing, the computation of the dynamic dependen-
cies is automatic in our method; only the comprehension
involves the programmer. Moreover, we are gradually ex-
posing the programmer to the complex chain(s) of program
dependencies, rather than all at once — thereby allowing
better program comprehension.

Technical ContributionsThe technical contributions of
the paper can be summarized as follows.

e In this paper, we propose hierarchical dynamic slic-
ing which systematically interleaves computation and
comprehension of dynamic dependencies for program
debugging. During this process, a program execution
trace is divided into phases at various levels of gran-
ularity. For each phase, we collect and report dy-
namic data/control dependencies across phases. De-
tailed data and control dependence computation inside
each phase is not exposed to the programmer, thereby
reducing program understanding effort (as compared
to inspecting the dynamic slice).

IThis assumption is rather standard in existing works on
debugging (e.g., see the score computation by Renieris and
Reiss [18], which forms the basis of experimentation in many
fault localization techniques [6, 10, 18]).



e During hierarchical dynamic slicing, the generation of
“program phases’ is critical. In this paper, we pro-
pose an algorithm for dividing an execution trace into
phases in a hierarchical fashion; this hierarchy corre-
sponds to the levels of hierarchy we will explore for
uncovering the dynamic dependencies gradually. Our
phase division algorithm tries to divide a trace along
control structure boundaries such as procedure calls
and loop boundaries. We compare our notion of pro-
gram phases with previous works on phase detection
(e.g., see [7]). These works have defined phases based
on aggregate performance metrics (e.g., which basic
blocks are executed may define a phase).

e We have evaluated our approach on several subject
programs, including programs from the Software ar-
tifact Infrastructure Repository (SIR) [8]. Our ex-
perimental results show that our approach could sig-
nificantly reduce the number of statements/variables
which the programmer needs to examine (as compared
to conventional dynamic slicing). We have also evalu-
ated the number of manual interventions that may be
required for hierarchical dynamic slicing.

e Finally, we have applied our ideas of hierarchical de-
pendence exploration to fault localization, a dynamic
analysis method which compares a run showing an er-
ror with one that does not (thereby locating the cause
of the error) [6, 10, 18].

Clearly, the notion of phase is central to our approach. In
the next section, we present our notion of phases, which is
then used in Section 3 to develop our slicing algorithm.

2. PHASES IN AN EXECUTION TRACE

Our definition of phase is based on the syntax structure
of a program. The intuition is that programmers often use
loops and methods to implement specific tasks within a pro-
gram. Furthermore, programs are constructed hierarchi-
cally. Thus, a task which is implemented by a procedure
may contain sub-tasks which are implemented by other pro-
cedures and/or loops. Our phase division algorithm is based
on (and exploits) these observations regarding program de-
velopment.

We now present our notion of phases using an example.
The example program appears in Figure 3; it simulates a
database system, where a user can perform various opera-
tions such as insertion, deletion and sorting. The example
is similar to the db program in the SPEC JVM benchmark
suite. The main() method of the program initializes a data-
base (lines 3-5), and then presents the user with seven op-
tions (lines 7-35). Based on the user’s choice, the database
system invokes one of six methods, defined in the Database
class. Finally, the main() method writes the database to a
file before the system terminates (lines 36-37).

Consider any execution trace of the database program
(given as a sequence of line numbers).

3,4,5,7—-13,7-9,14 - 17,7 - 9,30 — 32, 36, 37

Using our phase division algorithm, we compute three phases
at the top-level: (1) lines 3-5 of Figure 3, (2) lines 7-35 of
Figure 3, and (3) lines 36-37 of Figure 3. These phases ex-
actly correspond to the tasks of database initialization, data
processing, and finalization. These phases are detected by

our method (see the three phases at the top level in Fig-
ure 4). Since our phase division is employed hierarchically,
each of these three phases can be further divided into sub-
phases. Let us consider the second phase — the execution of
lines 7-35. The sub-phases of this phase will be the different
iterations of the loop in lines 7-35. The three sub-phases
perform three different operations on the database — read,
insert and exit. These sub-phases are also (hierarchically)
shown in Figure 4.

The preceding example captures the two main features of
our approach. First of all, we use the sequence of statements
visited in an execution trace and chop off the phases based
on some distinguished statements (such as loop/procedure
boundaries). Secondly, the phase division is done hierarchi-
cally, that is, the execution trace is divided into some phases
at the top-level and each of these phases can be further sub
divided and so on.

Our algorithm for dividing an execution trace H into
phases appears in Figure 5. We can understand the me-
chanics of the algorithm as follows. Suppose that we vi-
sualize all loops as calls/return to dummy methods; thus,
for each loop execution instance [ contained in H suppose
we insert a marker “call to m;” (“return from m;”) at the
beginning (end) of the loop. Here m; is a dummy method
name introduced by us (it does not appear in the program
execution trace). Then, we first find the set of all method
invocations appearing in H which are not enclosed by any
other method invocation. We then use the entry and exit of
such outermost method invocations to determine the phase
boundaries. Clearly, these “outermost” method invocations
may correspond to either a call to a procedure in the pro-
gram or the entry to a loop in the program (recall that we
converted the loop entries to dummy method invocations).
If H contains outermost procedure calls as well as outermost
loops, we give priority to the loops for defining the phase
boundaries of H, and use the procedure calls for defining
the sub-phases of these phases. We feel that programmers
use loops as a higher-level structuring mechanism whereas
sub-tasks appearing as initialization or activities within a
loop are often written up as procedures.

If no procedure call or loop exists in H, we check whether
H contains iterations of a loop and if so we set phase bound-
aries after a certain number of iterations (given by the con-
stant Ajoop). If H does not contain any loop iterations,
we set phase boundaries after certain number of statement
instances (given by the constant Ag¢me in Figure 5). The
reason for allowing phase division even in the absence of
loops/procedures is to eventually focus at the level of state-
ments, if the programmer chooses to do so for debugging.
Java programs may have unstructured control flow by using
break and continue statements. However, they are naturally
loop iteration boundaries and do not require any special
analysis.

The dividePhase method shown in Figure 5 itself is not
hierarchical — given an execution trace it simply divides the
trace into a finite number of phases. However, we will use it
to achieve hierarchical division of a program execution trace
H by invoking dividePhase on H, the phases of H returned
by dividePhase(H), and so on.

Differences with Conventional Phase Detection Meth-

0ds. We note that phase detection for program optimiza-
tion has been a rich area of research [7, 20]. Given an ex-



1 public class Main { 38 public class Database {
2 public static void main(String[] args) { 39 private Vector entries;
3 Database db = new Database(); 40 private int current_record;
4 db.read_db(args[1]);
5 boolean exit = false; 41 Database() {
6 String s; 42 entries = new Vector();
43 current_record = 0;
7 while ('exit) { }
8 char command = readCommand();
9 switch (command) { 44 public void read_db(String filename) {
10 case . // read records from a file 45 BufferedReader dbReader = new BufferedReader(new FileReader(filename));
11 s = readFromlInput(); 46 String s;
12 db.read_db(s); 47 while ((s = dbReader.readLine()) != null) {
13 break; 48 Record rec = new Record(s);
14 case 'l //insert a record 49 entries.addElement(rec);
15 s = readFromlInput(); }
16 db.insert(s); 50 dbReader.close();
17 break; 51 current_record = entries.size() -1;
18 case 'd: // delete the current record }
19 db.delete();
20 break; 52 public void insert(String s) {
21 case 'n". // points to the next record in the database 53 Record rec = new Record(s);
22 db.next(); 54 entries.add(current_record, rec);
23 break; 55 current_record++;
24 case 'p".  // points to the previous record in the database }
25 db.prev();
26 break; 56 public void write_db(String filename) {
27 case's" // sort the database 57 PrintWriter dbWriter = new PrintWriter(new BufferedWriter(new FileWriter(filename)));
28 db.sort(); 58 for (inti=0;i < entries.size() - 1; i++) {
29 break; 59 Record rec = (Record) entries.elementAt(i);
30 case 'e" // exit the database 60 dbWriter.printin(rec.toString());
31 exit = true; }
32 break; 61 dbWriter.close();
33 default: }
34 System.out.printin("Command not support"); .
35 break; }
}
}
36 db.write_db(args[2]);
37 return;
}
}

Figure 3: An example program which simulates a database system.

Lines 3-37
entries[2]
Lines 3-5 Lines 7-35 Lines 36-37 L ev el 1
db entries[2]
entries
exit
Lings 7-13 Lings 7-9, 14-17 Lines 7-9, 30-32 L 1 2
1" Loop lteration 2" Loop lteration 3" Loop Iteration eve
current_record |----- > entries[2]
Line 7 readCommand() Line 8-9 readFromInput() Line 11 read_db() ‘ Line 13 LeVel 3
lexit_ =¥ returnvalue |-~ command=="r't=-» returnvalue |-¥ s * current_record

Figure 4: Phases for the running example in Figure 3. Rectangles represent phases. The reported variables for
each phase appear in italics. Dashed arrows represent inter-phase dynamic dependencies that a programmer
needs to follow for debugging.



. dividePhase(H: an execution trace)

. begin

1
2

3

4.

5. if (LOOPS !=0)
6 for ( each loop in LOOPS)
7

8

if (LOOPS == () && CALLS = 0)

19. for (each marked phase boundary)

21. return ph;
22. end

LOOPS = the set of loop entries which are not enclosed by any other loop or method in H;
CALLS = the set of method calls which are not enclosed by any loop or method in H ;

mark entry of loop as phase boundary; mark exit of loop (if it exists in H) as phase boundary;

9. for (each method invocation call in CALLS)

10. mark the entry of call as phase boundary; mark return from call (if it exists in H) as phase boundary;
11. if (LOOPS == () && CALLS == 0)

12. if ( H consists of only iterations of one loop)

13. for (iter= every Ay, iterations of this loop)

14. mark the beginning of iter as a phase boundary;

15. else

16. for (stmt= every Agim¢ statement instances in H)

17. mark the control location after stmt as a phase boundary;

18. mark the beginning and end of H as phase boundaries;

20. phli]= the execution trace of H between the i-th and the (i + 1)-th phases boundaries;

Figure 5: Divide an execution H into phases for debugging. Aj.op (Astm:) is a certain percentage of the

number of loop iterations (statement instances).

ecution trace H, these techniques typically divide the trace
H into fized-length intervals. Program performance related
information for each interval (such as basic block vectors,
which, roughly speaking, capture the relative occurrences of
various basic blocks in an interval) are collected. Finally,
consecutive intervals with similar information are clustered
into a single phase. The important issue here is that these
methods (a) chop a trace into fixed-length intervals, (b) com-
pute an aggregate metric (such as Basic Block Vectors or
BBVs) for each interval, and (c) cluster adjacent intervals
with similar metric into a phase.

We found the following major differences between our
phase detection, and conventional phase detection methods
for program optimization. These observations were obtained
by comparing the phases computed by our method against
the phases computed by Basic Block Vector based phase de-
tection [20] on well-known SPECJVM benchmarks such as
jess and db.

e From our experiments, we found that contrary to con-
ventional phase detection methods, our algorithm can
generate very short phases. In other words, our phase
detection method is much more closely tied to the pro-
gram behavior, rather than depending on artificial pa-
rameters (such as the minimum length of a phase).

e Furthermore, consecutive intervals which correspond
to different logical operations and have very different
execution traces will be identified to be in different
phases by our method. Conventional methods can
place these intervals in the same phase since the rel-
ative execution frequencies of basic blocks are similar
in the two intervals (though the traces are different).

e Finally, consecutive intervals which are part of one sin-
gle logical operation but have very different execution
traces will be identified to be in the same phase by our
method (as long as the code executed in these intervals

have been modularly placed in a loop or procedure by
the programmer). However, they will be placed in dif-
ferent phases by the conventional methods if the traces
for the intervals produce substantially different metrics
(such as Basic Block Vectors).

Overall, we find that our phases being based on the bound-
aries of control structures are more suitable for program un-
derstanding. This is because programmers often use loops
or procedures to implement a specific functionality.

3. SLICING ALGORITHM

In this section, we present our slicing algorithm. Like
dynamic slicing, hierarchical dynamic slicing explores dy-
namic data/control dependencies related to the observable
error (also called the slicing criterion). The only difference
lies in the manner in which these dependencies are explored
and/or presented to the user. Here, we first summarize a
standard dynamic slicing algorithm; we then discuss how to
augment it for hierarchical dynamic slicing.

Traditionally, dynamic slicing is performed w.r.t. a slicing
criterion (H,l,v), where H represents an execution trace of
the program being debugged, ! represents a control location
in the program, and v is a program variable. A dynamic
slice contains all statement instances (or statements) which
have affected the value of variable v referenced at [ in the
trace H. A dynamic slicing algorithm can proceed by for-
ward or backward exploration of an execution trace. Here
we summarize a backwards slicing algorithm which is goal-
directed (w.r.t. the slicing criterion), but requires efficient
storage/traversal of the trace. During the trace traversal
which starts from the statement in the slicing criterion, a
dynamic slicing algorithm maintains the following quanti-
ties: (a) the dynamic slice ¢, (b) a set of variables § whose
dynamic data dependencies need to be explained, and (c) a
set of statement instances v whose dynamic control depen-
dencies need to be explained. Initially, we set the following



(a) ¢ = v = last instance? of location [ in trace H, and (b)
0 ={v}.

For each statement instance stmt encountered during the
backward traversal, the algorithm performs the following
two checks. The algorithm terminates when we reach the
beginning of the trace.

e check dynamic data dependencies. Let vfif.ff"t be the

variable defined by stmt. If v3UF* € 4, it means that
we have found the definition of fuf}é’}” which the slicing
algorithm was looking for. So, U;?;Lt is removed from
§, and variables used by stmt are inserted into ¢. In

addition, stmt is inserted into ¢ and 7.

e check dynamic control dependencies. If any statement
instance in 7y is dynamically control dependent on stmt,
all statement instances which are dynamically control
dependent on stmt are removed from . Variables used
by stmt are inserted into J, and stmt is inserted into
@ and 7.

When the dynamic slicing algorithm terminates, the re-
sultant dynamic slice, (i.e., the set ) is reported back to the
programmer for inspection. As discussed earlier, such a dy-
namic slice is often too big for human comprehension. Hier-
archical dynamic slicing helps a human programmer explore
and understand this large dynamic slice. Figure 6 shows our
hierarchical dynamic slicing algorithm. The algorithm pro-
ceeds by employing a recursive procedure hdslice(). This
procedure is invoked at the top level with the slicing cri-
terion (H,l,v), where H represents an execution trace, [
represents a control location in H, and v is a program vari-
able. The hdslice() procedure first divides the trace H
into phases (line 3 of Figure 6) by employing dividePhase,
our phase division algorithm presented in the last section.
Inter-phase dependencies (dynamic data and control depen-
dencies across phases) are then detected and collected in
the ipd set for each phase. Finally, these dependencies are
reported to a programmer, who inspects them. Note that
the programmer here is inspecting only dependencies across
phases, not dependencies within a phase.

Each invocation of the hdslice () procedure detects inter-
phase dependencies which are related to the observable er-
ror. This involves the following two steps.

1. determine which dynamic dependencies are (directly
or indirectly) related to the observable error, and then

2. determine which of the dynamic dependencies identi-
fied in step 1 are inter-phase dependencies.

The first step is drawn from dynamic slicing, while the sec-
ond step is novel to hierarchical dynamic slicing. Dynamic
slicing algorithms maintain sets § () to capture the vari-
ables (statements) whose data (control) dependencies are
yet to be explained. In hierarchical dynamic slicing, we
maintain several § and <y sets, one for each phase. The
splitting of § and ~ sets is to ease the task of determining
which dynamic dependencies are inter-phase dependencies.
For every statement instance stmt encountered during the
backward traversal for slicing, let ph[s] be the phase which
stmt belongs to. If stmt defines an variable vgey which is

2We could also consider any other instance, or even all in-
stances.

included in ph[i].d for some value of 4, this means that vgey is
used by statement instance in the ith phase ph[i], and stmt
is involved in a dynamic data dependence which is related to
the observable error. We can then easily determine whether
this data dependence spans phase boundaries by determin-
ing whether phl[s] and ph[i] are the same phase. Similarly,
we could use the v sets of the individual phases to deter-
mine whether a dynamic control dependence spans phase
boundaries. The data and control dependencies which are
thus identified to be inter-phase dependencies are captured
in the ipd sets (Line 33 of Figure 6).

The programmer can use the values of the variables in-
volved in inter-phase dynamic dependencies® to identify the
“first” (in terms of order of occurrence in the trace) suspi-
cious inter-phase dependency. We would now like to employ
slicing to explain this suspicious dependency. However, slic-
ing requires the slicing criterion to be set as a triple

(trace, control location, variable)

Thus, we need to extract these parameters from an inter-
phase dependency if it is deemed “suspicious” by the pro-
grammer. For an inter-phase dependency from phase p to
phase p’, we set the execution trace for phase p as the trace
to be explored for further slicing. Thus, the phase p is
marked as the error phase err_ph and its trace is the ex-
ecution trace Herr to be further explored (see Lines 37-40
of Figure 6). Also, given any suspicious inter-phase depen-
dency, we can associate a variable ver, with it. For data
dependencies, verr is the variable which is defined /used; for
control dependencies, we can consider an auxiliary boolean
variable corresponding to the guard involved in the control
dependency. Finally, the control location where ver, is de-
fined in the error phase err_ph is marked as the suspected
erroneous control location ler.. We now recursively invoke
the hierarchical dynamic slicing procedure hdslice (see Line
41 of Figure 6) with slicing criterion (Herr, lerr, Verr ).

Example.We use the program of Figure 3 as the running
example. This program simulates a database system where
the variable current_record should always point to the last
database record operated on. We have introduced a bug in
Line 51, which should be
current_record = entries.size()
instead of
current_record = entries.size() - 1

Let us consider the following execution trace — the pro-
gram first reads one record into entries by executing lines
3-5, reads two additional records into entries by executing
lines 7-13, and inserts one record into the database by ex-
ecuting line 7-9,14-17. Finally, the program exits the data-
base by executing 7-9, 30-32, and writes the resultant data-
base into a file by executing 36-37. Let us suppose the
records read/inserted were “Africa’, “America’, “Antarc-
tica” and “Asia” (in this order). Then, because of the
faulty statement in line 51 of the program, the content of the
database at the end of execution will be: “Africa’, “Amer-
ica’, “Asia’, “Antarctica”. In other words, the last and
second last elements of the program array entries (i.e.,
entries[2] and entries[3]) are reversed. This error can
be observed from the file to which the database is written.

3The programmer may need to re-execute the program to
obtain these values if the values are not captured in the
execution trace.



. begin

for ( each ph[i] of ph )
phli].6 = 0;
phli].y = 0;
phli].ipd = 0;

LN W =

let phle] = the phase which stmte belongs to;
10. phle].d = {v};

11. phle]l.y = {stmte};

12 stmit= stmte;

13. while( stmt is defined )

35. for ( each phli] of ph )

37. (stmterr,Verr)= ProgrammerIntervention();
38. lerr = the control location of stmtery;

41. hdslice(Herr,lerr, Verr);
42. end

. hdslice(H: an execution trace, I: a location, v: a variable)

ph = dividePhase(H); /* See Figure 5 for dividePhase algorithm */

stmt. = the last statement instance of location ! in trace H; /* the “suspicious” statement instance */

14. inInter PhaseDependence = false;

15. let ph[s] = the phase which stmt belongs to;

16. Vgef = variable defined at stmt;

17. Vuse = the set of variables used at stmdt;

18. for ( each ph[i] of ph )

19. if ((vgey € phli].d)

20. phli].6 = phli].6 - {vaer};

21. ph[s].6 = ph[s].0 U Vise;

22. phls].y = ph[s].y U {stmt};

23. if (¢ !=s) /* phli] and ph[s] are not the same phase */
24. inInter Phase Dependence = true;

25. if ( any statement instance in ph[i].y is dynamically control dependent on stmt )
26. CDgs = the set of statement instances which are dynamically control dependent on stmdt;
27. phli].y = phli].y - CDs;

28. phls].d = ph[s].0 U Viyse;

29. ph[s].y = ph[s].y U {stmt};

30. if (¢!=s) /* phli] and phl[s] are not the same phase */
31. inInter PhaseDependence = true;

32. if ( inInter PhaseDependence )

33. ph[s].ipd = ph[s].ipd U {(stmt,vgey)};

34. stmt = the statement instance before stmt;

36. report inter-phase dependencies phli].ipd to the programmer;

39. err_ph = the phase which stmter, belongs to, i.e. the suspicious phase;
40. Herr = the execution trace for the suspicious phase err_ph;

Figure 6: The Hierarchical Dynamic Slicing algorithm. After the algorithm reports all inter-phase dynamic
dependencies (at line 36), the programmer needs to identify “suspicious” ones and return the first (in order
of occurrence) suspicious inter-phase dependency (at line 37).

Figure 4 partially illustrates how the hierarchical dynamic
slicing algorithm works to locate the faulty statement. Rec-
tangles at the same horizontal level in Figure 4 are the
phases generated in the same invocation of hdslice() pro-
cedure (our slicing algorithm). Dashed arrows in Figure 4
represent inter-phase dependencies. Variables involved in
inter-phase dependencies for each phase appear in italics in
Figure 4. We do not show the statement instances which
define these variables, since they are clear from the program
in Figure 3. As discussed earlier, the variable for an inter-
phase control dependency may be captured by an auxiliary
boolean variable representing the guard corresponding to
the control dependency (see the guard command == ‘r’ for
the phase representing lines 8-9 in Figure 4). Note that the
variable(s) mentioned for each phase in Figure 4 effectively
serve as the “outputs” of the phase which are passed to
the succeeding phases as “inputs”. This input-output rela-
tionship constitutes the inter-phase dependencies which are
shown using dashed arrows in Figure 4. Thus, given an invo-

cation of hdslice on an execution trace H , the programmer
can inspect these “outputs” of the phases corresponding to
given “inputs” and check whether this matches his/her ex-
pectation of the input-output relationship supposed to be
captured by the corresponding phase. The programmer can
avoid thinking about the computation inside any phase.

For the example program given in Figure 3, the hdslice ()
procedure is first invoked with the execution of lines 3-37 of
Figure 3, and the “incorrect” variable entries[2] (deemed
incorrect since it is involved in the observable error in this
example). This execution is divided into three phases, as
shown in Figure 4. The second phase (execution of lines
7-35) defines the variable entries[2]. Although the first
phase (execution of lines 3-5) defines several variables (in-
cluding entries/exit) which are involved in inter-phase de-
pendencies, the programmer in this case deems the initial-
ization code in the first phase as “correct”. Typically, the
programmer will do this by inspecting the “outputs”, that is
the values of variables produced by execution of first phase.



In this case, the programmer observes that at the end of
the first phase entries[2] is not initialized (in fact, only
entries[0] is initialized). So, the first phase is clearly un-
related to the error in entries[2], and the programmer
zooms into the second phase for further investigation. This
results in a recursive invocation of the hdslice procedure on
the second phase. The second phase is then further divided
into three sub-phases. Again, the programmer observes from
the inter-phase dependencies that the first sub-phase pro-
duces current_record as output which is fed as input to
the second sub-phase (shown via dashed arrows in Figure
4). Furthermore, the value of the current_record variable
is “unexpected”; this is based on the programmer’s expecta-
tion that current_record should be an index to the current
last record of the database. Consequently the programmer
focuses on the value of current_record in the first sub-phase
(lines 7-13 of Figure 3) via another invocation of hdslice.

4. EXPERIMENTS

In this section, we discuss the implementation and exper-
iments for our hierarchical dependence exploration method.

4.1 Slicing Experiments

Subject Description Size
NanoXML a XML parser 7646 LOC
for Java 24 classes
JTopas a Java library 5400 LOC,
for parsing text | 50 classes
Apache JMeter | a performance 43400 LOC,
testing tool 389 classes

Table 1: Descriptions of subject programs used to
evaluate the effectiveness of our hierarchical dy-
namic slicing approach for debugging.

We have implemented hierarchical dynamic slicing on top
of the Jslice dynamic slicing tool [24] for Java programs. Js-
lice performs backwards dynamic slicing of sequential Java
programs. Since backwards slicing requires storing of the
execution trace, Jslice performs online compression during
trace collection. The compressed trace representation is tra-
versed without decompression during slicing. To understand
the data compression methods used for trace representation
in Jslice, the reader is referred to [25]. Our prototype im-
plementation of hierarchical dynamic slicing also uses this
compressed trace representation. In particular, the phase
detection/representation/traversal in the execution trace are
all done in compression domain.

We applied our prototype implementation to subject pro-
grams written in Java available from the Software-artifact
Infrastructure Repository (SIR) [8]. Since our slicing tech-
nique is applicable to sequential programs, we chose the
NanoXML, JTopas and JMeter subjects. Note that JMeter
is actually a multi-threaded Java program, but some test
cases from [8] run only one thread of JMeter thereby mak-
ing our slicing technique applicable. Descriptions and sizes
of these subjects are shown in Table 1.

Each SIR subject comes with a pool of test inputs. SIR
[8] also provides several buggy versions of each subject pro-
gram, where each buggy version has exactly one injected
bug. Some of the buggy versions are such that none of the
given test inputs (for the corresponding subject program)
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Figure 7: The number of statement instances that
a programmer has to examine using the hierarchi-
cal dynamic slicing approach and the conventional
dynamic slicing approach. The figure is in log scale
showing that our hierarchical approach is often orders
of magnitude better.

exposes the bug. We did not include them in our experi-
ments, since the failing input (i.e., the input corresponding
to the execution trace to slice on) did not come with the
subject programs. Furthermore, some other buggy versions
are such that the faulty statement is not included in the
dynamic slice?; we left out these buggy versions as well.
Finally, we got three buggy versions for each of our three
subject programs — resulting in a total of nine buggy pro-
grams.

Statement Instances Examinagle first tried to evalu-
ate the utility of hierarchical dynamic slicing for program
debugging. Figure 7 compares (in a log scale) the number
of statement instances which a programmer has to exam-
ine using the hierarchical dynamic slicing approach and the
conventional dynamic slicing approach. For the hierarchical
approach, a programmer has to examine only statement in-
stances involved in inter-phase dependencies. We compare
this against the size of the dynamic slice, which is what the
programmer will typically examine in conventional dynamic
slicing. As we can see from Figure 7, our approach can sig-
nificantly reduce (often by orders of magnitude) the num-
ber of statement instances which the programmer needs to
examine for debugging. The improvement comes from the
usage of phases in slicing. By dividing an execution into
phases and reporting inter-phase dependencies, a program-
mer can quickly identify suspicious dependence chains. The
inter-phase dependencies effectively expose the “inputs” and
“outputs” of each phase. This allows the programmer to
think of each phase in terms of the expected input-output
relationship rather than worrying about the computations
within each phase. Consequently, the number of statement
instances to be investigated is significantly reduced.

User Interaction.One of the key issues in hierarchical dy-
namic slicing is the interleaving of slice computation and
comprehension steps. The aim is to aid program under-
standing by gradually exposing the programmer to compli-

4This is because dynamic slicing can only locate errors where
the faulty statement is present in the program as well as in
the execution trace (e.g., it cannot capture “missing code”
errors).



cated dependence chains. However, if the number of inter-
vention steps required from the programmer is overwhelm-
ing, this can undermine the method’s utility. For this rea-
son, we experimentally evaluated the number of manual in-
terventions required in the hierarchical dynamic slicing of
our subject programs. The results appear in the column
# Interventions of Table 2. In the experiments, we chose
“simple” test cases which result in shorter length execution
traces. We feel that this is natural, since programmers also
favor a shorter execution trace demonstrating an error (over
longer execution traces showing the same error) for debug-
ging purposes. In practice, the programmer can generate
such “simple” test cases (which produce shorter execution
traces) based on his/her intuition about the program, or
(s)he can use automatic methods for simplifying test inputs
[16, 28].

From our slicing algorithm (Figure 6) it seems that the
number of programmer interventions will be exactly equal
to the number of hierarchy levels we explore (.e., the num-
ber of times we invoke the phase division algorithm). We
were pleasantly surprised to find that the number of manual
interventions is often less than the number of hierarchies ex-
plored (see the last two columns in Table 2). After dividing
an execution trace into phases, we may find that dependence
chains which are relevant to the observable error all lie in
one phase, and dependence chains in other phases have no
effect on the observable error. In other words, there is no
inter-phase dependence which is relevant to the observable
error. In such a situation, our approach could proceed to
the phase which is relevant to observable error, without any
user intervention.

Post-mortem pruning of slicesve also tried out the fol-
lowing variation of our experiments on slicing. We first com-
pute the entire dynamic slice automatically, as in conven-
tional slicing techniques. However, the slice is explored post-
mortem along dependence chains (chains of length 1,2,...),
starting from the slicing criterion until the error is found.
Note that such an exploration is also not automatic since
the programmer has to look through the dependence chains
to check whether the cause of the error is found.

We compared the number of statement instances exam-
ined by such post-mortem exploration of the slice with our
hierarchical dynamic slicing method (which performs explo-
ration/comprehension as the slice is being computed). We
found that the number of statement instances examined by
this post-mortem guided exploration of the slice is still sub-
stantially higher than those examined by our hierarchical
dynamic slicing method for most of the buggy programs.
To be precise, hierarchical dynamic slicing required substan-
tially less statements to examine (as compared to the pruned
slices) in 6 out of the 9 buggy programs. This is presum-
ably because exploiting user-guidance during the slice com-
putation (rather then after the slice computation) makes the
exploration/comprehension of the slice more goal-directed.

4.2 Application to Fault Localization

We can employ our idea of hierarchical dependence chain
exploration to dynamic analysis methods other than slicing.
In particular, we have done so for a recently proposed de-
bugging method called fault localization [6, 10, 11, 18, 26]
which proceeds by comparing the failing program run with a
successful run (a run which does not demonstrate the error).

Subjects | # Interventions | # Hierarchy Levels
Nanoxml-1 17 29
Nanoxml-2 22 26
Nanoxml-3 2 7

Jtopas-1 4 5

Jtopas-2 10 10

Jtopas-3 7 8

Jmeter-1 3 3

Jmeter-2 8 10

Jmeter-3 2 2

Table 2: Number of Programmer Interventions &
Hierarchy Levels in Hierarchical Dynamic Slicing.

We first recall our previous work on fault localization and
then demonstrate via experiments how hierarchical depen-
dence exploration may help in processing the bug report.

In our previous work [10], we have proposed a fault local-
ization algorithm which compares control flow of two execu-
tion traces. Given a failing run Hy, and a successful run Hs,
our comparison algorithm captures all branch instances with
similar contexts but different outcomes in Hy and H, (de-
tails appear in [10]). These branches are presented as a bug
report R to the user. The algorithm in Figure 8 elaborates
how to locate the cause of the error using such a bug re-
port R (where the report R consists of branch instances br).
Given the execution trace Hy of the failing run and a bug re-
port R, the programmer starts from branches in R, and pro-
ceeds by examining statement instances stmt in H; which
have dependence chains to/from branches in the bug report.
We look for statements which have a dependence chain of
length 0 w.r.t. the bug report (i.e., statements inside the
bug report !), followed by statements with dependence chain
of length 1, and so on. This systematic exploration based
on length of dependence chain is supported by the function
minDepLen(stmt, br) (see line 7 of Figure 8); it returns the
minimum length among all the dependence chains between
statement stmt and branch br.

. localize(Hy: failing execution run, R: a bug report)
. begin
v =0
len = 0;
while (¢ does not include all statement instances of Hy)
for (every statement instance stmt of Hy)
if ( 3br € R s.t. minDepLen(stmt, br) == len)
© = o U {stmt};
if (¢ contains error cause, examined by programmer)
10. return ¢;
11. len = len + 1;
12. return ;
13. end

©CPNDoR W

Figure 8: Locating the erroneous statement from a
bug report.

We develop hierarchical exploration of the bug report pro-
duced by fault localization via the following two steps. The
phases are computed w.r.t. the failing run.

1. determine which dynamic dependencies are related to
branch instances in the bug report R, and

2. determine which of the dynamic dependencies identi-
fied in the first step cross phase boundaries.



Thus, we essentially capture inter-phase dynamic dependen-
cies of the branch statement instances mentioned in the bug
report (which was produced by comparing the successful and
failing traces). As in conventional fault localization, we stop
the exploration when the actual buggy statement is found.
We have implemented a prototype of this approach. In our
preliminary experiments, we have applied the prototype to
the schedule and print_tokens subjects drawn from the
Siemens suite [19]. schedule implements a priority sched-
uler, and print_tokens implements a lexical analyzer. Both
the programs have about 400-500 lines of code. There are
several versions of both programs in the Siemens suite [19],
where each version has exactly one injected bug. We have
conducted our experiments with all versions of schedule and
print_tokens, a total of 16 buggy programs.

Figure 9 compares the number of statement instances ex-
plored during hierarchical exploration of the bug report’s
dependence chains (as opposed to normal exploration). In
one of the 16 programs, the actual bug was unrelated to
the branches contained in the bug report. In this case, we
could not locate the erroneous statement using either meth-
ods. Among the remaining 15 programs, the hierarchical ap-
proach dramatically reduced number of statement instances
to examine in 12 buggy programs. However, the conven-
tional fault localization method outperformed the hierarchi-
cal approach for 3 buggy programs. This is not surprising,
since in some programs the bug report may already pinpoint
the error as a result of which conventional fault localization
is very useful for debugging.

Thus, based on our experiments, we can suggest the fol-
lowing hybrid fault localization method. We first automati-
cally generate the bug report by comparing the failing and
successful runs as in conventional fault localization. After
the programmer receives the bug report, (s)he first checks
whether the actual bug is already contained in the bug re-
port. If this is not the case, (s)he proceeds with hierarchical
exploration of the dependence chains to/from statements in
the bug report.

1600 Biierarchical Fault Localization

1400 OFault Localization

Statement Instances

400
|
oL ml -

S 2 T S T T SN T S S N S,
2N ¥y ¥ & & & & §

SIS
A A A
t;aeeet:t;ha(\&/é\\/\\(\\/\\(\\/
¢ Q¢ Q¢ X

Buggy Programs

Figure 9: The number of statement instances that a
programmer has to examine using the hierarchical
fault localization method and the non-hierarchical
one.

5. RELATED WORK

The idea of slicing came from the work of Weiser [27], who
proposed it as a program understanding aid. Subsequently,
it was observed that the slice corresponding to a specific

input (called the dynamic slice) is much smaller than the
static slice. Dynamic slicing was first proposed by Korel
and Laski [13] and subsequently investigated in a rich body
of work (e.g., [2, 22, 29]).

It has been shown that dynamic slicing can be used in
program debugging [3, 14]. In fact, it can significantly re-
duce the number of statements to be inspected for locating
the cause of an error [23, 30]. However, the resultant dy-
namic slice is typically reported to a programmer without
any post-processing. For real-life programs, the dynamic
slice is often too large to be inspected/examined by a hu-
man programmer. Recently, Sridharan et al. proposed “thin
slicing” — a mechanism to hierarchically explore the static
slice according to data flow [21]. In this paper, we have pro-
posed an algorithm to hierarchically construct and explore
the dynamic slice according to the control constructs in the
program. We belive our work can be fruitfully combined
with a dynamic adaptation of thin slices.

The idea of using the phases of an execution trace for
debugging has appeared in earlier works. Miller and Choi
[15] propose to do so by presenting the dynamic dependence
graph of each phase to the user. This is effectively expos-
ing the dynamic dependence chains inside the phase com-
pletely to the programmer, thereby burdening him/her with
lot of redundant information! Our approach is exactly the
reverse — we seek to hide the dynamic dependence chains
inside a phase. Instead we summarize a phase via its “in-
put” and “output” variables, which is gleaned from the in-
puts/outputs of the program as well as those of the preced-
ing and succeeding phases.

Balmas [4] proposed hierarchical exploration of static pro-
gram dependence graphs. This approach was later extended
for hierarchical visualization of dynamic data dependencies
[5]. We note that [5] only discusses better visualization of
dynamic dependencies, whereas we interleave the depen-
dence computation and comprehension steps. Indeed this
is the main thesis of our approach — we feel that program
comprehension cannot be left as a post-mortem activity, and
should be used to guide dependence computation. Addition-
ally, we have proposed a phase division method which helps
identify and structure the exact feedback needed from the
programmer in general — the programmer needs to select
one from among a given set of inter-phase dependencies.
Last, but certainly not the least, we have conducted detailed
experiments to show that our approach has the potential to
make dynamic slicing more useful for software debugging.

As far as slicing tools are concerned, existing dynamic slic-
ing tools [1, 17, 24, 14] highlight dynamic slices in the source
code browser. Typically, it is the programmer’s responsibil-
ity to analyze the statements / statement instances, and
identify the suspicious statement instances for debugging.

The works of [9, 12] extend algorithmic debugging (where
a user queries about behavior of procedures) by pruning
some of the queries via dynamic slicing. These works bear
some similarity to our work, since they also rely on summa-
rizing the behaviors of execution trace fragments (or phases).
However to summarize a phase (say corresponding to a pro-
cedure call), they rely on a static summary of the procedure
itself. In particular, they summarize the variable definitions
of a procedure, which in the context of Java programs will
require static points-to analysis. In contrast, we only seek
to identify the inter-phase dynamic dependencies which can
proceed efficiently without any points-to analysis.



Recently, various software fault localization approaches
have been proposed. They proceed by comparing two runs
of a buggy program [6, 10, 11, 18, 26|, where the two runs
differ in whether any error is observed. Unlike dynamic slic-
ing, these methods require that there exist some execution
runs without the observable error, so that the comparison
can proceed. We have employed our hierarchical exploration
on these techniques, thereby augmenting them. Our initial
experiments (see Section 4.2) show good potential in using
such hierarchical fault localization to locate program errors.

Finally, we note that our approach is very different from
the recently proposed Hierarchical Delta Debugging method
[16]. This work seeks to simplify the program input that
causes a program to fail. In this endeavor, it exploits the
hierarchy present in the program input (e.g., if the program
input is an XML or HTML file). Our approach, on the
other hand, seeks to hierarchically detect and explore the
control/data dependence chains in a program.

6. DISCUSSION

In this paper, we have proposed hierarchical dynamic slic-
ing to aid the comprehension of dynamic slices. The pro-
posed application is in program debugging, where the pro-
grammer is gradually guided through complex program de-
pendence chains. This is as opposed to the arduous task of
understanding a full dynamic slice, where all of the compre-
hension is left to the programmer.

We have conducted detailed experiments on well-known
subject programs written in Java drawn from the SIR repos-
itory [8] to evaluate the effectiveness of this approach. Our
experiments show a substantial reduction in program un-
derstanding effort for our subject programs. In future, we
plan to conduct more detailed experiments for hierarchical
slicing as well as hierarchical fault localization.
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