
UCRL-CONF-230552

Techniques for Specifying Bug
Patterns

Daniel J. Quinlan, Richard W. Vuduc, Ghassan
Misherghi

April 30, 2007

Parallel And Distrubted Testing and Debugging (PADTAD)
Workshop
London, United Kingdom
July 9, 2007 through July 9, 2007

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Techniques for Specifying Bug Patterns

Daniel J. Quinlan, Richard W. Vuduc
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory
7000 East Avenue, Livermore, CA USA

{dquinlan,richie}@llnl.gov

Ghassan Misherghi
Department of Computer Science

University of California, Davis
Davis, CA USA

ghassanm@cs.ucdavis.edu

ABSTRACT
We present our on-going work to develop techniques for spec-
ifying source code signatures of bug patterns. Specifically,
we discuss two approaches. The first approach directly an-
alyzes a program in the intermediate representation (IR)
of the ROSE compiler infrastructure using ROSE’s API.
The second analyzes the program using the bddbddb sys-
tem of Lam, Whaley, et al.. In this approach, we store
the IR produced by ROSE as a relational database, express
patterns as declarative inference rules on relations in the
language Datalog, and bddbddb implements the Datalog
programs using binary decision diagram (BDD) techniques.
Both approaches readily apply to large-scale applications,
since ROSE provides full type analysis, control flow, and
other available analysis information. In this paper, we pri-
marily consider bug patterns expressed with respect to the
structure of the source code or the control flow, or both.
More complex techniques to specify patterns that are func-
tions of data flow properties may be addressed by either of
the above approaches, but are not directly treated here.

Our Datalog-based work includes explicit support for ex-
pressing patterns on the use of the Message Passing Interface
(MPI) in parallel distributed memory programs. We show
examples of this on-going work as well.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; D.2.5 [Software Engineer-
ing]: Testing and Debugging—debugging aids; D.3.4 [Pro-
gramming Languages]: Processors—compilers, debuggers

Keywords
bug patterns, static analysis, Datalog, Message Passing In-
terface

General Terms
Languages, Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PADTAD’07, July 9, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-748-3/07/0007 ...$5.00.

1. INTRODUCTION
Modern large-scale parallel applications in scientific com-

puting may consist of a million or more lines of code and
must run on hundreds of thousands of processors; yet, these
codes are largely still written in serial languages, such as
C, C++, and Fortran, and parallelized using complex li-
brary abstractions, such as the Message Passing Interface
(MPI). The complexity of these codes, as well as the diffi-
culty of testing and debugging on full-scale runs, demand au-
tomated mechanisms to address software quality concerns.
These trends drive much of our general interest in auto-
mated static bug detection and our specific interest in how
to express bug patterns.

In this paper, we use ROSE, an open and extensible source-
to-source compiler infrastructure, as a basis for exploring
the problem bug pattern specification. ROSE is designed
to enable source-based tool builders to develop a wide va-
riety of customized analysis, transformation, and optimiza-
tion tools [26, 29, 27]. ROSE currently processes C and C++
programs of a million or more lines of code, with support for
Fortran 2003 in progress. The main intermediate representa-
tion (IR) in ROSE is an abstract syntax tree (AST) that pre-
serves the detailed structure of the input source, including
source file position and comment information. The AST’s
design enables source-based tool builders to accurately ana-
lyze and transform programs.

We report on two approaches to bug pattern specifica-
tion, so that they may be contrasted. The first uses a direct
pattern search specified on the AST, written using the in-
terfaces in ROSE’s IR, called SageIII. The second uses a
declarative language, Datalog, to query a database of re-
lations built from ROSE’s AST. The database stores basic
structural facts about the program, and the Datalog speci-
fication expresses a pattern (i.e., a program analysis) as in-
ference rules on those facts. We process the Datalog queries
using the bddbddb system [20, 34], which implements the
query using binary decision diagram (BDD) techniques. The
two approaches operate on the same AST, but enable differ-
ent ways of specifying the bug patterns. In particular, the
Datalog approach is declarative rather than imperative, and
moreover, it is IR-neutral in principle even though we use
the ROSE AST to populate the initial database here.

We present our work by a series of anecdotal examples.
The first is a trivial example of a common bug pattern,
namely detecting a switch statement in C or C++ that does
not implement a default case (Section 2). This example is
taken from SAMATE, a catalog of common programming
errors [25]. We show how to detect the switch-statement

bug both using ROSE directly and using Datalog, explain-
ing each approach in detail. Though our emphasis is not
on the performance of these approaches, we present a result
from processing a moderately sized 200K line code to make
it clear that our work applies to realistic applications.

The second and third examples appear in Section 3, and
are two non-trivial tests: searching for bugs related to static
constructor initialization in C++, an infamous source of
portability bugs; and testing for null-pointer dereferences
in C or C++. These are not implemented redundantly us-
ing both proposed bug pattern specification approaches, but
help illustrate interesting aspects of each approach.

The final examples are MPI-specific tests implemented us-
ing only Datalog. Correctly using MPI can be daunting [11],
owing to the size of the MPI standard and the rich semantics
of MPI’s abstractions [23, 24]. To build the static checkers
for these examples, we implemented a library of Datalog
relations that capture MPI-specific abstractions, including
data types, constants, and calls. Though still evolving, this
library enables a user to specify MPI bug patterns in a way
we believe is simple and natural, and leverages the extensi-
bility and conciseness of the Datalog approach.

2. SWITCHES WITHOUT DEFAULTS
In this section, we use the two bug pattern specification

approaches to find switch statements in a C or C++ pro-
gram that does not have a ‘default’ case, as shown in List-
ing 1. The two approaches are as follows.

1. Direct search for a pattern in the AST. The ROSE
compiler infrastructure provides an interface to the
AST and tools to simplify AST analysis. In this ap-
proach, we use only ROSE itself to build tools that
find particular patterns.

2. Declarative Datalog specification of a pattern in the
AST. We output the AST as relations in a database,
use Datalog to specify a pattern search (i.e., program
analysis) on those relations. We use bddbddb to im-
plement the Datalog program. The initial database is
derived from the AST, so that the Datalog query pro-
gram essentially uses the same program representation
as the direct-search approach. In principle, the use of
Datalog removes the dependence on the ROSE API
present in the first approach.

2.1 Directly Searching the AST
Directly searching the AST in ROSE for this bug is rela-

tively simple, but requires learning and using ROSE. Nev-
ertheless, the interfaces in ROSE are designed to be easy to
understand and use.

Listing 2 is an example of a ROSE-based program that im-
plements a search for switches that lack a default case. Line
27 creates the AST, and the exampleTraversal object tra-
verses all nodes of the AST on line 29. The exampleTraversal
object is an instance of the visitorTraversal class, which
extends one of ROSE’s traversal interfaces, the AstSimple-

Processing class. Here, we override the visit() method
defined at line 5 to check whether a given node is a switch
(lines 6–7), and if so, search through the list of its cases for
a default (lines 8–18). This program works on any size AST,
including a whole-program AST available in ROSE [28].

Listing 1: The switch-lacks-default bug.
int

2 main () {
int x = 4, y = 0;

4

// switch with default case
6 switch (x) {

case 0: y = 5; break;
8 case 1: y = 3; break;

case 2: y = 7; break;
10 default: y = −1;

}
12

// switch without default case
14 switch (x) {

case 0: y = 5;
16 case 1: y = 3;

case 2: y = 7;
18 }

return 0;
20 }

We ran Listing 2 on a 200 KLOC file taken from the ROSE
compiler itself. This file is automatically generated when
building ROSE. To our surprise, our checker discovered two
violations, which were indeed bugs. These bugs had existed
in spite of previously having always compiled ROSE with all
possible warnings enabled. Section 3 presents performance
data for this direct AST handling using both this test and
the one detailed in that section.

2.2 Specifying the Bug using Datalog
Datalog is a declarative language for deductive databases,

and is a subset of Prolog. Statements in Datalog are declar-
ative inference rules and queries on an underlying relational
database. We illustrate how to express bug patterns in terms
of Datalog rules and queries that operate on a relational
database generated from ROSE’s AST.

Listing 3 shows the Datalog implementation of the direct-
search checker in Listing 2 that finds switches lacking a de-
fault case. Listing 3 defines three rules (lines 1–14), and
specifies one query (line 17).

The query (ending with ?) asks for all values of the vari-
able S that make the predicate switch without default(S)

true. Our system is set up so that every value corresponds
to a node in the source program’s AST (e.g., a switch state-
ment, or SgSwitchStatement node); thus, asking for all val-
ues is equivalent to asking for all corresponding AST nodes.

The rule defined in lines 12–14 specifies that the predi-
cate switch without default(s) will be true for s if both
switchS(s,c,b) and !switch with default(s) hold. Here,
switchS(s,c,b) is a fundamental predicate precomputed di-
rectly from the AST to be true for all values of s, c, and b

(i.e., all corresponding AST nodes) such that s is a switch
statement and c and b are its condition and body, respec-
tively. In this rule, we do not care about the particular
condition and body, and so write the special value ‘ ’ to in-
dicate a “don’t care” (i.e., “there exists”). The predicate,
switch with default(s) is, as its name implies, a predicate
that should be true for all s that are switch statements with
a default case; the ! operator means ‘not.’

The rule defining the predicate switch with default(s)

appears in lines 7–9 of Listing 3. Intuitively, we set this

Listing 2: A ROSE-based program to search for
switches lacking a default case.
#include "rose.h"

2

class visitorTraversal : public AstSimpleProcessing {
4 public:

virtual void visit (SgNode∗ n) {
6 SgSwitchStatement∗ s = isSgSwitchStatement (n);

if (s) {
8 SgStatementPtrList& cases =

s−>get body ()−>get statements ();
10 bool switch has default = false;

12 // ’default’ could be at any position in the list of cases.
SgStatementPtrList::iterator i = cases.begin();

14 while (i 6=cases .end () && !switch has default) {
if (isSgDefaultOptionStmt (∗i))

16 switch has default = true;
++i;

18 }
if (! switch has default)

20 s−>get startOfConstruct ()
−>display ("Error: switch without default case");

22 }
}

24 };

26 int main (int argc, char∗ argv[]) {
SgProject∗ project = frontend (argc, argv); // Create AST

28 visitorTraversal exampleTraversal;
exampleTraversal.traverseInputFiles (project, preorder);

30 return 0;
}

predicate to be true for all switch statements s such that
the body b contains a statement d that is a default case.
This rule is the analogue of the direct-search code in lines
8–18 of Listing 2: the predicate defaultS(d,) is precom-
puted from the AST to be true for all values d correspond-
ing to the SgDefaultOptionStmt AST node, and the value b
maps to the value of the AST node returned by SgSwitch-

Statement::get body() when called on the corresponding
node represented by the value of s. This rule shows how the
direct-search and Datalog-based approaches relate.

Finally, lines 2–4 define block has stmt(b,s), which is
true if either of the two sub-rules (lines 3 and 4, respec-
tively) is true. Here, first inB(s,b) is true if the state-
ment s is the first statement in block b; next inB(s,p,b)

is true if s is the statement in b following the statement p

(“previous”) that also appears in b. That is, the collection
of first inB(,b) and last inB(, ,b) define the sequence
(list) of statements that constitutes the block b. The body
of the switch statement is represented by just such a list, as
shown in lines 8–9 of Listing 2.

Taken together, the rules define the pattern which can
be used to search the database of relations built from the
AST. This technique is distinctly different from the ROSE-
only direct-search of the AST, though with exactly the same
results. We have Datalog to be simpler to code than direct
pattern evaluation on the AST, though it takes a while for
the use of Datalog to become natural.

One issue with the Datalog approach is the extent to
which one should precompute basic relations, like switchS

and defaultS, from automated AST analysis. Our imple-

Listing 3: Datalog-based analogue of Listing 2.
A block ’b’ of statements has statement ’s’.

2 block has stmt (b:node, s:node)
block has stmt (b, s) :− first inB (s , b).

4 block has stmt (b, s) :− next inB (s, , b).

6 # Switch ’s’ has a default case.
switch with default (s :node)

8 switch with default (s) :− \
switchS (s, , b), defaultS (d,), block has stmt (b, d).

10

Switch ’s’ does not have a default case.
12 switch without default (s :node)

switch without default (s) :− \
14 switchS (s, ,), ! switch with default (s).

16 # Query:
switch without default (S)?

mentation currently outputs a large number of basic re-
lations, not only for the AST nodes, but also for other
constructs such as the control-flow graph and for domain-
specific libraries such as MPI. We do not yet understand
how the performance of the Datalog queries depends on the
number of relations, which is not obvious due to the nature
of the underlying BDD technology. We are still evaluating
these issues, and we expect more definitive answers as our
experience with Datalog and bddbddb matures.

3. MORE BUG PATTERN EXAMPLES
This section describes more interesting examples of bug

patterns and their specification in the two approaches. We
implement two specific tests. The first tests C++-specific
bug that effects the portability of applications between com-
pilers. The second tests null pointer dereferences, which are
common in Java, C, and C++ applications.

3.1 ROSE-based Static Constructor Checker
Listing 4 shows a ROSE-based static checker that finds

static data members of a class type. The key point of this ex-
ample is that we can, with relative ease, extract information
about the structure and types of the input program through
the ROSE IR. We have applied this checker to large-scale
C++ applications at Lawrence Livermore National Labora-
tory, and removing instances of these members has elimi-
nated portability bugs.

The use of such static members can lead to subtle bugs
when porting to a new platform and/or compiler, because
the order of initialization (i.e., the order in which construc-
tors are called) depends on the compiler. Developers are
typically unaware of these issues for several reasons. First,
static constructor initialization is not part of the explicit
control flow—the compiler generates these calls, which “hap-
pen” before executing main. Secondly, these members have
type names that are the same as existing types; thus, decla-
rations of them appear as normal data member declarations,
making them difficult to find using regular expressions. CPP
macro handling can also make them more difficult to iden-
tify. Moreover, static data member initialization may easily
be re-introduced into the application code as it evolves.

We ran Listing 4 and the simpler switch-lacks-default test
in Listing 2 on a 200K line single C++ file taken from ROSE

Listing 4: Detecting static constructor initialization.
(Boiler-plate traversal code omitted.)
void Traversal::visit (SgNode∗ n) {

2 SgVariableDeclaration∗ v = isSgVariableDeclaration (n);
if (v) {

4 // For each variable ’i’ in declaration ’v’...
SgInitializedNamePtrList::iterator i =

6 v−>get variables ().begin ();
while (i 6=v−>get variables ().end ()) {

8 SgInitializedName∗ name = ∗i;
// Check for a class type (strip typedefs).

10 SgType∗ type = name−>get type ();
SgClassType ∗class type = isSgClassType (type−>strip ());

12 if (class type) {
// Check for a global variable or a static class member.

14 SgScopeStatement∗ scope = v−>get scope ();
if (isSgGlobal (scope)

16 || (isSgClassDefinition (scope)
&& v−>get declarationModifier()

18 .get storageModifier()
.isStatic()))

20 print position (v);
}

22 ++i; // Next variable in declaration...
}

24 }
}

itself. Results for this particular file suggest the performance
properties we might expect from checkers when run on fully
merged whole-program ASTs, which in ROSE’s IR consume
roughly 400 MB per million lines of code [28]. The perfor-
mance of the compilation and test was just under 60 seconds,
and the time of both tests were 1.5 seconds each. The com-
pilation of both ROSE and the bug pattern test codes were
unoptimized, and included internal debugging, but the per-
formance of the traversal over the two million IR node AST
was at a rate of 135K lines of code per second. Ultimately,
numerous tests will be required and separate traversals for
each test may be impractical when performing hundreds of
tests, so we are actively designing efficient mechanisms to
fuse separate traversals that preserve the simplicity of the
existing traversal interfaces for tool builders. Performance
results of the Datalog-based tests are however currently un-
available.

3.2 Datalog-based Null Dereference Checker
Next, we present a test for the dereferencing of a null

pointer in Datalog. Our primary intent in this example is
to show the relative ease with which one can express a com-
bined analysis of the AST structure and the program’s con-
trol flow in Datalog, given the appropriate initial relations.

We consider several possible uses of a pointer to be deref-
erences, including normal variable dereference, function call
from pointer to function, and data member access from
pointer to a struct. We also consider a relatively simple
check: a pointer value may be null if it is the return value of
a function call, a call to the new memory allocation opera-
tor, and is not guarded by an if-condition. Listing 5 shows
several examples (lines 15, 19, and 21), including a guarded
dereference which should be OK (line 18).

Checking for null pointer dereferences is a research prob-
lem and we do not presume to handle all cases. For instance,

Listing 5: Null pointer dereferences.
typedef struct {int a; char b;} my type;

2 typedef int (∗func type) (void);
extern func type get func ptr (void);

4

void foo (bool cond) {
6 int∗ xp;

my type∗ yp;
8 int x;

func type fp;
10

xp = new int;
12 yp = new my type;

fp = get func ptr ();
14

x = ∗xp; // ERROR: xp may be null
16 if (cond) {

if (yp)
18 yp−>b = ’a’; // OK: Guarded access

yp−>a = 42; // ERROR: yp may be null
20 }

fp (); // ERROR: fp may be null
22 }

our checker looks for pointer assignment but does not rea-
son about the value of the assignment; thus, if a pointer is
assigned to an expression that evaluates to the constant 0
and later dereference, the checker would not flag it as a null
dereference. Indeed, there has been interesting recent work
on checking null dereferences generally in Java [17, 18], and
we expect these ideas to extend to C and C++.

Listing 6 shows a Datalog program that checks for null
pointer dereferences. This example relies on both AST and
control-flow graph information; we summarize the relevant
precomputed predicates in Table 1 and we highlight inter-
esting aspects of this example below. We did not attempt
to build a corresponding implementation using only ROSE,
but know it would have been significantly more complex.

Line 1 of Listing 6 shows an include directive, which is the
basic mechanism for defining libraries of relations. Indeed,
the relations defined in this example could have been stored
in a separate file to be re-used, customized, or even extended
in other Datalog-based checkers. We revisit this technique
when discussing our MPI checkers in Section 4.

Lines 4–23 declare various predicates. These forward dec-
larations permit subsequent definitions to be mutually recur-
sive, as is the case with maybe null e and maybe null var

(e.g., see lines 34 and 42).
Rules may be recursive. A simple example appears in the

definition of is ptrT(t) in lines 26–27. The effect of this
rule is to strip away any typedefs when checking whether t

is a pointer type. For example, consider the following code,
which contains a cast expression:

typedef int∗ T1;
typedef T1 T2;
typedef T2 T3;
... (T3)x ...

Since the ROSE AST accurately preserves type information
as it appears in the source, the type of the cast expression
will be T3; if the Datalog variable t is the type of the cast
expression, then is ptrT(t) will be true.

The definitions of maybe null e and maybe null var con-
sider various ways in which an expression or variable, re-

Listing 6: Datalog-based null dereference checker.
.include common

2

’n’ is a potential null dereference
4 null deref (n:node)

6 # The type ’t’ is a pointer type.
is ptrT (t :node)

8

Expression ’e’ is a pointer
10 ptr exp (e:node)

12 # Expression ’e’ may be null
maybe null e (e:node)

14

Variable ’v’ may be null at target node ’t’
16 maybe null var (v:node, t:node)

18 # Path from ’s’ to ’t’ without ’v’ in a conditional
cfg path nocheck(s:node, si:number,

20 t :node, ti:number, v:node)

22 # Symbol ’v’ is used in node ’c’
symbol used (v:node, c:node)

24

=== Define the above rules ===
26 is ptrT (t) :− ptrT (t,).

is ptrT (t) :− typedefT (t, b), is ptrT (b).
28

ptr exp (e) :− expType (e, t), is ptrT (t).
30

maybe null e (e) :− newE (e).
32 maybe null e (e) :− ptr exp (e), callE (e,).

maybe null e (e) :− maybe null e (s), castE (e, s).
34 maybe null e (e) :− \

ptr exp (e), varE (e, v), maybe null var (v, e).
36 maybe null e (e) :− \

ptr exp (e), addE (e, l,), maybe null e (l).
38 maybe null e (e) :− \

ptr exp (e), anyAssignE (e, , r), maybe null e (r).
40

maybe null var (v, t) :− \
42 anyAssignE (t, l, r), varE (l, v), maybe null e (r).

maybe null var (v, t) :− \
44 maybe null var (v, s), \

cfg path nocheck (s, 0, t , 0, v).
46

cfg path nocheck (s, si , t , ti ,) :− s = t, si = ti.
48 cfg path nocheck (s, si , t , ti ,) :− cfgNext (s, si, t , ti).

cfg path nocheck (s, si , t , ti , v) :− cfgNext (s, si, m, mi), \
50 ! ifS (m,∗,∗,∗), cfg path nocheck (m, mi, t, ti , v).

cfg path nocheck (s, si , t , ti , v) :− cfgNext (s, si, m, mi), \
52 ifS (m, c, ,), !symbol used (v, c), \

cfg path nocheck (m, mi, t, ti , v).
54 cfg path nocheck (s, si , t , ti , v) :− \

cfgNext (s, si, m,), \
56 ifS (m, c, ,), symbol used (v, c), \

cfgNext (, , s , si), cfgNext (s, 2, t , ti), si = 1.
58

symbol used (v, c) :− varE (e, v), anc (c, e).
60

null deref (n) :− \
62 maybe null e (e), ptrDerefE (m, e), parent (n, m).

null deref (n) :− \
64 maybe null e (e), arraySubscriptE (m, e,), parent (n, m).

null deref (n) :− \
66 maybe null e (e), arrowE (m, e,), parent (n, m).

68 null deref (N)?

Predicate Meaning

addE(a,l,r) The expression a adds l and r.
anc(a,e) Node a is an ancestor in the AST of

node e.
anyAssignE(a,l,r) The expression a operator-assigns

r to l, i.e., a may be a plain as-
signment (=), add-assign (+ =),
multiply-assign (∗ =), and so on.

arraySubscriptE
(a,b,i)

Expression a is an array subscript
reference of base pointer b and index
i.

arrowE(a,b,f) Expression a is an arrow-dereference
expression of base pointer b and field
f , i.e., b → f .

callE(c,f) c is a function call to function refer-
ence expression f .

castE(c,e) c is a casts expression e to another
type.

cfgNext(s,si,t,ti) There is a control-flow graph edge
from node s at point si to node t at
point ti. The “points” distinguish,
e.g., entry and exit of a node.

expType(e,t) Expression e evaluates to type t.
ifS(i,c,t,f) Statement i is an if-statement with

condition c, true-branch body t and
false-branch body f .

newE(n) Expression n is a call to the new op-
erator.

parent(p,c) Node p is a parent in the AST of
node c.

ptrDerefE(m,e) Expression m dereferences the
pointer expression e.

ptrT(t,b) The type t is a pointer to base type
b.

typedefT(t,b) The type t is a typedef whose base
type is b.

varE(v,s) v references the variable whose sym-
bol is s.

Table 1: Precomputed AST predicates, used in the
null dereference example of Listing 6.

Listing 7: Mismatched buffer types in an MPI call.
#include <mpi.h>

2

void send bufs (int∗ ibuf , char∗ cbuf, int d, int n) {
4 int p; // My rank

int np; // Total no. of procs.
6 MPI Comm rank (MPI COMM WORLD, &p);

MPI Comm size (MPI COMM WORLD, &np);
8

// Send int buf to left neighbor (ok).
10 MPI Send (ibuf + d, n, MPI INT,

(p+np−1) % np, 1001, MPI COMM WORLD);
12

// Send char buf to right neighbor (error).
14 MPI Send (cbuf + d, n, MPI INT,

(p+1) % np, 1002, MPI COMM WORLD);
16 }

spectively, may be null. For example, the new operator may
return null (line 31), as might any other function call that
returns a pointer (line 32). These rules propagate possi-
ble null values through various kinds of expressions, such as
assignment and addition (lines 37 and 39, respectively).

The cfg path nocheck(s,si,t,ti,v) predicates incorpo-
rates control-flow information to detect when a dereference
is guarded by a conditional that refers to the variable, to
account for cases such as lines 17–18 of Listing 5. However,
note that the treatment of conditionals is very simplistic:
Listing 6 checks only that a condition refers to the subse-
quently dereferenced variable (i.e., the symbol used predi-
cate), but does not attempt to evaluate the condition. Thus,
had the condition in line 17 of Listing 5 been !yp rather than
yp, line 18 would not be flagged as an error (i.e., false neg-
ative). Nevertheless, this example is intended only to give
a flavor of what a null dereference test might look like and
how AST and control information could be used.

4. DETECTING BUGS IN MPI USAGE
We are particularly interested in building checkers for ap-

plications that use MPI. Toward this end, we have imple-
mented a library of Datalog relations, precomputed from
the AST, to support statically checking MPI usage. These
relations represent MPI data types, constants, and calls. In
this section, we discuss two examples of simple MPI check-
ers. The first is a structural AST test that checks MPI buffer
types, illustrating the basics of our MPI checking framework.
The second checker extends the null-dereference example of
Section 3.2 for MPI buffers, showing how easy it is to ex-
tend a Datalog-based checking library. We have tested these
checkers on the IS (integer sort) benchmark, a small 1100
line C program that is part of the NAS Parallel Benchmarks
suite [7] with errors introduced artifically.

4.1 Buffer Type Mismatches
Listing 7 shows an example of an MPI buffer type mis-

match error. The C-binding of MPI Send is:

int MPI Send (void∗ buf, int count,
MPI Datatype datatype, int dest, int tag,
MPI Comm comm);

where datatype specifies the type of each element of buf,
passed to MPI Send through a void pointer. Listing 7, line

Listing 8: Datalog to check MPI buffer types.
.include common

2 .include libmpi.datalog

4 # Primitive C type ’p’ does NOT match the MPI type ’t’.
mpi type mismatch (p:node, t:node)

6 mpi type mismatch (p, t) :− !intT (p), mpiInt (t).
mpi type mismatch (p, t) :− !floatT (p), mpiFloat (t).

8 # ... etc. ...

10 # MPI call ’c’ has a buffer type mismatch.
E.g.,: char* buf = ...;

12 # ...
MPI Send (buf, count, MPI INT, dest, tag, comm);

14 mpi buftype mismatch (c:node)
mpi buftype mismatch (c) :− \

16 mpiCall (c), \
mpiArgBuf (b, c), expType (b, s), ptrT (s, p), \

18 mpiArgDatatype (t, c), \
mpi type mismatch (p, t).

20

mpi buftype mismatch (C)?

Listing 9: Extending the null-dereference checker
for MPI buffers.
.include common

2 .include null deref .datalog # Import Listing 6
.include libmpi.datalog

4

Extend a rule from Listing 6
6 null deref (n) :− maybe null e (e), \

mpiCall (n), mpiArgBuf (e, n).

14, sends a char buffer but incorrectly specifies the type as
MPI INT instead of MPI CHAR.

The Datalog program in Listing 8 catches this bug. We
provide precomputed relations for MPI data types, such as
mpiInt(t), which indicates a use of the constant, MPI INT.
Moreover, we provide relations for MPI calls and their ar-
guments. For instance, the relation, mpiCall(c), shown on
line 15, is true if the function call c corresponds to any MPI
call; alternatively, we can test for specific calls using rela-
tions such as, mpiSend(c), mpiIsend(c), mpiRecv(c), and
so on. We can refer to the parameters passed to such calls,
such as the buffer argument (mpiArgBuf) or the buffer el-
ement type argument (mpiArgDatatype). These relations
can in many cases be derived from more basic AST rela-
tions; however, providing a library of higher-level relations
that map directly is convenient and suggests the overall ex-
tensibility of the Datalog approach.

4.2 Null MPI Buffers
We can easily extend the null dereference checkers in List-

ing 6 with a single additional inference rule to check for null
MPI buffers, as shown in Listing 9. This listing uses the
Datalog include directive to load existing rules, and then
extends the null dereference rule accordingly (lines 6–7).

We are currently building checkers for a variety of other
MPI usage errors, including the use of uninitialized buffers,
non-blocking operations without matching waits, and bar-
riers and other collectives not called on all paths, among

others. We hope a domain-specific library of basic relations
will encourage user-community contributions.

4.3 Building Domain-specific Relations
In general, deciding what relations to precompute and

implementing the code to precompute them from the AST
could be a time-consuming process. In our ROSE-Datalog
implementation, we are building tools to help ease this pro-
cess. For instance, we have a high-level Python-based script-
ing system for generating customized traversals to compute
relations, as well as a utility to help build a domain-specific
API from the header files and example source programs. We
used initial implementations of these tools to create our MPI
relation generator, and are extending these tools to handle
additional constructs for other APIs. We will continue to
extend and evaluate this in future work.

5. RELATED WORK
There are many commercial static analysis tools [2, 1, 4,

3], with at least 30 companies active in this area. Most are
based on a parser technology and marginally handle the type
analysis required to fully support C++, for instance, when
overloaded functions must be resolved using the complex
type evaluation rules in C++. Coverity and GrammaTech
products are the only analysis tools we know of that are
based on a full compiler front-end technology, with both
using the Edison Design Group front-end (EDG) internally,
just as ROSE does. Neither Coverity nor GrammaTech, to
our knowledge, make the internal AST fully available for
user-defined queries, though both permit limited degrees of
bug pattern specification. The details of these interfaces are
only available to customers and unavailable to us currently.
Both of these products and others are quite widely used and
our work does not compete with such commercial products.
In contrast, our focus has been on the expression of user-
defined bug patterns.

Recent work on static checking specifically for C++ in-
cludes OINK [35], the Orion system [10], and STLlint [15].
OINK, based on the robust Elsa C++ front-end [22], em-
phasizes analysis rather than source-level transformation tasks.
Orion extends gcc, and so is also not focused on source-to-
source transformations. STLlint is a static checker specifi-
cally for Standard Template Library (STL) usage, and is a
good example of the utility of domain-specific checkers.

The bddbddb project has used their own work for both
general program analysis (including an impressive pointer
analysis demonstrated on a million lines of Java code) and
recognition of general patterns in Java code [20, 34]. The
Java specific work is not made available, whereas bddbddb
is an open source project. Because we use bddbddb, our
work is related to theirs, though we are also keenly interested
in C and C++.

Recognition of language-specific source code patterns re-
quires a compiler infrastructure that can save everything
about the structure of the source code, and thus such a
compiler must handle language-specific details. In general,
most compiler infrastructures target binary executables and
so ignore and lose much of the source information. The in-
ternal ASTs from such compilers infrastructure, which typ-
ically perform some normalization, can cause false positives
or false negatives when matching against user-specified bug
patterns. Both SUIF [6] and Open64 [5] are substantial and
respected open compiler infrastructures, but have interme-

diate representations which lose high level C++ constructs.
OpenC++ [9] is an alternative open compiler infrastructure
for C++, but lacks support for templates, which is a sub-
stantial limitation for modern C++ applications. Pivot [31]
is a recent compiler infrastructure specifically for C++ and
focused on source-to-source transformation being developed
by Bjarne Stroupstrup and others at Texas A&M. A major
goal of Pivot is to support experimental language research
on C++0x (the next C++ standard) and a wide range of
other work. Pivot is the closest compiler infrastructure to
ROSE, that we know of, both in philosophy and design, and
in its use of the commercial EDG front-end. Like ROSE,
Pivot has a high level IR design, even though the goals for
each are subtly different and this results in numerous subtle
issues being handled differently.

One of our goals is to support abstractions like MPI rel-
evant to large-scale high-performance scientific computing.
Indeed, a few such tools exist already. Several focus on
dynamic error detection, including MPI-CHECK [21], Um-
pire [32], MARMOT [19], the Intel Message Checker [11],
and our own work on JitterBug [33].

MPI-CHECK statically locates certain classes of MPI er-
rors [21]. However, many other kinds of errors require deeper
program analysis and detailed knowledge of the semantics of
MPI. For example, the control-flow of typical MPI programs
depends on the unique rank of the process; this information
could be used to help match calls, such as sends and re-
ceives, barriers or other collectives. Conversely, we could
find errors due to improper or non-existing call matchings.
Dependence analysis could trace the flow of data that passes
through MPI, and thereby check for common buffer errors
in MPI programs, such as buffer overruns, reading from a
receive buffer before a non-blocking receive completes, and
using unitialized buffers, among others [11]. Other analy-
sis and model checking approaches could be used to verify
temporal usage properties (e.g., non-blocking sends followed
by waits), similar to recent work for I/O, operating system
kernel, and threading library abstractions [12, 8].

MPI-SPIN uses powerful model checking techniques to
verify MPI programs [30], and has been applied to finding
actual bugs in a widely-used textbook on MPI [13]. The
examples we consider in this paper check lighter-weight pro-
gram properties. However, our general work in ROSE is
synergistic with the MPI-SPIN or other model checking ef-
forts in the sense that we can provide the accurate repre-
sentations of the source code used to drive and derive input
models for the model checkers.

Other existing pattern-based tools could be extended to
support MPI as well, including those proposed by Farchi, et
al., in the context of code reviews [14], and frameworks like
FindBugs for general programs [16]. FindBugs inspires our
work, though in this paper we focus on on the mechanics of
specifying the patterns themselves.

6. CONCLUSIONS AND FUTURE WORK
There is a recognized need for static checking systems that

users can customize and extend for their particular applica-
tions or APIs. The promise of a simple bug pattern speci-
fication system is to enable the customization process for a
wide variety of users who may not necessarily be experts in
compilers or static analysis. In the parallel setting, libraries
like MPI constitute important target domains for custom
analyses that off-the-shelf checking tools might not provide.

This paper discusses two approaches to bug pattern speci-
fication: first, a direct access of the AST using ROSE depen-
dent mechanisms, data structures, traversals; and secondly,
a Datalog-based, compiler-independent approach to reason
about the same AST. Our experience with the direct use of
the AST is that it can be tedious for complex examples, and
requires a moderate understanding the the AST interfaces
to implement. In contrast, the use of Datalog results in a
significantly simpler declarative specification, but in a lan-
guage that may be unfamiliar to many users. Importantly,
for there to be standards for bug patterns we seek a com-
piler infrastructure independent technique, which suggests
approaches like the use of Datalog. Our use of Datalog for
building MPI checkers is an example of how one might use a
Datalog-like system to define libraries of simple static check-
ers. Indeed, we expect libraries of relations to be developed
and extended by the broader user-community over time.

Furthermore, we believe that the bug pattern specifica-
tions may be more useful than for just driving the search for
bugs in source code. For example, using the specifications
to drive the introduction of bugs in arbitrary codes (i.e., bug
seeding) may permit the automated evaluation the effective-
ness of commercial and open source bug finding tools.

The original work on bddbddb includes the development
of a specification language, PQL, based on the concrete syn-
tax of Java, and it is likely that this approach would work
well for C, C++, and other languages.

We mention anecdotal performance results in Section 3
for the direct approach on a moderately-sized (200 KLOC,
2 million IR node) example. In future work, we will carry
out much more extensive performance comparisons of the
direct AST handling to the Datalog representation (these
results were unavailable for this paper).

Looking forward, we plan to extend our work and ex-
periments not just to source pattern analysis, but also to
binaries. Recent work in ROSE to include binary analysis,
specifically the disassembled instruction sequence represen-
tation of a binary in an AST form will permit these identical
techniques to be applied to pattern matching of instructions
on the binary. Significant forms of binary analysis consist
of the identification and synthesis of subtle patterns of in-
structions; these approaches may be significant in this future
work.

Acknowledgements
This work was partially produced at the University of Cali-
fornia, Lawrence Livermore National Laboratory (UC LLNL)
under contract no. W-7405-ENG-48 between the U.S. De-
partment of Energy (DOE) and The Regents of the Uni-
versity of California (University) for the operation of UC
LLNL.

We thank the anonymous referees for their thoughtful
comments.

7. REFERENCES
[1] Coverity - Source Code Analysis,

http://www.coverity.com.

[2] Fortify - Source Code Analysis,
http://www.fortifysoftware.com.

[3] GrammaTech - Source Code Analysis,
http://www.grammatech.com.

[4] Klockwork - Source Code Analysis,
http://www.klockwork.com.

[5] Open64, http://www.open64.net.

[6] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and
C. W. Tseng. The SUIF compiler for scalable parallel
machines. In Proc. SIAM Conference on Parallel
Processing for Scientific Computing, Feb 1995.

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, D. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The nas parallel benchmarks. The
International Journal of Supercomputer Applications,
5(3):63–73, Fall 1991.

[8] H. Chen, D. Dean, and D. Wagner. Model checking
one million lines of C code. In Proc. Network and
Distributed System Security Symposium, San Diego,
CA, USA, February 2004.

[9] S. Chiba. Macro processing in object-oriented
languages. In TOOLS Pacific ’98, Technology of
Object-Oriented Languages and Systems, 1998.

[10] D. Dams and K. Namjoshi. Orion: High-precision
methods for static error analysis of C and C++
programs. Technical Report ITD-04-45263Z, Bell
Labs, April 2004.

[11] J. DeSouza, B. Kuhn, and B. R. de Supinski.
Automated, scalable debugging of MPI programs with
the Intel Message Checker. In Proc. 2nd
Intl. Workshop on Software Engineering for High
Performance Computing System Applications,
St. Louis, MO, USA, May 2005.

[12] D. Engler and M. Musuvathi. Static analysis versus
software model checking for bug finding. In
Proc.International Conference on Verification, Model
Checking, and Abstract Interpretation, Venice, Italy,
2004.

[13] M. S. et. al. MPI—The Complete Reference. MIT
Press, 1996.

[14] E. Farchi and B. R. Harrington. Assisting the code
review process using simple pattern recognition. In
Proc. IBM Verification Conference, Haifa, Israel,
November 2005.

[15] D. Gregor and S. Schupp. STLlint: Lifting static
checking from languages to libraries. Software:
Practice and Experience, 2005.

[16] D. Hovemeyer and W. Pugh. Finding bugs is easy.
SIGPLAN Notices (Proceedings of Onward! at
OOPSLA 2004), December 2004.

[17] D. Hovemeyer and W. Pugh. Finding more null
pointer bugs, but not too many. In Proceedings of
Program Analysis for Software Tools and Engineering
(PASTE05), 2005.

[18] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating
and tuning a static analysis to find null pointer bugs.
In PASTE ’05: The 6th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering, pages 13–19, New York, NY, USA, 2005.
ACM Press.

[19] B. Krammer, K. Bidmon, M. S. Müller, and M. M.
Resch. MARMOT: An MPI analysis and checking
tool. In Proc. Parallel Computing: Software
Technology, Algorithms, Architectures, and

Applications, pages 493–500. Elsevier, 2004.

[20] M. Lam, J. Whaley, V. Livshits, M. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program
analysis as database queries. In Proc. ACM
Symposium on Principles of Database Systems, pages
1–12, 2005.

[21] G. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva,
and Y. Zou. MPI-CHECK: A tool for checking Fortran
90 MPI programs. Concurrency and Computation:
Practice and Experience, 15:93–100, 2003.

[22] S. McPeak and G. C. Necula. Elkhound: A fast,
practical GLR parser generator. In Proc. Conference
on Compiler Construction, Barcelona, Spain, April
2004.

[23] Message Passing Interface Forum (MPIF). MPI: A
Message-Passing Interface Standard. Technical
Report, University of Tennessee, Knoxville, June 1995.
http://www.mpi-forum.org/.

[24] Message Passing Interface Forum (MPIF). MPI-2:
Extensions to the Message Passing Interface.
Technical Report, University of Tennessee, Knoxville,
1997. http://www.mpi-forum.org/docs/mpi-20-
html/mpi2-report.html.

[25] NIST. SAMATE - Software Assurance Metrics And
Tool Evaluation, http://samate.nist.gov/index.php.

[26] D. Quinlan. Rose: Compiler support for
object-oriented frameworks. In Proceedings of
Conference on Parallel Compilers (CPC2000),
Aussois, France, volume 10 of Parallel Processing
Letters. Springer Verlag, 2000.

[27] D. Quinlan, M. Schordan, B. Philip, and
M. Kowarschik. The specification of source-to-source
transformations for the compile-time optimization of
parallel object-oriented scientific applications. In
H. G. Dietz, editor, Languages and Compilers for
Parallel Computing, 14th International Workshop,
LCPC 2001, Revised Papers, volume 2624 of Lecture
Notes in Computer Science, pages 570–578. Springer
Verlag, 2003.

[28] D. Quinlan, R. Vuduc, T. Panas, J. Härdtlein, and
A. Sæbjørnsen. Support for whole-program analysis
and verification of the One-Definition Rule in C++.
In Proc. Static Analysis Summit, Gaithersburg, MD,
USA, June 2006. National Institute of Standards and
Technology Special Publication.

[29] M. Schordan and D. Quinlan. A source-to-source
architecture for user-defined optimizations. In
JMLC’03: Joint Modular Languages Conference,
volume 2789 of Lecture Notes in Computer Science,
pages 214–223. Springer Verlag, Aug. 2003.

[30] S. F. Siegel. Model checking nonblocking MPI
programs. In Proc. Verification, Model Checking, and
Abstract Interpretation (VMCAI), Nice, France,
January 2007.

[31] B. Stroustrop and G. D. Reis. Supporting SELL for
high-performance computing. In Proc. Workshop on
Languages and Compilers for Parallel Computing,
Hawthorne, NY, USA, October 2005.

[32] J. S. Vetter and B. R. de Supinski. Dynamic software
testing of MPI applications with Umpire. In
Proc. Supercomputing. ACM/IEEE, 2000.

[33] R. Vuduc, M. Schulz, D. Quinlan, and B. de Supinski.

Improving distributed memory applications testing by
message perturbation. In Proc. Int’l Symp. on
Software Testing and Analysis (ISSTA), 4th Workshop
on Parallel and Distributed Systems: Testing and
Debugging (PADTAD-IV), Portland, ME, USA, July
2006.

[34] J. Whaley and M. Lam. Cloning-based
context-sensitive pointer alias analyses using binary
decision diagrams. In Proc. Programming Language
Design and Implementation (PLDI), 2004.

[35] D. Wilkerson. OINK: A collection of composable C++
static analysis tools, 2005.
http://freshmeat.net/projects/oink.

