
Reinforcement Learning by Reward-weighted Regression

for Operational Space Control

Jan Peters jan.peters@tuebingen.mpg.de

Max-Planck Institute for Biological Cybernetics, 72074 Tuebingen, Germany

Stefan Schaal sschaal@usc.edu

University of Southern California, Los Angeles, CA 90089, USA

Abstract

Many robot control problems of practical im-
portance, including operational space con-
trol, can be reformulated as immediate re-
ward reinforcement learning problems. How-
ever, few of the known optimization or re-
inforcement learning algorithms can be used
in online learning control for robots, as they
are either prohibitively slow, do not scale to
interesting domains of complex robots, or re-
quire trying out policies generated by random
search, which are infeasible for a physical sys-
tem. Using a generalization of the EM-base
reinforcement learning framework suggested
by Dayan & Hinton, we reduce the prob-
lem of learning with immediate rewards to
a reward-weighted regression problem with
an adaptive, integrated reward transforma-
tion for faster convergence. The resulting al-
gorithm is efficient, learns smoothly without
dangerous jumps in solution space, and works
well in applications of complex high degree-
of-freedom robots.

1. Introduction

In learning control with complex robotic systems like
manipulator robots and anthropomorphic robots, the
control task is usually defined in external space, e.g.,
the Cartesian coordinates of our 3D world. In contrast,
motor commands need to be generated at the level of
the actuators, i.e., the space internal to the robot, as
for instance joint angles. In such scenarios, the goal
of learning control is to find the motor commands that
accomplish the task while simultaneously recruiting all
degrees-of-freedom of the robot in an optimal way, e.g.,

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

by minimizing the amount of movement, the amount of
energy consumption, the jerkiness of movement. The
most advanced analytical framework to formulate such
control problems is called operational space control
(Khatib, 1987). Let us assume the robot dynamics
can be modeled as a rigid body dynamics system

M (q) q̈ = F (q, q̇, t) + a, (1)

where q,q̇,q̈ are the generalized positions, velocities,
and accelerations of the robot, a denotes our motor
commands, M (q) the inertia matrix of the robot, and
F (q, q̇, t) all the (potentially time t dependent) forces
acting on the system (e.g., coriolis forces, centripetal
force, gravity, friction). In external space, the task
is defined by a desired trajectory xd (t), ẋd (t), ẍd (t),
which is converted into some reference dynamics ẍref

= ẍd+KD (ẋd − ẋ)+KP (xd − x); here x = x (q) and
ẋ = ẋ (q, q̇) = J (q) q̇ denote the forward kinematics
and differential kinematics of the robot endeffector, re-
spectively, and J the Jacobian of the endeffector kine-
matics. The resulting control law of such a problem,
for instance, typically look like

a = JT (JM−1JT)−1(ẍref − J̇q̇ + JM−1F). (2)

Operational space control has numerous advantageous
features (Khatib, 1987); among the most important
ones is that it allows very compliant control of robots,
which is one of the key ingredients that will allow
robots to become a non-dangerous part of daily hu-
man life. However, the drawback of operational space
control, which, so far, has prevented its widespread
application in robotics, is that the control law is very
sensitive to the quality of system identification, i.e., the
accurate knowledge of terms like M,F, and J. Small
errors in these terms can result in very undesirable be-
havior and even lead to instability of the entire control
system (Nakanishi et al., 2005).

The goal of this paper is to suggest a general learning
solution for operational space control, i.e., a method

Reinforcement Learning by Reward-weighted Regression

that does not require prior knowledge of any of the
robot’s kinematics and dynamics parameters. For this
purpose, first, the next section will discuss a recent in-
sight that many operational space control laws can be
derived from a constrained optimal control framework
with quadratic cost function on the motor commands.
Second, this insight allows us to view learning opera-
tional space control as an immediate reward reinforce-
ment learning problem. The EM-based framework by
Dayan & Hinton (Dayan & Hinton, 1997) provides a
suitable starting point for deriving appropriate learn-
ing algorithms. Interestingly, reinforcement learning
can be reduced to a reward-weighted nonlinear regres-
sion problem in this context, which greatly accelerates
the speed of learning and may have a more general ap-
plicability in reinforcement learning. Finally, we evalu-
ate our approach on simulated anthropomorphic robot
arms and compare the results of learning with analyt-
ical solutions.

2. Operational Space Control as an

Optimal Control Problem

In order to be able to address operational space con-
trol as a learning problem, an associated cost function
is required that, when optimized, results in an appro-
priate operational space controller, e.g., Eq. (2). A
key insight of recent work (Peters et al., 2005) was
that a large class of operational space control laws can
be derived as the solution of a constrained immediate
reward optimization problem:

r (a) = − (a − a0)
T

N (a − a0) (3)

s.t. Jq̈ = ẍref − J̇q̇,

where a0 is the default or nominal stabilizing behavior,
e.g., a force which pulls the robot towards a static rest
posture a0 = −KDq̇−KP (q−qrest), and a1 = a− a0

corresponds to the control signal that accomplishes the
desired task goal characterized by ẍref. N is a positive
definite metric that decides the relative importance of
the motor commands in the optimization. If an accu-
rate model is available, the general analytic solution to
this optimization problem is given by

a = N−
1

2 (JM−1N−
1

2)+(ẍref − J̇q̇ + JM−1F) (4)

+ N−
1

2 (I − (N−
1

2 M−1JT)(JM−1N−
1

2)+)N
1

2 a0,

where the second summand fulfills the nominal control
law a0 in the null-space of the first term. For exam-
ple, Eq. (2) is derived for N = M−1 and a0 = 0. Of
course, this solution is only interesting when the di-
mensionality of ẍref is smaller than that of a, which
we assume in all the following.

The conclusion of this brief summary is that oper-
ational space control can be viewed as an immedi-
ate reward reinforcement learning problem (Kaebling
et al., 1996) with high-dimensional, continuous states
s = [q, q̇, ẍref,a0] ∈ R

n and actions a ∈ R
m. The goal

of learning is to obtain an optimal policy

a = µ (q, q̇, ẍref,a0) = µ (s) (5)

such that the system follows the reference acceler-
ation ẍref while maximizing the immediate reward
r (a) = −(a − a0)

T N(a − a0) for any given nominal
behavior a0. In order to incorporate exploration dur-
ing learning, we consider a stochastic control policy
a = µθ(q, q̇, ẍref) + ε, modeled as a probability dis-
tribution πθ(a|s) = p(a|s, θ) with parameter vector θ.
The goal of the learning system is thus to find the pol-
icy parameters θ that maximize

Jr (θ) =

∫

p (s)

∫

πθ (a|s) r (s,a) dads. (6)

p(s) denotes the distribution of states, which is treated
as fixed in immediate reward reinforcement learning
problems (Kaebling et al., 1996).

3. Reinforcement Learning by

Reward-Weighted Regression

Previous work in the literature suggested a variety of
optimizing methods, which can be applied to immedi-
ate reward reinforcement learning problems, e.g., gra-
dient based methods (e.g., REINFORCE, Covariant
REINFORCE, finite difference gradients, the Kiefer-
Wolfowitz procedure, ARP algorithms, CRBP, and
many others) and random search algorithms (e.g., sim-
ulated annealing or genetic algorithms) (Dayan & Hin-
ton, 1997; Kaebling et al., 1996; Spall, 2003). However,
gradient based methods tend to be too slow for the
online learning that we desire in our problem, while
randomized search algorithms can create too arbitrary
solutions, often not suitable for execution on a robotic
system. For learning operational space control, we re-
quire a method that is computationally sufficiently effi-
cient to deal with high-dimensional robot systems and
large amounts of data, that comes with convergence
guarantees, and that is suitable for smooth online im-
provement. For instance, linear regression techniques
and/or methods employing EM-style algorithms are
highly desirable.

A good starting point our work is the probabilistic re-
inforcement learning framework by Dayan & Hinton
(Dayan & Hinton, 1997). As we will show in the follow-
ing, a generalization of this approach allows us to de-
rive an EM-algorithm that essentially reduces the im-

Reinforcement Learning by Reward-weighted Regression

mediate reward learning problem to a reward-weighted
regression problem.

3.1. Reward Transformation

In order to maximize the expected return (Eq. 6) using
samples, we approximate

Jr (θ) ≈
n

∑

i=1

πθ (ai|si) ri (7)

where ri = r (si,ai). For application of the prob-
abilistic reinforcement learning framework of Dayan
& Hinton (Dayan & Hinton, 1997), the reward needs
to be strictly positive such that it resembles an (im-
proper) probability distribution. While this can be
achieved by linear rescaling for problems for bounded
rewards, for unbounded rewards as discussed in this
paper, a nonlinear transformation of the reward uτ (r)
is required with the constraint that the optimal so-
lution to the underlying problem remains unchanged.
Thus, we require that uτ (r) is strictly monotonic with
respect to r, and additionally that uτ (r) ≥ 0 and
∫

∞

0
uτ (r) dr = const, resulting in the transformed op-

timization problem

Ju (θ) =

n
∑

i=1

πθ (ai|si)uτ (ri) . (8)

The reward transformation plays a more important
role than initially meets the eye: as pointed out in
(Dayan & Hinton, 1997), convergence speed can be
greatly affected by this transformation. Making uτ (r)
an adaptive part of the learning algorithm by means of
some internal parameters τ can greatly accelerate the
learning speed and help avoiding local minima during
learning. Figure 1 demonstrates this issue with a 1D
continuous state and 1D continuous action example,
where the goal is to learn an optimal linear policy.
Using the algorithm that we will introduce below, an
adaptive reward transformation accelerated the con-
vergence by a factor of 4, and actually significantly
help avoiding local minima during learning.

3.2. EM-Reinforcement Learning with

Adaptive Reward Transformation

To derive our learning algorithm, similar as in (Dayan
& Hinton, 1997), we start by establishing the lower

Step 1

-2 0 2
-1

0

1 Step 2

-2 0 2
-1

0

1 Step 3

-2 0 2
-1

0

1 Step 20

-2 0 2
-1

0

1

Step 1

-2 0 2
-1

0

1 Step 2

-2 0 2
-1

0

1 Step 3

-2 0 2
-1

0

1 Step 6

-2 0 2
-1

0

1

A
ct

io
n

a

State s

A
ct

io
n

a

State s

A
ct

io
n

a

State s

A
ct

io
n

a

State s

Step 0

-2 0 2
-1

0

1

A
ct

io
n

a

State s

(b) Adaptive Reward Transformation

A
ct

io
n

a

State s

A
ct

io
n

a

State s

A
ct

io
n

a

State s

A
ct

io
n

a

State s

Step 0

-2 0 2
-1

0

1

A
ct

io
n

a

State s

(a) Fixed Reward Transformation

Figure 1. A comparison of fixed and adaptive reward trans-
formation for learning a linear policy π (a|s) = N(a|θ1s +
θ2, σ

2) under the transformed reward u(r (s, a)) =
exp

`

−τ
`

q1a
2 + q2as + sq2

3

´´

. The transformed reward is
indicated by the dotted blue ellipses, the variance of the ac-
tion distribution is indicated by the red thick ellipse, and
the mean of the linear policy is shown by the red thick line.
With τ being adaptive, significantly faster learning of the
optimal policy is achieved. Step 0 shows the initial pol-
icy and initial transformed reward, Step 1 shows the initial
policy with adapted transformed reward.

bound

log Ju (θ) = log
∑n

i=1
q (i)

πθ (ai|si)uτ (ri)

q (i)
(9)

≥
∑n

i=1
q (i) log

πθ (ai|si)uτ (ri)

q (i)

=
∑n

i=1
q (i) [log πθ (ai|si) + log uτ (ri) − log q (i)]

= F (q, θ, τ) , (10)

due to Jensens inequality. The re-weighting distribu-
tion q (i) obeys the constraint

∑n
i=1

q (i)− 1 = 0. The
ensuing EM algorithm is:

Algorithm 1 An EM algorithm for optimizing

both the expected reward as well as the reward-

transformation is given by

E-Step:

qk+1 (j) =
πθk

(aj |sj)uτk
(rj)

∑n
i=1

πθ (ai|si)uτk
(ri)

, (11)

M-Step Policy:

θk+1 = argmax
θ

∑n

i=1
qk+1 (i) log πθ (ai|si) , (12)

M-Step Reward Transformation:

τk+1 = arg max
τ

∑n

i=1
qk+1 (i) log uτ (ri) . (13)

Derivation. The E-Step is given by

q = arg max
q

F (q, θ, τ)

while fulfilling the constraint 0 =
∑n

i=1
q (i)−1. Thus,

we obtain a constraint optimization problem with La-

Reinforcement Learning by Reward-weighted Regression

grange multiplier λ:

L (λ, q) =
∑n

i=1
q (i) [log πθ (ai|si) + log uτ (ri) (14)

− log q (i) + λ] − λ.

Optimizing L (λ, q) with respect to q and λ results in
Eq. (11). Optimizing F (qk+1, θ, τ) with respect to θ
and τ yields Eqs.(12, 13).

3.3. Reinforcement Learning by

Reward-Weighted Regression

Let us assume the specific class of normally distributed
policies

πθ (a|s) = N
(

a|µθ (s) , σ2I
)

(15)

with µθ (s) = φ (s)
T

θ where φ (s) denotes some fixed
preprocessing of the state by basis functions and σ2I

determines the exploration1. Furthermore, we choose
the reward transformation uτ (r) = τ exp (−τr) which
fulfills all our requirements on a reward transformation
(cf. Sec.3.1) for r > 0. Algorithm 1 thus becomes:

Algorithm 2 The update equations for the policy

πθ (a|s) = N
(

a|µθ (s) , σ2I
)

are:

θk+1 =
(

ΦTWΦ
)

−1
ΦTWY, (16)

σ2
k+1 =

∥

∥Y − θT
k+1Φ

∥

∥

2

W
, (17)

where

W = diag (uτ (r1) , uτ (r2) , . . . , uτ (rn)) /

n
∑

i=1

uτ (ri)

denotes a diagonal matrix with transformed rewards,

and

Φ = [φ (s1) , φ (s2) , . . . , φ (sn)]T ,

Y = [a1,a2, . . . ,an]T

denote basis functions and actions, respectively.

The update of the reward transformation uτ (r) =
τ exp (−τr) is

τk+1 =

∑n
i=1

uτ (ri)
∑n

i=1
uτ (ri) ri

. (18)

Derivation. When computing qk+1 (j) from samples
in Eq. (11), we have qk+1 (j) = uτ (rj) /

∑n
i=1

uτ (ri)
as the probabilities are replaced by relative frequencies.
We insert the policy

πθ (a|s) =
(

2πσ2
)

−d/2
exp

(

−
1

2σ2

∥

∥

∥
a − φ (s)

T
θ
∥

∥

∥

2
)

1Note that σ2I could be replaced by a full variance ma-
trix with little changes in the algorithm. However, this
would result in a quadratic growth of parameters with the
dimensionality of the state and is therefore less desirable.

into Eq. (12). By differentiating with respect to θ and
equating the result to zero, we obtain

θ =
(

∑n

i=1
qk+1 (i)φiφ

T
i

)

−1 (

∑n

i=1
qk+1 (i)φiai

)

with φi = φ (si). In matrix vector form, this corre-
sponds to Eq. (16). Analogously, the reward transfor-
mation is obtained from differentiation w.r.t. τ as

∑n

i=1
qk+1 (i)

∂

∂τ
log uτ (ri) (19)

=
∑n

i=1
qk+1 (i)

(

τ−1 − ri

)

= 0,

which results in Eq. (18).

The presented algorithm is focussed on real-time im-
provement of the policy and, thus, highly adapted to
this setting. However, for offline learning of an ini-
tial policy, an improved algorithm can be used. In
this case, we make use of Bayesian importance sam-
pling (Andrieu et al., 2003) in the expectation step in
order to improve efficiency and thus obtain a faster,
computationally more efficient convergence. This al-
gorithm offers an improvement in off-policy setting as
at each step we are now allocating samples based on
how well the maximizations step is doing. However, as
a re-iteration of the data is not possible on-policy in
real-time settings, we can only use it for pre-training
the initial policy.

4. Application to Learning Operational

Space Control

We are now in the position to return to our original ob-
jective of learning operational space control. As stated
in Eq. (5), learning operational space control is equiv-
alent to obtaining a mapping s = (q, q̇, ẍref,a0) → a

from sampled data using a function approximator. As
the dimensionality of the task-space reference behav-
ior ẍref is lower than that of the motor commands a,
infinitely many solutions a exist for a given s. The
solution space of motor commands a achieving the
same reference acceleration ẍref does usually not form
a convex set in most robots, a problem first described
in the context of learning inverse kinematics (Jordan
& Rumelhart, 1992). Thus, when learning s → u as
a function approximation problem, the learning algo-
rithm can create physically invalid solutions.

Nevertheless, the non-convexity issue can be resolved
by employing a spatially localized supervised learning
system, an approach that was first introduced in the
context of inverse kinematics learning (Bullock et al.,
1993). The feasibility of this idea can be demonstrated
by re-writing Eq. (2) in its proper functional form, i.e.,
not as an inverse function:

ẍ = J(q)M−1(q) (a + F(q, q̇) + J̇(q, q̇)q̇)

Reinforcement Learning by Reward-weighted Regression

If we partition the state space of the robot, spanned
by q, q̇, into regions where q, q̇ are approximately con-
stant, the average over all solutions resulting in a par-
ticular ẍref can be written as:

ẍref = 〈ẍref 〉 =
〈

JM−1 (a + F) + J̇q̇
〉

= JM−1 (〈a〉 + F) + J̇q̇. (20)

Thus, in the vicinity of same q,q̇ all possible a that
achieve the same ẍref form a convex solution set, since
any average over different solutions a1, . . ., an will be
guaranteed to still achieve the given ẍref

2. Conse-
quently, our approach to learning operational space
control will partition the control law in form of locally
linear controllers

ai = [ẍT
ref, q̇

T , 1]βi, (21)

which are active only in in a region around a particu-
lar qi, q̇i. Note that we added constant input in Eq.
(21) to account for the intercept of a linear function.
From a control engineering point of view, this argu-
ment corresponds to the insight that nonlinear control
can often be accomplished through local linearizations
at the point of interest, and that, in general, linear
systems do not have the problem of non-convexity of
the solution space when learning an inverse function.

Next we need to address how to find an appropriate
piecewise linearization for the locally linear controllers.
For this purpose, we learn a locally linear forward or
predictor model

ẍi = [q̇T ,aT , 1]β̂i. (22)

Learning this forward model is a standard supervised
learning problem, as the mapping is guaranteed to be
a proper function. A method of learning such a for-
ward model is Locally Weighted Projection Regression
(LWPR) (Schaal et al., 2002). This fast online learning
method scales into high-dimensions, has been used for
inverse dynamics control of humanoid robots, and can
automatically determine the number of local models
that are needed to represent the function. The mem-
bership to a local model is computed using a weight
generated from a Gaussian kernel:

wi(q, q̇) = exp

(

−
1

2

([

q

q̇

]

− ci

)

TDi

([

q

q̇

]

− ci

))

centered at a fixed ci in (q, q̇)-space, and shaped by a
diagonal distance metric Di. For a closer description

2Note that the localization in velocity q̇ can be dropped
for a pure rigid body formulation as it is linear in the q̇iq̇j

for all degrees of freedom i, j; this, however, is not necessar-
ily desirable as it will add new inputs to the local regression
problem whose number grows quadratically with the num-
ber of degrees of freedom.

(a) 3 DoF Robot Arm

(c) SARCOS Master

Robot Arm

(b) Tracking Performance

(d) Optimal vs Learned Motor Command

0.44 0.48 0.52 0.56

0.04
0.06
0.08
0.1
0.12
0.14
0.16

0 0.5 1 1.5 2-10

0
10
20
30
40
50
60

Time tT
a
s
k
s
p
a
c
e
 m

o
to

r

 c

o
m

m
a
n
d
s
 a

1

Hand coordinate x1

H
a
n
d
 c

o
o
rd

in
a
te

 x
2

optimal
 learned

desired
 learned

a1
1

a1
2

a1
3

Figure 2. Systems and results of evaluations: (a) screen
shot of the 3 DoF arm simulator, (c) Sarcos robot arm,
used as simulated system and for actual robot evaluations
in progress. (b) Tracking performance for a planar figure-8
pattern for the 3 DoF arm, and (d) comparison between the
analytically obtained optimal control commands in com-
parison to the learned ones for one figure-8 cycle of the
3DoF arm.

of this statistical learning algorithm see (Schaal et al.,
2002).

As learning the forward model provides a suitable par-
titioning of the robot’s state space into regions of local
linearity, we re-use this partitioning to learn a local
controller in each partition, an approach that resem-
bles several previous forward-inverse model learning
approaches (Haruno et al., 2001). The local controllers
are learned using the reward-weighted regression ap-
proach described in Section 3, with metric N = I in
Eq. (3) – the reinforcement learning ensured that all
local controllers learned a globally consistent solution
to the operational space control task. Each local con-
troller maintained its own adaptive reward transforma-
tion and associated parameter τi. The nominal control
law a0 is learned separately; it consists of a gravity
compensation component which is obtained directly
with LWPR by supervised learning and a joint-space
force pushing the robot towards a rest posture as ex-
plained in the introduction.

We evaluated our approach on two different simu-
lated, physically realistic robots: (i) a three degree-of-
freedom (DoF) planar robot arm and (ii) a seven DoF
simulated SARCOS master robot arm (Figure 2 (a)).
An implementation on the real, physical SARCOS
master robot arm (Figure2(c)) is currently in progress.
Experiments were conducted as follows: first, learning
the forward models and an initial control policy in each
local model was obtained from random point-to-point
movements in joint space using a simple PD control

Reinforcement Learning by Reward-weighted Regression

law. This “motor babbling” exploration was necessary
in order bootstrap learning with some initial data to
prevent the rather slow learning as observed in similar
direct-inverse learning approaches (Jordan & Rumel-
hart, 1992). The measured end-effector accelerations
served as desired acceleration in Eq. (21), and all other
variables for learning the local controllers were measur-
able as well. Subsequently, the learning controller was
used on-policy with the normally distributed actuator
noise serving as exploration. Both robots learned to
track desired trajectories with high accuracy, as shown
in Figure 2 (b). For the three DoF arm, we verified the
quality of the learned control commands in compari-
son to the analytical solution, given in Eq. (4): Fig-
ure 2(d) demonstrates that the motor commands of
the learned and analytically optimal case are almost
identical. Learning results of the simulated seven DoF
SARCOS robot achieved almost the same endeffector
tracking quality as shown in Figure 2(b) (and is there-
fore not shown separately here). However, the joint
commands were not quite as close to the optimal ones
as for the 3 DoF arm - the rather high dimensional
learning space of the 7 DoF arm most likely requires
more extensive training and more careful tuning of the
LWPR learning algorithm to achieve local lineariza-
tions with very high accuracy and with enough data
to find the optimal solution. The 3 DoF required about
2 hours of real-time training training, while the 7 DoF
arm was run for about 6 hours of real-time training.

5. Conclusion

This paper contributes in two different ways to advanc-
ing the state-of-the-art of learning control. First, we
introduced a framework for learning operational space
control, a type of controller that has found little prac-
tical realizations due to problems with system identifi-
cation in actual complex robots. Our learning methods
avoid system identification entirely. Second, we intro-
duced the idea of reinforcement learning by reward-
weighted regression. While we realized this method
here for immediate reward problems, i.e., finding op-
timal solutions in resolving redundancy in operational
space control, we believe that there are much broader
applications also in the realm of temporally delayed
rewards, in particular for learning from trajectories or
roll-outs. Reinforcement learning by reward-weighted
regression has some of the flavor that was envisioned
for modern approaches to reinforcement learning, i.e.,
the transformation of the reinforcement learning prob-
lem into an efficient supervised learning problem. We
demonstrated the success of our approach on imple-
mentations on complex robot simulations, which will
be followed by actual robot implementations in the

near future.

Acknowledgements

We thank the anonymous reviewers for their insightful
comments and suggesting the improvements for our
initial policy training.

References

Andrieu, C., de Freitas, N., Doucet, A., & Jordan,
M. (2003). An introduction to mcmc for machine
learning. Machine Learning, 50, 5–43.

Bullock, D., Grossberg, S., & Guenther, F. H. (1993).
A self-organizing neural model of motor equivalent
reaching and tool use by a multijoint arm. Journal

of Cognitive Neuroscience, 5, 408–435.

Dayan, P., & Hinton, G. E. (1997). Using expectation-
maximization for reinforcement learning. Neural

Computation, 9, 271–278.

Featherstone, R. (1987). Robot dynamics algorithms.
Kluwer Academic Publishers.

Haruno, M., Wolpert, D. M., & Kawato, M. (2001).
Mosaic model for sensorimotor learning and control.
Neural Comput, 13, 2201–20.

Jordan, I. M., & Rumelhart (1992). Supervised learn-
ing with a distal teacher. Cognitive Science (pp.
307–354).

Kaebling, L. P., Littman, M. L., & Moore, A. W.
(1996). Reinforcement learning: A survey. Journal

of Artificial Intelligence Research, 4, 237–285.

Khatib, O. (1987). A unified approach for motion and
force control of robot manipulators: The operational
space formulation. IEEE Journal of Robotics and

Automation, 3, 43–53.

Nakanishi, J., Cory, R., Mistry, M., Peters, J., &
Schaal, S. (2005). Comparative experiments on task
space control with redundancy resolution. IROS

2005.

Peters, J., Mistry, M., Udwadia, F., & Schaal, S.
(2005). A unifying methodology for the control of
robotic systems. IROS 2005.

Schaal, S., Atkeson, C. G., & Vijayakumar, S. (2002).
Scalable techniques from nonparameteric statistics
for real-time robot learning. Applied Intelligence,
17, 49–60.

Spall, J. C. (2003). Introduction to stochastic search

and optimization: Estimation, simulation, and con-

trol. Hoboken, NJ: Wiley.

