
Exponentiated Gradient Algorithms for Log-Linear Structured
Prediction

Amir Globerson gamir@csail.mit.edu
Terry Y. Koo maestro@csail.mit.edu
Xavier Carreras carreras@csail.mit.edu
Michael Collins mcollins@csail.mit.edu

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge MA 02139 USA

Abstract

Conditional log-linear models are a com-
monly used method for structured predic-
tion. Efficient learning of parameters in these
models is therefore an important problem.
This paper describes an exponentiated gra-
dient (EG) algorithm for training such mod-
els. EG is applied to the convex dual of
the maximum likelihood objective; this re-
sults in both sequential and parallel update
algorithms, where in the sequential algorithm
parameters are updated in an online fashion.
We provide a convergence proof for both al-
gorithms. Our analysis also simplifies pre-
vious results on EG for max-margin models,
and leads to a tighter bound on convergence
rates. Experiments on a large-scale parsing
task show that the proposed algorithm con-
verges much faster than conjugate-gradient
and L-BFGS approaches both in terms of op-
timization objective and test error.

1. Introduction

Structured learning problems involve the prediction
of objects such as sequences or parse trees. The set
of possible objects may be exponentially large, but
each object typically has rich internal structure. Sev-
eral models that implement learning in this scenario
have been proposed over the last few years (Taskar
et al., 2003; Lafferty et al., 2001). The underly-
ing idea in these methods is to classify each instance
x ∈ X into a label y ∈ Y using a prediction rule
y = arg maxŷ w · φ(x, ŷ). Here φ(x, y) is a feature
vector, and w is a set of weights that are learned
from labeled data. The methods differ in their ap-

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

proach to learning the weight vector. Maximum mar-
gin Markov networks (Taskar et al., 2003) rely on
margin maximization, while conditional random fields
(CRFs) (Lafferty et al., 2001) construct a conditional
log-linear model and maximize the likelihood of the
observed data. Empirically both methods have shown
good results on complex structured-prediction tasks.

In both CRFs and max-margin models, the learning
task involves an optimization problem which is convex,
and therefore does not suffer from problems with local
minima. However, finding the optimal vector w may
still be computationally intensive, especially for very
large data sets. In the current paper, we propose a
fast and efficient algorithm for optimizing log-linear
models such as CRFs.

To highlight the difficulty we address, consider the
common practice of optimizing the conditional log-
likelihood of a CRF using conjugate-gradient or L-
BFGS algorithms (Sha & Pereira, 2003). Any update
to the weight vector would require at least one pass
over the data set, and typically more due to line-search
calls. Since conjugate gradient convergence typically
requires several tens of iterations if not hundreds, the
above optimization scheme can turn out to be quite
slow. It would seem advantageous to have an algo-
rithm that updates the weight vector after every sam-
ple point, instead of after the entire data set. One
example of such algorithms is stochastic gradient de-
scent and its variants (Vishwanathan et al., 2006).

A different approach, which we employ here, was first
suggested by Jaakkola and Haussler (1999). It pro-
ceeds via the convex dual problem of the likelihood
maximization problem. As in the dual Support Vec-
tor Machine (SVM) problem, the dual variables cor-
respond to data points xi. Specifically, to every point
xi there corresponds a distribution αi,y (i.e. αi,y ≥ 0
and

∑
y αi,y = 1). It is thus tempting to optimize

αi,y for each i separately, much like the Sequential
Minimization Optimization (SMO) algorithm (Platt,

Exponentiated Gradient Algorithms for Log-Linear Structured Prediction

1998) often used to optimize SVMs. Several authors
(e.g. Keerthi et al. 2005) have studied such an ap-
proach, using different optimization schemes, and ways
of maintaining the distribution constraints on αi,y.

Here we present an algorithm based on exponentiated
gradient (EG) updates (Kivinen & Warmuth, 1997).1

These updates are specifically designed for optimizing
over distributions, and were recently used in the max-
margin setting (Bartlett et al., 2004). Our use of EG
results in very simple updates that can be performed
for every sample point, giving an online-like algorithm.
Despite its online nature, our algorithm is guaranteed
to improve the dual objective at each step, and this
objective may be calculated after every single example
without performing a pass over the entire data set.
In this sense the algorithm is different from stochastic
gradient descent.

We provide a convergence proof of the algorithm, using
a symmetrization of the KL divergence. Our proof
is relatively simple, and the convergence rate analysis
applies both to the max-margin and log-linear settings.
Furthermore, our proof for the max-margin case yields
a larger learning rate than that used in the proof of
Bartlett et al. (2004), giving a tighter bound on the
rate of convergence. More generally, our convergence
results may have relevance to optimization of general
convex functions over the simplex using EG.

Finally, we compare our EG algorithm to conjugate
gradient and L-BFGS algorithms on a standard mul-
ticlass learning problem, and a complex natural lan-
guage parsing problem. In both settings we show that
EG converges much faster than these algorithms, both
in terms of objective function and classification error.

2. Primal and Dual Problems for
Log-Linear Models

Consider a supervised learning setting with objects
x ∈ X and labels y ∈ Y.2 In the structured learn-
ing setting, the labels may be sequences, trees, or
other high-dimensional data with internal structure.
Assume we are given a function φ(x, y) : X ⊗Y → <d

that maps (x, y) pairs to feature vectors. Given a pa-
rameter vector w ∈ <d, a conditional log-linear model

1Note that EG has also been studied in the optimization
literature, where it is known as Mirror Descent (e.g., see
Beck and Teboulle (2003) for recent results).

2In reality the set of labels for a given example x may be
a set Y(x) that depends on x. For simplicity, in this paper
we use notation where Y is fixed for all x; it is straightfor-
ward to extend our notation to the more general case. In
fact, in our experiments on dependency parsing the set Y
does depend on x.

defines a distribution over labels as

p(y|x;w) =
1

Zx
ew·φ(x,y)

where Zx is the partition function. Classification for
x is then done by finding y∗ = arg maxy w · φ(x, y).

We turn to the problem of learning w from labeled
data. Given a training set {(xi, yi)}n

i=1, we wish to
find w which maximizes the regularized log-likelihood

P-LL : w∗ = arg maxw

∑
i log p(yi|xi;w)− C

2 ‖w‖
2

Here C > 0 is a constant determining the amount
of regularization. The above is a convex optimization
problem, and has an equivalent convex dual which was
derived by Lebanon and Lafferty (2001). Denote the
dual variables by αi,y where i = 1, . . . , n and y ∈ Y.
We also use α to denote the set of all variables, and
αi the set of all variables corresponding to a given i.
Thus α = [α1, . . . ,αn]. Define the function Q(α) as

Q(α) =
∑

i

∑
y

αi,y log αi,y +
1

2C
‖w(α)‖2

where

w(α) =
∑

i

∑
y

αi,yψi,y (1)

and where ψi,y = φ(xi, yi) − φ(xi, y). We shall find
the following matrix notation convenient:

Q(α) =
∑

i

∑
y

αi,y log αi,y +
1
2
αT Aα (2)

where A is a matrix of size n|Y| × n|Y| indexed by
pairs (i, y) and A(i,y),(j,z) = 1

Cψi,y ·ψj,z.

In what follows we denote the set of distributions over
Y, i.e. the |Y|-dimensional probability simplex, by ∆.
The Cartesian product of n distributions over Y will
be denoted by ∆n. The dual optimization problem is
then

D-LL : α∗ = arg min Q(α)
s.t. α ∈ ∆n (3)

The duality between P-LL and D-LL implies that the
primal and dual solutions satisfy Cw∗ = w(α∗).

3. Exponentiated Gradient Algorithms

In this section we describe batch and online algo-
rithms for solving D-LL . The algorithms we describe
are based on Exponentiated Gradient updates, origi-
nally introduced by Kivinen and Warmuth (1997) in

Exponentiated Gradient Algorithms for Log-Linear Structured Prediction

the context of online learning algorithms. More re-
cently, Bartlett et al. (2004) have applied EG to a
max-margin structured learning task, using it to min-
imize the dual of the max-margin formulation.

The EG updates rely on the following operation.
Given a set of distributions α ∈ ∆n, a new set α′

can be obtained as

α′i,y =
1
Zi

αi,ye−η∇i,y

where ∇i,y = ∂Q(α)
∂αi,y

, Zi =
∑

ŷ αi,ŷe−η∇i,ŷ and the
parameter η > 0 is a learning rate.

We will also use the notation α′i,y ∝ αi,ye−η∇i,y where
the partition function should be clear from the context.

Clearly α′ ∈ ∆n by construction. For the dual log-
linear function Q(α) the gradient is

∇i,y = 1 + log αi,y +
1
C

w(α) ·ψi,y

The EG algorithm generates a sequence of distribu-
tions αt for t = 1, . . . , (T + 1) by applying the above
update repeatedly. We can consider two approaches:

• Batch: At every iteration the αt
i are simultane-

ously updated for all i = 1, . . . , n.

• Online: At each iteration a single i is chosen and
αt

i is updated to give αt+1
i . We focus on the case

where the values for i are chosen in a cyclic order.

Pseudo-code for both schemes is given in Figures 1
and 2. From here on we will refer to the batch and
online EG algorithms applied to the log-linear dual as
LLEG-Batch and LLEG-Online respectively.

In the next section we give convergence proofs for the
LLEG-Batch and LLEG-Online algorithms. The tech-
niques used in the convergence proofs are quite gen-
eral, and could potentially be useful in deriving EG
algorithms for other convex functions Q.

4. Convergence Results

4.1. Divergence Measures

Before providing convergence proofs, we define several
divergence measures between distributions. Define the
KL divergence between two distributions αi,βi ∈ ∆
to be D[αi‖βi] =

∑
y αi,y log αi,y

βi,y
. Given two sets of

n distributions α,β ∈ ∆n define their KL divergence
as D[α‖β] =

∑
i D[αi‖βi].

Next, we consider a more general class of divergence
measures: Bregman divergences. Given a convex func-

Inputs: Examples {(xi, yi)}n
i=1, learning rate η > 0.

Initialization: Set α1 to a point in the interior of ∆n.

Algorithm:

• For t = 1, . . . , T , repeat:

– For all i, y, calculate ∇i,y = ∂Q(αt)
∂αi,y

– For all i, y, update αt+1
i,y ∝ αt

i,ye−η∇i,y

Output: Final parameters αT+1.

Figure 1. A general batch EG Algorithm for minimizing
Q(α) subject to α ∈ ∆n.

Inputs: Examples {(xi, yi)}n
i=1, learning rate η > 0.

Initialization: Set α1 to a point in the interior of ∆n.

Algorithm:

• For t = 1, . . . , T , repeat:

– For i = 1, . . . , n

∗ For all y, calculate

∇i,y =
∂

∂αi,y
Q(αt+1

1 , . . . , αt+1
i−1, α

t
i, . . . , α

t
n)

∗ For all y, update αt+1
i,y ∝ αt

i,ye−η∇i,y .

Output: Final parameters αT+1.

Figure 2. A general online EG Algorithm for minimizing
Q(α) subject to α ∈ ∆n.

tion Q̂(α), the Bregman divergence between α and β
is defined as

BQ̂[α‖β] = Q̂(α)− Q̂(β)−∇Q̂(β) · (α− β)

Convexity of Q̂ implies BQ̂[α‖β] ≥ 0 for all α,β ∈ ∆n.

Note that the Bregman divergence with Q̂(α) =∑
i,y αi,y log αi,y is the KL divergence. We shall also

be interested in the Mahalanobis distance

MA[α‖β] =
1
2
(α− β)T A(α− β)

which is the Bregman divergence for Q̂(α) = 1
2α

T Aα.
We also use the Lp norm defined for x ∈ <m as ‖x‖p =
p
√∑

i |xi|p. The L∞ norm is ‖x‖∞ = maxi |xi|.

4.2. Convergence of the Batch Algorithm

We now provide a simple convergence proof for the
LLEG-Batch algorithm. We begin with a useful lemma
which applies to minimization of any convex function
Q̂(α) subject to the constraint α ∈ ∆n.

Exponentiated Gradient Algorithms for Log-Linear Structured Prediction

Lemma 1 Consider the algorithm in Fig. 1 applied to
a convex function Q̂(α). If η > 0 is chosen such that
for all t

D[αt+1‖αt] ≥ ηBQ̂[αt+1‖αt]

then it follows that for all t

Q̂(αt)− Q̂(αt+1) ≥ 1
η
D[αt‖αt+1]

The proof is given in App. A. Note that if we choose
an η such that for all p,q ∈ ∆n we have D[p‖q] ≥
ηBQ̂[p‖q], then the condition in the lemma is clearly
satisfied. Hence the condition can be thought of as a
relation between the divergence measures D and BQ̂.
For the definitions of Q̂ used in log-linear and max-
margin parameter estimation, we will show that it is
relatively simple to define constraints on the values of
η such that the condition holds for all p,q.

Note that D[p‖q] ≥ 0 for all p,q ∈ ∆n, so the lemma
implies that for an appropriately chosen η, the EG
updates always decrease the objective Q̂(α). We next
show that for the log-linear dual Q(α), it is easy to
choose an η such that the conditions of the above
lemma are satisfied.

Lemma 2 Define |A|∞ to be the maximum magni-
tude of any element of A.3 Then for any learning rate
0 < η ≤ 1

1+|A|∞ , the LLEG-Batch updates result in a
monotone improvement of the objective Q(α):

Q(αt)−Q(αt+1) ≥ 1
η
D[αt‖αt+1]

Proof: For the Q(α) defined in Eq. 2, we have

BQ[αt+1‖αt] = D[αt+1‖αt] + MA[αt+1‖αt]

Simple algebra yields

MA[αt+1‖αt] ≤ |A|∞
2

‖αt+1 −αt‖21

Now use the inequality (see Cover and Thomas (1991),
p. 300) D[p1‖p2] ≥ 1

2‖p1 − p2‖21 to obtain

MA[αt+1‖αt] ≤ |A|∞D[αt+1‖αt]

So for the Bregman divergence of Q(α) we obtain

BQ[αt+1‖αt] ≤ (1 + |A|∞)D[αt+1‖αt]

The condition of Lemma 1 is satisfied by choosing 0 <
η ≤ 1

1+|A|∞ and thus Lemma 2 follows.

3i.e., |A|∞ = max(i,y),(j,z) |A(i,y),(j,z)|.

The above can be used to show convergence of the
LLEG-Batch algorithm (see proof in App. B).

Lemma 3 For any 0 < η ≤ 1
1+|A|∞ , the LLEG-Batch

algorithm converges to α∗ = arg minα∈∆n Q(α).

4.3. Convergence of the Online Algorithm

In this section we prove convergence of the online al-
gorithm, as shown in Fig. 2, when applied to the dual
log-linear problem. As in Lemma 2 we can show that
for this update, if we choose 0 < η ≤ 1

1+|A|∞ , the
objective decreases in a monotone fashion. Define

Qt
i(αi) = Q(αt+1

1 , . . . ,αt+1
i−1,αi,α

t
i+1, . . . ,α

t
n)

The following property then holds:

Qt
i(α

t
i)−Qt

i(α
t+1
i) ≥ 1

η
D[αt

i‖αt+1
i] (4)

This follows because we can directly apply Lemma 2
to the function Qt

i(αi). The Bregman distance corre-
sponding to Qt

i(αi) is of the form BQt
i
[αt+1

i ‖αt
i] =

D[αt+1
i ‖αt

i] + MAi,i
[αt+1

i ‖αt
i] where Ai,i is a sub-

matrix of A, and clearly |Ai,i|∞ ≤ |A|∞. Thus a sim-
ilar proof to that in Lemma 2 can be used to show
the result in Eq. 4. For any t, if we sum Eq. 4 over
i = 1 . . . n, we obtain

Q(αt)−Q(αt+1) ≥ 1
η

n∑
i=1

D[αt
i‖αt+1

i] =
1
η
D[αt‖αt+1]

We can then show convergence of the online algorithm
to the optimal value α∗ = arg minαQ(α) using a very
similar proof to that of Lemma 3.

4.4. Convergence Rate of the Batch Algorithm

In addition to proving convergence in the limit, it is
relatively straightforward to give a bound on the rate
of convergence for the batch algorithm. We use a sim-
ilar proof technique to that of Kivinen and Warmuth
(1997), in particular using the following lemma:

Lemma 4 [Kivinen and Warmuth, 1997] For any
convex function Q(α) over ∆n, for any u ∈ ∆n, if
αt+1 is derived from αt using the EG updates with a
learning rate η, then

ηQ(αt)− ηQ(u) ≤ D[u‖αt]−D[u‖αt+1]+D[αt‖αt+1]

We can now use the above lemma and the bound on
D[αt‖αt+1] from Lemma 2 to give

ηQ(αt+1)− ηQ(u) ≤ D[u‖αt]−D[u‖αt+1]

Exponentiated Gradient Algorithms for Log-Linear Structured Prediction

Summing this over t = 1, . . . , T gives

η
T∑

t=1

Q(αt+1)− ηTQ(u) ≤ D[u‖α1]−D[u‖αT+1]

Because Q(αt) is monotone decreasing, we have
TQ(αT+1) ≤

∑T
t=1 Q(αt+1) and simple algebra gives

Q(αT+1) ≤ Q(u) +
D[u‖α1]−D[u‖αT+1]

ηT

If we take u to be α∗, the optimum of D-LL, we have
Q(α∗) ≤ Q(αT+1) and

Q(αT+1) ≤ Q(α∗) +
D[α∗‖α1]

ηT

Thus to get within ε of the optimum, we need O(1
ηε)

iterations.

4.5. Convergence for Max-Margin Learning

Bartlett et al. (2004) considered a batch EG algorithm
for max-margin parameter estimation, which we will
call the MMEG algorithm. The result in Lemma 1
applies to any convex function Q̂(α); this section gives
a convergence proof for the MMEG algorithm.

The MMEG algorithm involves optimization of a dual
problem with the same structure as D-LL, only with
Q(α) replaced by QMM (α), where

QMM (α) = bTα+
1
2
αT Aα

The matrix A is defined as in Sec. 2 and b is a vector.4

The MMEG algorithm is then the batch EG algorithm
in Fig. 1 applied to the function QMM (α). The differ-
ence from D-LL is that the entropy term is replaced
by a linear term. Since the Bregman divergence cor-
responding to the linear term is identically zero, we
have5 that Lemma 1 is satisfied for any η such that
0 < η ≤ 1

|A|∞ . We can then use Lemma 4 to give a
rate of convergence for the MMEG algorithm. In par-
ticular, for η = 1

|A|∞ , after T iterations of the MMEG
algorithm we have

QMM (u) ≤ QMM (αT+1) ≤ QMM (u) + γT−1D[u‖α1]

where u = arg minα∈∆n QMM (α), and γ = |A|∞. The
convergence result in Bartlett et al. (2004) has a value

4More specifically, bi,y is defined to be a measure of the
loss for label y on the i’th example.

5The proof is similar to the proof of Lemma 2, but with
BQ[αt+1‖αt] = D[αt+1‖αt] + MA[αt+1‖αt] replaced by
BQMM [αt+1‖αt] = MA[αt+1‖αt].

of γ = O(B + λA) where B ≈ n|A|∞ and λA is the
largest eigenvalue of A; our proof has removed the con-
stant B, which is O(n) where n is the number of train-
ing examples. We have also replaced λA with |A|∞.

5. Structured Prediction with LLEG

We now describe how the EG updates can be applied
to structured prediction problems, for example param-
eter estimation in CRFs or natural language parsing.
In structured problems the label set Y is typically very
large, but labels can have useful internal structure. As
one example, in CRFs each label y is an m-dimensional
vector specifying the labeling of all m vertices in a
graph. In parsing each label y is an entire parse tree.

We follow the framework for structured problems de-
scribed by Bartlett et al. (2004). Each label y is de-
fined to be a set of parts. We use R to refer to the set
of all possible parts. We make the assumption that the
feature vector for an entire label y decomposes into a
sum over feature vectors for individual parts as follows:
φ(x, y) =

∑
r∈y φ(x, r). Note that we have overloaded

φ to apply to either labels y or parts r.

The label set Y can be extremely large in structured
prediction problems, precluding a direct implementa-
tion of the LLEG-Batch and LLEG-Online algorithms.
However, in this section we describe an approach that
does allow an efficient implementation of the algo-
rithms in several cases; the approach is similar to that
described in Bartlett et al. (2004). Instead of manip-
ulating the dual variables αt

i for each t, i directly, we
will make use of alternative data structures θt

i for all
t, i. Each θt

i is a vector of real values θt
i,r for all r ∈ R.

The θt
i variables implicitly define regular dual values

αt
i = α(θt

i) where the mapping between θ and α is
defined as αi,y(θt

i) ∝ exp{
∑

r∈y θt
i,r}. To see how the

θt
i variables can be updated, note that the EG updates

for the log-linear dual involve the gradient expression

∇t
i,y = 1+log αt

i,y +
1
C

w(αt)·(φ(xi, yi)−φ(xi, y))

Equivalently, we can perform the EG updates using

∇t
i,y = log αt

i,y −
1
C

∑
r∈y

w(αt) · φ(xi, r)

because the expression w(αt) · φ(xi, yi) is constant
w.r.t. y, and therefore cancels in the EG updates. Con-
sider the following update to the θ variables:

θt+1
i,r = θt

i,r − η

(
θt

i,r −
1
C

w(α(θt)) · φ(x, r)
)

The following property of these updates can then

Exponentiated Gradient Algorithms for Log-Linear Structured Prediction

be shown. Given that αt
i = α(θt

i), it follows that
αt+1

i = α(θt+1
i), where αt+1

i is derived from αt
i using

the regular EG updates, and θt+1
i is derived from θt

i

using the above updates. Thus our LLEG algorithms
can be re-stated in terms of the θ variables, using these
updates. The main computational challenge is com-
puting the parameter vector w(α(θt)). This can be
achieved if the problem is such that marginals can be
computed efficiently from the θi parameters; for exam-
ple, in CRFs belief propagation can be used to com-
pute the required marginals. See Bartlett et al. (2004)
for the details of how w(α(θt)) can be computed as-
suming that marginals can be computed efficiently.

6. Related Work

As mentioned earlier, several works have addressed
optimizing log-linear models via the convex dual of
the likelihood-maximization problem. Earlier works
(Jaakkola & Haussler, 1999; Keerthi et al., 2005; Zhu
& Hastie, 2001) treated the logistic regression model, a
simpler version of a CRF. In the binary logistic regres-
sion case, there is essentially one parameter αi with
constraint 0 ≤ αi ≤ 1 and therefore simple line search
methods can be used for optimization. Minka (2003)
shows empirical results which show this approach per-
forms similarly to conjugate gradient. Recent work
(Shalev-Shwartz & Singer, 2006) presents a more gen-
eral study of dual algorithms in the online setting.

The problem becomes much harder when αi is con-
strained to be a distribution over many labels, as in
the case discussed here. Recently, Memisevic (2006)
addressed this setting, and suggests optimizing αi by
transferring probability mass between two labels y1, y2

while keeping the distribution normalized.

Convergence results for EG on batch problems have
been given in the optimization literature. Beck and
Teboulle (2003) describe convergence results which ap-
ply to quite general definitions of Q(α), but which
have 1/

√
T convergence rates (slower than our results

of 1/T). Also, their work considers optimization over
a single simplex, and does not consider online-like al-
gorithms such as the one we have presented.

7. Experiments

We compared our LLEG-Online algorithm to Conju-
gate Gradient (CG) and L-BFGS algorithms for two
classification tasks:6 a logistic regression model for

6For L-BFGS, we used C. Zhu, R.H. Byrd, P. Lu, and
J. Nocedal’s code (www.ece.northwestern.edu/∼nocedal/)
and L. Stewart’s wrapper (www.cs.toronto.edu/∼liam/).
For CG, Section 7.1 used J. Rennie’s code (peo-

multiclass learning, and a log-linear model for a struc-
tured natural language dependency parsing task.

Although EG is guaranteed to converge for an appro-
priately chosen η, it turns out to be beneficial to use an
adaptive learning rate. Here we use a crude strategy:
for every sample point we start out with some η0 and
halve it until the objective is decreased. More refined
line-search methods are likely to improve performance.

We measure the performance of each training algo-
rithm as a function of the amount of computation
spent. Specifically, we measure computation in terms
of the number of times each training example is visited.
For CG/L-BFGS, a cost of n is incurred every time the
gradient or objective function is evaluated; note that
because CG/L-BFGS use a line search, each iteration
may involve several such evaluations. For EG, the cost
of an example is the number of objective evaluations
on that example. This corresponds to the number of
different η values tested on this example.

CG/L-BFGS and EG optimize the primal and dual
problems, respectively, and by convex duality are guar-
anteed to converge to the same value. To compare EG
and CG/L-BFGS, we can use the EG weight vector
w(αt) to compute a primal value. Note that EG does
not explicitly minimize the primal objective function,
so the EG primal will not necessarily decrease at ev-
ery iteration. Nevertheless, our experiments show that
the EG primal decreases much faster in early iterations
than the CG/L-BFGS primal.

7.1. Multiclass classification

We conducted multiclass classification experiments on
a subset of the MNIST classification task. Examples
in this dataset are images of handwritten digits rep-
resented as 784-dimensional vectors. We used a set of
10k examples, split into 7k for training, 1.5k for de-
velopment, and 1.5k for test. We define a ten-class
logistic regression model where p(y|x) ∝ ex·wy and
x,wy ∈ <784, y ∈ {1, . . . , 10}.7

Figure 3 shows the primal objective for EG and CG/L-
BFGS, and the dual objective for EG. As expected, the
primal and dual converge to the same value. Further-
more, the primal value for EG converges considerably
faster than the CG/L-BFGS one. Also shown is clas-
sification accuracy for both algorithms. Again, it can
be seen that EG converges considerably faster.

ple.csail.mit.edu/jrennie/matlab/) and Section
7.2 used W. Hager and Z. Zhang’s package
(www.math.ufl.edu/∼hager/papers/CG/).

7The regularization parameter C was chosen by opti-
mizing on the development set for all experiments.

Exponentiated Gradient Algorithms for Log-Linear Structured Prediction

-12

-10

-8

-6

-4

-2

 0

 0 10 20 30 40 50 60 70 80

O
b

je
ct

iv
e

V
al

u
e

Eff. Iterations

CG (primal)
L-BFGS (primal)

EG (primal)
EG (dual)

 60

 65

 70

 75

 80

 85

 90

 95

 0 10 20 30 40 50 60 70 80

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Eff. Iterations

CG
L-BFGS

EG

Figure 3. Results on the MNIST learning task. The left
panel shows the primal objective for both EG and CG/L-
BFGS, and the dual objective for EG. The EG,CG/L-
BFGS primals are increasing functions and the EG dual
is the decreasing function. The right panel shows the val-
idation error for EG and CG/L-BFGS. The X axis counts
the number of effective iterations over the entire data set.

-30

-25

-20

-15

-10

-5

 0

 5

 0 50 100 150 200

O
b

je
ct

iv
e

V
al

u
e

Eff. Iterations

CG (primal)
L-BFGS (primal)

EG (primal)
EG (dual)

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 50 100 150 200

P
ar

si
n

g
 A

cc
u

ra
cy

 (
%

)

Eff. Iterations

CG
L-BFGS

EG

Figure 4. Results on the dependency parsing task. The
figures correspond to those in Fig. 3.

7.2. Structured learning - Dependency Parsing

Parsing of natural language sentences is a challenging
structured learning task. Dependency parsing (Mc-
Donald et al., 2005) is a simplified form of parsing
where the goal is to map sentences x into projective
directed spanning trees over the set of words Y(x).
Assuming we have a function φ(x, h,m) which as-
signs a feature vector to pairs of words (h, m), we
can use a weight vector w to score a given tree y by
w ·

∑
(h,m)∈y φ(x, h,m). Thus we are in the setting

of the log-linear model addressed in the current pa-
per. Dependency parsing corresponds to a structured
problem where the parts r are dependencies (h, m); the
approach described in Sec. 5 can be applied efficiently
to dependency structures.8

In the experiment below we use a feature set φ(x, h,m)
similar to that in (McDonald et al., 2005). We re-
port result on the Slovene dataset which is part of the
CoNLL-X Shared Task on multilingual dependency
parsing (Buchholz & Marsi, 2006). The data con-
sists of 1, 234 sentences with 22, 949 tokens. We leave
out 200 sentences and report accuracy (rate of correct
edges in a predicted parse tree) on those. Fig. 4 reports

8The required marginals can be computed efficiently us-
ing a variant of the inside-outside algorithm (Baker, 1979).

the performance of CG/L-BFGS and EG on this task.
It can be seen that EG converges faster than CG/L-
BFGS both in terms of objective and error measures.

8. Conclusion

We presented a novel algorithm for large scale learning
of log-linear models, which provably converges to the
optimum. Most of our proofs rely on a relation be-
tween BQ and the KL divergence. This relation holds
for max-margin learning as well, a fact which simpli-
fies previous results in this setting. We expect a similar
analysis to hold for other functions Q. Finally, the cur-
rent work does not provide convergence rates for the
online algorithm. It remains an interesting challenge
to obtain a 1/T convergence rate for this case.

Acknowledgments

X.C. is supported by the Catalan Ministry of Innovation,
Universities and Enterprise. A.G. is supported by a fel-
lowship from the Rothschild Foundation - Yad Hanadiv.
T.K. was funded by a grant from the NSF (DMS-0434222)
and a grant from NTT, Agmt. Dtd. 6/21/1998. M.C. was
funded by NSF grants 0347631 and DMS-0434222.

References

Baker, J. (1979). Trainable grammars for speech recogni-
tion. 97th meeting of the Acoustical Society of America.

Bartlett, P., Collins, M., Taskar, B., & McAllester, D.
(2004). Exponentiated gradient algorithms for large–
margin structured classification. NIPS.

Beck, A., & Teboulle, M. (2003). Mirror descent and non-
linear projected subgradient methods for convex opti-
mization. Operations Research Letters, 31, 167–175.

Buchholz, S., & Marsi, E. (2006). CoNLL-X shared task
on multilingual dependency parsing. Proc. of CoNLL-X.

Collins, M., Schapire, R., & Singer, Y. (2002). Logistic
regression, adaboost and bregman distances. Machine
Learning, 48, 253–285.

Cover, T., & Thomas, J. (1991). Elements of information
theory. Wiley.

Jaakkola, T., & Haussler, D. (1999). Probabilistic kernel
regression models. Proc. of AISTATS.

Keerthi, S., Duan, K., Shevade, S., & Poo, A. N. (2005).
A fast dual algorithm for kernel logistic regression. Ma-
chine Learning, 61, 151–165.

Kivinen, J., & Warmuth, M. (1997). Exponentiated gradi-
ent versus gradient descent for linear predictors. Infor-
mation and Computation, 132, 1–63.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi-
tonal random fields: Probabilistic models for segmenting
and labeling sequence data. Proc. of ICML.

Exponentiated Gradient Algorithms for Log-Linear Structured Prediction

Lebanon, G., & Lafferty, J. (2001). Boosting and maximum
likelihood for exponential models. NIPS.

McDonald, R., Crammer, K., & Pereira, F. (2005). Online
large-margin training of dependency parsers. Proc. of
the 43rd Annual Meeting of the ACL.

Memisevic, R. (2006). Dual optimization of conditional
probability models (Technical Report). Univ. of Toronto.

Minka, T. (2003). A comparison of numerical optimizers
for logistic regression (Technical Report). CMU.

Platt, J. (1998). Fast training of support vector machines
using sequential minimal optimization. In Advances in
kernel methods - support vector learning. MIT Press.

Sha, F., & Pereira, F. (2003). Shallow parsing with condi-
tional random fields. Proc. of HLT–NAACL.

Shalev-Shwartz, S., & Singer, Y. (2006). Convex repeated
games and fenchel duality. NIPS.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max margin
markov networks. NIPS.

Vishwanathan, S. N., Schraudolph, N. N., Schmidt, M. W.,
& Murphy, K. P. (2006). Accelerated training of condi-
tional random fields with stochastic gradient methods.
Proc. of ICML.

Zhu, J., & Hastie, T. (2001). Kernel logistic regression and
the import vector machine. NIPS.

A. Proof of Lemma 1

Given an αt, the EG update is αt+1
i,y = 1

Zt
i
αt

i,ye−η∇t
i,y ,

where ∇t
i,y = ∂Q(αt)

∂αi,y
and Zt

i =
∑

ŷ αt
i,ŷe−η∇t

i,y . Sim-
ple algebra yields∑

i

(
D[αt

i‖αt+1
i]+D[αt+1

i ‖αt
i]
)

= η
∑
i,y

(αt
i,y−αt+1

i,y)∇t
i,y

Equivalently, using the notation for KL divergence be-
tween multiple distributions:

D[αt‖αt+1] + D[αt+1‖αt] = η(αt −αt+1) · ∇Q(αt)

The definition of Bregman divergence BQ implies

−ηBQ[αt+1‖αt] + D[αt‖αt+1] + D[αt+1‖αt] =
η(Q(αt)−Q(αt+1))

It can then be seen that D[αt+1‖αt] ≥ ηBQ[αt+1‖αt]
implies η(Q(αt)−Q(αt+1)) ≥ D[αt‖αt+1].

B. Proof of Lemma 3

The proof is similar to that of Lemma 2 in Collins
et al. (2002). The choice of η implies that Lemma 2
in the current paper holds. The sequence Q(αt)
is then monotone and bounded from below, and

therefore convergent. Its difference series thus con-
verges to zero. Together with Lemma 2 this im-
plies: lim

t→∞
D[αt‖αt+1] = 0. Denote the mapping

from αt to αt+1 by f(αt) = αt+1. If we define
F (αt) = D[αt‖f(αt)] then lim

t→∞
F (αt) = 0. The αt

values lie in a compact space, and therefore must have
a subsequence that converges to some point α∞ ∈ ∆n.
Continuity of F implies that F (α∞) = 0. Because the
KL divergence is zero iff its arguments are identical,
this implies that α∞ is a fixed point of the EG up-
dates, i.e., α∞ = f(α∞).

We next show that α∞ is necessarily the dual optimum
α∗. By the KKT conditions, if a pair (α∗, λ∗) is such
that α∗ is in the interior of ∆n and ∂Q(α∗)

∂αi,y
= λ∗i , then

Q(α∗) is the optimal value of the dual. To show that
α∞ = α∗, we need the following lemma, which states
that α∞ is in the strict interior of ∆n. The lemma is
proved in App. C.

Lemma 5 There are constants c1, c2 such that for all
t, i and y we have 0 < c1 ≤ αt

i,y ≤ c2 < 1. Thus, the
limit point α∞ satisfies 0 < α∞i,y < 1 for all i, y.

The above lemma implies that all components of α∞

are non-zero. Since f(α∞) = α∞ it follows that

∂Q(α∞)
∂αi,y

= −1
η

log
∑

ŷ

α∞i,ŷe
−η

∂Q(α∞)
∂αi,ŷ ≡ ci

We can now obtain a point that satisfies the KKT
conditions by defining α∗ = α∞ and λ∗i = ci. The pair
(α∗, λ∗) clearly satisfies the KKT conditions above and
the condition α∗ ∈ ∆n. It is thus the optimum of D-
LL in Eq. 3. The strict convexity of Q(α) implies that
the optimal point is unique. Using this we can show
that the entire αt sequence also converges to α∗ using
an argument similar to that in Collins et al. (2002).

C. Proof of Lemma 5

For the D-LL problem, the update can be written as
αt+1

i,y ∝ e(1−η) log αt
i,y−

η
C w(αt)·ψi,y . Starting at α1 and

reapplying this update, we can express log αt+1
i,y as

(1− η)t log α1
i,y +

1
C

t∑
k=1

η(1− η)kw(αk) ·ψi,y + ct,i

where ct,i is not dependent on y. From the definition
of w(α) in Eq. 1 we can see that 1

C |w(αk) · ψi,y| ≤
a for some positive constant a. For η ≤ 1 we have∑t

k=1 η(1 − η)k ≤ 1. Thus, for all t, i, y, z, we have

| log αt
i,y

αt
i,z
| ≤ c for some constant c. Since αt

i must be
normalized it follows that for all t, i, y we have 0 <

1
1+Kec ≤ αt

i,y ≤ 1
1+Ke−c < 1 where K = |Y| − 1.

