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ABSTRACT
We present a new technique for identifying scalability bottle-
necks in executions of single-program, multiple-data (SPMD)
parallel programs, quantifying their impact on performance,
and associating this information with the program source
code. Our performance analysis strategy involves three steps.
First, we collect call path profiles for two or more executions
on different numbers of processors. Second, we use our ex-
pectations about how the performance of executions should
differ, e.g., linear speedup for strong scaling or constant ex-
ecution time for weak scaling, to automatically compute the
scalability of costs incurred at each point in a program’s ex-
ecution. Third, with the aid of an interactive browser, an
application developer can explore a program’s performance
in a top-down fashion, see the contexts in which poor scal-
ing behavior arises, and understand exactly how much each
scalability bottleneck dilates execution time. Our analysis
technique is independent of the parallel programming model.
We describe our experiences applying our technique to ana-
lyze parallel programs written in Co-array Fortran and Uni-
fied Parallel C, as well as message-passing programs based
on MPI.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques,
performance attributes.

General Terms
Performance, measurement, languages, algorithms.

Keywords
Performance analysis, performance visualization, parallel pro-
gramming models, HPCToolkit.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’07 June 16-20, 2007, Seattle, Washington, USA
Copyright 2007 ACM 978-1-59593-768-1/07/0006 ...$5.00.

1. INTRODUCTION
Computational modeling and simulation have become in-

dispensable tools for scientific research. The desire to tackle
grand challenge problems is driving the development of petas-
cale systems composed of tens of thousands of processors.
To exploit the power of such machines, parallel applications
must scale efficiently to large numbers of processors. How-
ever, writing and tuning complex applications to achieve
scalable parallel performance is hard.

Understanding a parallel code’s impediments to scalability
is a necessary step for improving its performance. Often, an
application’s scalability bottlenecks are not obvious. They
can arise from a range of causes including replicated work,
data movement, synchronization, load imbalance, serializa-
tion, and algorithmic scaling issues. Having an automatic
technique for identifying scalability problems would boost
development-time productivity.

When analyzing an application’s scaling bottlenecks, one
should focus on those that are the most significant. An ap-
plication’s components with the worst scaling behavior are
often not the most significant scaling bottlenecks for the ap-
plication as a whole. For instance, a routine that displays
abysmal scaling but consumes only a fraction of a percent
of the total execution time is less important than a routine
that is only a factor of two from ideal scaling but accounts
for nearly 50% of the total execution time on large numbers
of processors. For developers to tune applications for scal-
able performance, effective tools for pinpointing scalability
bottlenecks and quantifying their importance are essential.

This paper describes a new approach for identifying scala-
bility bottlenecks in executions of single-program, multiple-
data (SPMD) parallel programs, quantifying their impact
on performance, and associating this information with the
program source code. Our approach involves three steps.

First, we collect call path profiles for two or more exe-
cutions of unmodified, fully-optimized application binaries
on different numbers of processors. Second, we use our ex-
pectations about how costs should differ between executions
to compute how the costs incurred in each dynamic context
affect a program execution’s scalability. To help developers
understand how performance bottlenecks arise, we annotate
the hierarchy of dynamic contexts in a program execution
with their associated scalability scores. Third, we provide
application developers with an interactive browser that en-
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ables one to explore scalability bottlenecks in a top-down
fashion, see the contexts in which poor scaling behavior
arises, see the source code lines that fail to deliver scalable
performance, and understand exactly how much each scal-
ability bottleneck dilates execution time. Our approach to
scalability analysis

• scales to large numbers of processors by using concise
profiles instead of traces,

• uses only local information when measuring perfor-
mance, yet can pinpoint and quantify the scalability
impact of bottlenecks caused by communication,

• works on unmodified fully-optimized binaries,

• is programming model and problem independent—it
can identify scalability problems in any SPMD pro-
gram regardless of their cause (i.e., computation, data
movement, or synchronization), and

• provides quantitative feedback about exactly how each
bottleneck affects scaling.

The rest of the paper presents our approach and explores
its utility for analyzing parallel program executions. Sec-
tion 2 reviews related work. Section 3 describes our analysis
methodology. Section 4 describes our experiences applying
this technique to analyze the performance and scalability of
parallel programs written in the partitioned global address
space languages Co-array Fortran (CAF) [32] and Unified
Parallel C (UPC) [7], as well as message-passing programs
that use MPI [37]. Section 5 summarizes our conclusions.

2. RELATED WORK
Trace-based tools for measuring parallel performance [29,

17, 48, 46, 8, 44, 27] can detail how an execution unfolds
over time. However, on large-scale systems tracing can be
costly and produce massive trace files [42]. In contrast, per-
formance measurement approaches that collect summaries
based on synchronous monitoring (or sampling) of library
calls (e.g., [42, 43]) or profiles based on asynchronous events
(e.g., [3, 12, 21]) readily scale to large systems because they
yield compact measurement data on each processor; the size
of this data is largely independent of execution time.

Synchronous monitoring of communication calls, e.g., by
mpiP [43] or Photon [42], yields information about commu-
nication activity but not computation. We use timer-based
call path profiling [15, 16], which attributes all costs in a par-
allel execution (e.g., computation, data movement, or wait-
ing) to the full calling contexts in which they are incurred.
For parallel programs that use library-based communication
such as MPI, this is essential for understanding how costs
incurred in the MPI library relate back to the application
code. Although our call path profiler has novel aspects that
make it more accurate and lower overhead than other call
graph or call path profilers, a detailed comparison of our call
path profiler with others is beyond the scope of this paper
and can be found elsewhere [15, 16].

Performance measurement tools require different amounts
of knowledge at run time. Quartz [3], designed for shared-
memory multiprocessors, uses global knowledge about the
amount of instantaneous parallelism to scale the cost of
samples. Measurement systems requiring global knowledge

are problematic for monitoring large-scale systems. Pho-
ton [42] tags sampled messages with a time stamp and an
identifier specifying the source-code context that initiated
the message; at the receiver, message time stamps provide
non-local knowledge and yield insight into communication
performance. This technique requires custom communica-
tion libraries with integrated instrumentation. mpiP [43],
which profiles MPI functions, uses only local knowledge, as
does our approach of using call path profiling independently
on individual nodes. Measurement techniques requiring only
local knowledge are the most scalable.

Tools for measuring parallel application performance are
typically model dependent, such as libraries for monitoring
MPI communication (e.g., [47, 42, 43]), interfaces for mon-
itoring OpenMP programs (e.g., [8, 26]), or global address
space languages (e.g., [38]). In contrast, our approach of
using call path profiling is model independent.

Performance tools also differ with respect to their strategy
for instrumenting applications. Tau [27], OPARI [26], and
Pablo [34] among others add instrumentation to source code
during the build process. Model-dependent strategies often
use instrumented libraries [8, 22, 23, 25, 42]. Other tools
analyze unmodified application binaries by using dynamic
instrumentation [6, 13, 24] or library preloading [12, 28, 15,
36, 19]. Our call path profiler currently uses preloading to
monitor unmodified dynamically-linked binaries.

Tools for analyzing bottlenecks in parallel programs are
typically problem focused. Paradyn [24] uses a performance
problem search strategy and focused instrumentation to look
for well-known causes of inefficiency. Strategies based on
instrumentation of communication libraries, such as Pho-
ton and mpiP, focus only on communication performance.
Vetter [41] describes an assisted learning based system that
analyzes MPI traces and automatically classifies communi-
cation inefficiencies, based on the duration of primitives such
as blocking and nonblocking send and receive. EXPERT [45]
also examines communication traces for patterns that corre-
spond to known inefficiencies. In contrast, our scaling anal-
ysis is problem-independent.

Performance analysis tools analyze scalability in different
ways. mpiP [43] uses a strategy called rank-based correla-
tion to evaluate the scalability of MPI communication prim-
itives. Their notion of scalability is different than ours: an
MPI communication routine does not scale if its rank among
other MPI calls performed by the application increases sig-
nificantly when the number of processors increases. As such,
mpiP provides qualitative rather than quantitative results.
Quartz [3] aims to highlight inefficiency caused by load im-
balance and serialization. In contrast, we pinpoint and quan-
tify any aspect of a program whose performance scales worse
than expected.

The work most closely related to our own is that of McKen-
ney [20]. He describes a differential profiling strategy for
analysis of two or more executions by mathematically com-
bining corresponding buckets of different execution profiles.
He recognizes that different combining functions are useful
for different situations. Our work applies a differential pro-
filing strategy for scalability analysis. Unlike McKenney, we
use call path profiles rather than flat profiles and have au-
tomated analysis and presentation tools. Our profiling and
analysis based on call path profiles enables extremely effec-
tive top-down analysis of large parallel programs based on
layers of software and libraries.
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3. METHODOLOGY
Users have specific expectations about how code perfor-

mance should differ under different circumstances. This is
true for both serial and parallel executions. Consider an
ensemble of parallel executions. When different numbers of
processors are used to solve the same problem (strong scal-
ing), one expects an execution’s speedup with respect to a
serial execution to be linearly proportional to the number of
processors used. When different numbers of processors are
used but the amount of computation per processor is held
constant (weak scaling), one expects the execution time for
all executions in an ensemble to be the same. In each of
these situations, we can put our expectations to work for
analyzing application performance. We can use our expec-
tations about how overall application performance should
scale at each point in the program to pinpoint and quantify
deviations from expected scaling. While differential perfor-
mance analysis using expectations applies more broadly, in
this paper we focus on using expectations to pinpoint scal-
ability bottlenecks in ensembles of executions used to study
either strong or weak scaling of a parallel application.

Call path profiling [18] is the measurement technique that
forms the foundation for the scalability analysis that we de-
scribe in this paper. We use library preloading to initiate
profiling of unmodified, fully-optimized application binaries
without prior arrangement. HPCToolkit’s call path pro-
filer uses timer-based sampling to attribute execution time
and waiting to calling contexts [15, 16]. The profiler stores
sample counts and their associated calling contexts in a call-
ing context tree (CCT) [2]. In a CCT, the path from each
node to the root of the tree represents a distinct calling con-
text. A calling context is represented by a list of instruction
pointers, one for each procedure frame active at the time
the event occurred. Sample counts attached to each node in
the tree associate execution costs with the calling context in
which they were recorded. After post-mortem processing,
CCTs contain three types of nodes: procedure frames, call
sites and simple statements.

To use performance expectations to pinpoint and quan-
tify scalability bottlenecks in a parallel application, we first
collect call path profiles of a application for an ensemble R
of two or more parallel execution runs. Let R = {R1, ...,
Rm}, where Ri represents an execution run on pi proces-
sors, i = 1, m, where m ≥ 2. Let Ti be the running time of
the run Ri. The call path profile of each run in the ensemble
is represented by a CCT.

In our analysis, we consider both inclusive and exclusive
costs for CCT nodes. The inclusive cost at n represents the
sum of all costs attributed to n and any of its descendants
in the CCT, and is denoted by I(n). The exclusive cost at n
represents the sum of all costs attributed strictly to n, and
we denote it by E(n). If n is an interior node in a CCT, it
represents an invocation of a procedure. If n is a leaf in a
CCT, it represents a statement inside some procedure. For
leaves, their inclusive and exclusive costs are equal.

It is useful to perform scalability analysis for both inclu-
sive and exclusive costs; if the loss of scalability attributed
to the inclusive costs of a function invocation is roughly
equal to the loss of scalability due to its exclusive costs, then
we know that the computation in that function invocation
doesn’t scale. However, if the loss of scalability attributed
to a function invocation’s inclusive costs outweighs the loss
of scalability accounted for by exclusive costs, we need to

explore the scalability of the function’s callees.
Given CCTs for an ensemble of executions, the next step

to analyzing the scalability of their performance is to clearly
define our expectations. Next, we describe performance ex-
pectations for strong and weak scaling and intuitive metrics
that represent how much performance deviates from our ex-
pectations.

Strong Scaling
Consider two strong scaling experiments for an application
executed on p and q processors, respectively, p < q. If the
application exhibits perfect (relative) strong scaling, then
the execution time on q processors would be q/p times faster
than on p processors. In fact, if every part of the application
scales uniformly, then we would expect that the execution
time spent in each part of the application reduces by a factor
of q/p when we move from p to q processors.

More precisely, we expect that the execution time at-
tributed to all pairs of corresponding nodes1 in the CCTs
for executions on p and q processors will scale in this fash-
ion. We can use this high-level model as the basis for identi-
fying where execution scalability falls short of our expec-
tations. Consider a pair of corresponding nodes np and
nq in CCTs measured on p and q processors respectively.
Let C(n) denote the cost incurred for a node n in a CCT.
With strong scaling, on q processors C(nq) should be a fac-
tor of q/p less than C(np), the cost incurred at the corre-
sponding CCT node on p processors. Thus, we expect that
C(nq) = (p/q)C(np), or equivalently qC(nq) = pC(np). For
a CCT node representing an invocation of a solver, this in-
tuitively represents our expectation that the total amount of
work spent in the solver (summed over all of the processors
in each execution) will be constant. To capture the depar-
ture from our expectation, we compute the excess work in
the q-processor execution as qC(nq)− pCp(np). Let Mqp(n)
be the mapping between corresponding nodes nq in the CCT
on q processors and np, in the CCT on p processors. Using
this notation, we can express np, the corresponding node to
nq as Mqp(nq). To normalize this previous value, as before,
we divide it by qTq, the total work performed in experiment
Rq , to obtain

Xs(C, nq) =
qC(nq) − pC(Mqp(nq))

qTq

the fraction of the execution time that represents excess
work attributed to any node nq in the CCT for an execution
on q processors relative to its execution on p processors.

This metric tells us what fraction of the total execution
time on q processors was spent executing excess work on
behalf of a node in the CCT. Excess work serves as a measure
of scalability. Relative parallel efficiency at node nq can be
computed as 1 − Xs(C, nq).

For a node nq, we compute the excess work for inclusive
costs as Xs(I, nq), and the excess work for exclusive costs
as Xs(E, nq).

Weak Scaling
Consider two weak scaling experiments executed on p and
q processors, respectively, p < q, and two correspond-
ing CCT nodes nq and Mqp(nq). The expectation is that

1Corresponding nodes in a pair of CCTs represent the same
calling context, e.g., main calls solve, which calls sparse
matrix-vector multiply.
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Figure 1: Overview of the hpcviewer user interface.

Cq(nq) = Cp(Mqp(nq)), and the deviation from the expec-
tation is Cq(nq) − Cp(Mqp(nq)). We normalize this value
by dividing it by the total execution time of experiment Rq ,
and define the fraction of the execution time representing
excess work attributed to node nq as follows

Xw(C, nq) =
Cq(nq) − Cp(Mqp(nq))

Tq

For a node nq, we compute the excess work for inclusive
costs as Xw(I, nq), and the excess work for exclusive costs
as Xw(E, nq).

3.1 Automating Scalability Analysis
The HPCToolkit performance tools provide support for

performance measurement, attribution, and analysis [15, 16,
21, 35, 39]. To perform scalability analysis of a parallel
application, we first collect call path profiles on individual
processes for two or more program executions at different
scales of parallelism. Next, we analyze the call path pro-
files, correlate them with program source code, and produce
a calling context tree annotated with performance metrics.
These profiles can then be examined with HPCToolkit’s
hpcviewer browser, which supports interactive examination
of performance databases. Support for computing and ana-
lyzing scalability metrics is integrated into hpcviewer. We
compute scalability metrics by performing differential anal-
ysis between a pair of profiles collected on different num-
bers of processors and annotate the calling context tree at
all levels with these metrics. Figure 1 shows a screenshot of
the hpcviewer interface with panes and key controls labeled.
hpcviewer supports three principal views of an application’s
performance data:

• Calling context view. This top-down view represents
the dynamic calling contexts (call paths) in which costs
were incurred.

• Callers view. This bottom up view enables one to
look upward along call paths. This view is particularly
useful for understanding the performance of software
components or procedures that are used in more than
one context, such as communication library routines.

• Flat view. This view organizes performance measure-
ment data according to the static structure of an ap-
plication. All costs incurred in any calling context by
a procedure are aggregated together in the flat view.

The browser window is divided into three panes: the nav-
igation pane, the source pane, and the metrics pane. The
navigation pane presents a hierarchical tree-based structure
that is used to organize the presentation of an application’s
performance data. The source pane displays the source code
associated with the current entity selected in the navigation
pane. The metric pane displays one or more performance
metrics associated with entities in the navigation pane.

3.2 Analysis Using Excess Work
The hpcviewer interface enables developers to explore

both top-down and bottom-up views of the annotated CCTs,
helping them to quickly pinpoint trouble spots. Typically, a
user would begin analyzing an application’s scalability and
performance using the top-down calling context tree view.
Using this view, one can readily see how costs and scala-
bility losses are associated with different calling contexts. If
costs or scalability losses are associated with only a few call-
ing contexts, then this view suffices for analyzing the bot-
tlenecks. When scalability losses are spread among many
calling contexts, often it is useful to switch to a bottom-
up view of the data to see if many of these costs are due
to the same underlying cause. In the bottom-up view, one
locates the routine with the highest aggregated scalability
losses and then looks upward to see how these costs appor-
tion across the different calling contexts in which the routine
was invoked.

The excess work metrics are intuitive; perfect scaling cor-
responds to a value of 0, sublinear scaling yields positive
values, and superlinear scaling yields negative values. Typi-
cally, CCTs for SPMD programs have similar structure; we
report excess work where CCTs for different experiments
diverge.

For strong scaling experiments, Xs(I, n) and Xs(E,n)
serve as complementary measures of scalability of CCT node
n. By using both metrics, one can determine whether the
application scales well or not at node n, and also pinpoint
the cause of any lack of scaling. If a node n correspond-
ing to a function invocation has comparable positive values
for Xs(I, n) and Xs(E, n) then the loss of scaling is due
to computation in n. However, if the excess work reflected
in n’s inclusive costs outweighs that accounted for by its
exclusive costs, then one should explore the scalability of
n’s callees. To isolate code that is an impediment to scal-
able performance, one simply inspects CCT nodes along a
path starting at the root to pinpoint the cause of positive
Xs(I, n) values. For weak scaling, Xw(I, n) and Xw(E,n)
play a similar role.

16



(a) Scalability of relative computation and communi-
cation costs for LBMHD.
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Figure 2: LBMHD relative costs scalability and par-
allel efficiency.

4. CASE STUDIES
To demonstrate the broad utility of our strategy for ana-

lyzing the scalability of parallel codes, we apply it to codes
written in CAF, UPC and MPI. Our examples show experi-
ments on modest numbers of processors (16–64 CPUs) with
small problem sizes. Such configurations expose commu-
nication and synchronization inefficiencies that are impedi-
ments to scalability without consuming excessive resources
for scalability studies.

The experiments presented in this section were performed
on a cluster of dual processors nodes with Itanium 2 proces-
sors and a Myrinet 2000 interconnect. Each node is running
the Linux operating system. All codes were compiled with
the Intel 9.0 compilers. We used the native Myrinet imple-
mentation of MPI.

4.1 Co-array Fortran
Here, we describe experiments with three benchmarks

coded in CAF. All CAF codes were compiled with the open-
source CAF compiler cafc [14] and used the ARMCI li-
brary [30] for communication.

4.1.1 LBMHD Benchmark
The LBMHD benchmark [33] simulates a charged fluid

Figure 3: Strong scaling analysis results for CAF
LBMHD (size 10242) on 4 and 64 CPUs.

moving in a magnetic field using a Lattice Boltzmann for-
mulation of the magnetohydrodynamic equations. The code
uses block data partitioning onto a 2D processor grid and re-
quires both contiguous and strided communication between
processors. After each computation phase, each processor
exchanges data with four communication partners in an or-
dered fashion to acquire data from eight neighbors.

Figure 2(a) shows how the relative costs of computation
and select communication primitives vary for LBMHD as the
number of CPUs increases from 4 to 64. The chart shows
that the overall loss of efficiency on 64 CPUs due to com-
munication overhead is 39%. The relative cost of barriers
increases with the number of CPUs. In the original LBMHD
source code that we received from LBNL, barriers were used
to implement scalar reductions at the source level. The code
performed three consecutive reductions on scalars. By re-
placing these scalar reductions with a three-element MPI
vector reduction, performance improved by 25% on 64 pro-
cessors. Figure 2(b) shows the parallel efficiency for timed
phases of several CAF and MPI versions of the LBMHD
benchmark.

Figure 3 shows we present screenshots with results of
strong scaling analysis for CAF LBMHD, using relative ex-
cess work, on 4 and 64 CPUs. The figure shows that the
excess work for the main routine mhd is 53%. The rou-
tine decomp, which performs the initial problem decomposi-
tion, has both inclusive and exclusive excess work of 14%,
which means that its excess work is due to local computa-
tion. The routine caf allsum dp leads to an overall excess
work of 17%. This routine uses a barrier-based implemen-
tation of a reduction, which is not efficient on clusters. This
accounts for the growing overhead due to ARMCI Barrier

shown in Figure 2(a). The causes responsible for excess
work in cafinit and stream can be discovered similarly. It
is worth noting that the overall excess work of 53% shown
in Figure 3 is significantly higher than the excess work of
39% indicated by the chart in Figure 2(a); this is because
computation is contributing to excess work (e.g., the routine
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Figure 4: Strong scaling analysis of the CAF version
of NAS SP class A (size 643) on 4 and 64 CPUs.

decomp) in addition to communication overhead.
In [10] we explored CAF extensions with collective oper-

ations, such as broadcast and reductions, and presented an
initial implementation strategy, using the MPI collectives.
In Figure 2(b) we present the parallel efficiency plot for the
timed phase of LBMHD using the the CAF level reductions;
one observation if that our translation scheme does not in-
troduce a high overhead over direct calls of MPI primitives.

An important observation is that by using the scaling
analysis with scalability information attributed to the call-
tree nodes, we obtained results similar to the one obtained
using the communication primitives relative costs plots.
However, the scaling analysis is vastly more accurate and
more useful, leading a user to non-scaling call tree nodes,
rather than just to non-scaling commumication primitives.

4.1.2 NAS SP Benchmark
The second CAF benchmark we study is NAS SP, de-

scribed in [14]. This benchmark solves scalar penta-
diagonal systems of equations resulting from an approx-
imately factored implicit finite difference discretization of
three-dimensional Navier-Stokes equations [4]. SP employs
a parallelization based on a skewed-cyclic block distribution
known as multipartitioning.

Figure 4 shows a screenshot of the strong scaling anal-
ysis results for the CAF version of NAS SP on 4 and 64
CPUs, using the bottom-up view. The figure shows that

Figure 5: Strong scaling analysis of the CAF version
of NAS MG class A (size 2563) on 4 and 64 CPUs.

the overall excess work for the main routine mpsp is 60%,
out of which the routine adi, which performs alternating
direction integration, accounts for 58% excess work. By ex-
ploration of the bottom-up view we determined that the
ARMCI routine arcmi inotify proc, which we used to im-
plement point-to-point synchronization in the CAF runtime
system, contributes a total of 37% to the excess work. De-
spite the fact that this synchronization is used in numerous
calling contexts, the bottom-up view makes diagnosing its
scalability problems trivial.

4.1.3 NAS MG Benchmark
The third CAF code that we studied is the NAS MG

multigrid benchmark. This code calculates an approximate
solution to the discrete Poisson problem using four iterations
of the V-cycle multigrid algorithm on a n× n× n grid with
periodic boundary conditions [4]. The CAF implementation
of NAS MG is described in [14].

Figure 5 shows a screenshot of the strong scaling analysis
results for CAF NAS MG, class A (size 2563), using rela-
tive excess work on 1 and 64 processors, and the bottom-
up view. The benchmark exhibits 81% excess work. The
routine MPID RecvComplete accounts for 37% excess work,
and the bottom-up view shows that it is used for a vari-
ety of barrier-based implementations of reductions such as
sum and maximum. These implementations of reductions,
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Figure 6: Strong scaling analysis results for POP on
4 and 64 CPUs using the bottom-up view.

which we received from Robert Numrich, were implemented
at the source level in CAF. On Cray systems, barriers typi-
cally have fast hardware support, so these implementations
are fast; however,they are not well-suited for clusters and
lead to poor scalability. Using hpcviewer, one can discover
this bottleneck in seconds. In the MG benchmark, reduc-
tions are used in the initialization phase; however, they still
contribute to the program’s overall execution time.

4.2 MPI Applications

4.2.1 LANL’s Parallel Ocean Program (POP)
To explore the utility of our scalability analysis on MPI

applications, we analyzed version 2.0.1 of LANL’s Parallel
Ocean Program (POP) [40]. POP is an ocean circulation
model in which depth is used as the vertical coordinate. The
model solves the three-dimensional primitive equations for
fluid motions on the sphere under hydrostatic and Boussi-
nesq approximations. Spatial derivatives are computed us-
ing finite-difference discretizations which are formulated to

Figure 7: Weak scaling analysis for su3 rmd on 1 and
16 processors using the bottom-up view.

handle any generalized orthogonal grid on a sphere, includ-
ing dipole and tripole grids which shift the North Pole sin-
gularity into land masses to avoid time step constraints due
to grid convergence.

We analyzed POP for a “large” test domain, with 384x288
domain size, 32 vertical levels, and 2 tracers. The relative
excess work results for 4 and 64 CPUs, using the top-down
view, show that the main program has 71% excess work.
By using the bottom-up view, as shown in Figure 6, we dis-
covered that the communication routine MPID RecvComplete

accounts for 60% of the excess work. Further examination
of the calling contexts of this subroutine revealed that 21%
of the excess work is due to calls from scalar reductions on
integer and double precision variables. By inspecting the
source code associated with these contexts, we discovered
that the scalar reductions were invoked in succession by a
single routine. This deficiency can be addressed by aggre-
gating the reductions. Using hpcviewer’s bottom-up view
pinpointed this scaling bottleneck quickly.

4.2.2 Lattice QCD: MILC
MILC [5] represents a set of parallel codes developed

for the study of lattice quantum chromodynamics (QCD),
the theory of the strong interactions of subatomic physics.
These codes were designed to run on MIMD parallel ma-
chines. They are written in C, and they are based on MPI.
MILC is part of a set of codes used by NSF as procure-
ment benchmarks for petascale systems [31]. Version 7 of
MILC uses the SciDAC libraries [1] to optimize the com-
munication. We present an analysis of the version 7.2.1 of
MILC using MPI as communication substrate. Our goal for
analysis of MILC is to demonstrate the applicability of our
method for analysis of SPMD codes subjected to weak scal-
ing. From the MILC applications, we analyzed su3 rmd—an
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Figure 8: Weak scaling analysis for su3 rmd on 1 and
16 processors using the bottom-up view for the rou-
tine do gather.

Kogut-Susskind molecular dynamics code using the R algo-
rithm. We chose our input sizes so that as we increased the
number of processors, the work on each processor remained
constant. With weak scaling, one’s expectation is that the
overall running time should be the same on any number
of processors. In Figures 7 and 8 show screenshots of the
weak scaling analysis results for su3 rmd using relative ex-
cess work on 1 and 16 CPUs, displayed in the bottom-up
view. Overall, su3 rmd loses 33% efficiency.

By inspecting the bottom-up view, we were able to at-
tribute the loss of scaling to the routines wait gather and
do gather. As shown in Figure 7, wait gather is called from
a multitude of callsites and routines, accounting for 22% of
the excess work. The routine do gather is responsible for
10% excess work, and similarly is called from multiple call-
sites, as shown in Figure 8. It posts a series of non-blocking
receives, then performs blocking sends, while wait gather

waits for completion of the non-blocking receives.
Overall, we demonstrated that our scaling analysis tech-

nique can be applied as well to the analysis of weak scaling
parallel codes, and it pointed to a pair of communication
routine as the signficiant source of inefficiency.

4.3 Unified Parallel C
To evaluate the applicability of the expectations-based

scaling analysis to UPC codes, we analyzed the UPC ver-
sion of NAS CG. The CG benchmark uses a conjugate gra-
dient method to compute an approximation to the smallest
eigenvalue of a large, sparse, symmetric positive definite ma-
trix [4]. This kernel is typical of unstructured grid computa-
tions in that it tests irregular long distance communication
and employs sparse matrix vector multiplication. The UPC
version of NAS CG is described elsewhere [11]. The UPC
code was compiled using Berkeley’s UPC compiler [9].

In Figures 9, we present screenshots of the scaling anal-
ysis results for UPC NAS CG class B (size 75000), using

Figure 9: Strong scaling analysis for UPC NAS
CG class B (size 75000), on 1 and 16 CPUs for the
prefetching loop.

relative excess work on 1 and 16 CPUs. The main program
loses 63% efficiency, out of which the conj grad routine,
which performs conjugate gradient computation, accounts
for 60% excess work. By further analyzing the top-down
view of the calling context tree, we determined that a re-
mote data prefetching loop accounts for 33% excess work,
split between calls to upc memget with 25% inclusive excess
work, and local computation using the prefetch buffer, with
4% exclusive excess work. Next, calls to reduce sum account
for 19% inclusive excess work. The source code correlation
indicated that reduce sum has a suboptimal implementa-
tion, using barriers, as shown in Figure 10; a solution would
be to employ one of the UPC collective operations.

5. CONCLUSIONS
Differential analysis of call path profiles using performance

expectations is a powerful technique for pinpointing scala-
bility bottlenecks in parallel programs. It is applicable to a
broad range of applications because it is not limited to any
particular programming model. By analyzing performance
using a metric based on the fraction of excess work, our scal-
ability analysis focuses attention on what matters; absolute
scalability is less relevant than the overall cost incurred in
an execution due to lack of scalability.

Our case studies show that scalability analysis using ex-
pectations can highlight bottlenecks including inefficient im-
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Figure 10: Strong scaling analysis for UPC NAS CG
class B (size 75000) on 1 and 16 CPUs.

plementations of synchronization and reductions, inefficient
use of reduction primitives, and computation costs that
don’t scale appropriately. These examples demonstrate the
utility of our approach for pinpointing scalability bottle-
necks no matter what their underlying cause. When used
in conjunction with performance analysis based on expecta-
tions, our tools attribute scalability bottlenecks to full call-
ing contexts, which enables them to be precisely diagnosed.

We are in the process of refining HPCToolkit’s perfor-
mance measurement and analysis tools, which includes sup-
port for our scalability analysis, with the aim of deploying
them on the emerging petascale systems at the national lab-
oratories in the United States. We plan to use these tools as
the basis for helping applications harness the power of these
enormous machines.
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