N)
)
Check for
updates

Computer Architecture Education
at the University of Illinois

Josep Torrellas
Computer Science Department
University of Illinois at Urbana-Champaign, USA
torrella@cs.uiuc.edu
June 1998

Abstract

This short paper briefly describes the computer archi-
tecture courses at the University of Illinois Urbana-
Champaign. It then erxamines the opinions of com-
puter architecture undergraduate and graduate stu-
dents who have token these courses. Based on these
opinions, suggestions are made on how to improve the
curriculum.

1 Introduction

The University of Illinois at Urbana-Champaign has
for many years been a major center for computer ar-
chitecture education and research. It has educated
people who have later become industry leaders in com-
puter architecture or joined the faculty of other ma-
jor computer architecture universities. In addition, it
has excelled in computer architecture research. To list
a few areas, it has contributed with major advances
in parallel computer architecture, internet technology,
compilation techniques, performance evaluation, net-
working and operating systems.

Currently, the University has about 8 faculty mem-
bers whose main interest is computer architecture.
These faculty are associated with the Departments
of Computer Science and of Electrical and Computer
Engineering. Active areas of research include mi-
croarchitecture, processor, memory and I/0 architec-
tures, uniprocessor and multiprocessor systems design,
networking, compilation techniques, and performance
modeling and evaluation among others. In addition,
there are well over 10 other faculty with interests that
overlap with computer architecture.

The University has a large body of undergraduate
and graduate students in computer architecture. For
example, in Computer Science alone, every semester
roughly 150 advanced undergraduate or graduate stu-
dents take the intermediate course in computer archi-
tecture. Furthermore, every other semester, roughly

Copyright held by author

50 graduate students take the advanced course in com-
puter architecture. Similar numbers are recorded in
Electrical and Computer Engineering.

This short paper briefly describes the computer ar-
chitecture courses at the University of Illinois (Sec-
tion 2). Then, it examines what the undergraduate
and graduate students who have taken the courses
think about them (Sections 3 and 4). We finish with
a discussion in Section 5.

2 The Computer Architecture
Curriculum

The computer architecture courses are cross-listed in
the Computer Science and the Electrical and Com-
puter Engineering departments. Most of them are
taught by both departments, with some variations
across departments. A semester system is followed.

2.1 Undergraduate Courses

The undergraduate courses tend to emphasize basic
concepts and hands-on experience. The curriculum
starts with a course on logic design. This course is usu-
ally taken by sophomores. Its purpose is to train the
students in combinational and sequential networks,
data path and control unit design and related issues.
An important part of the course is a laboratory where
students use tools to generate and simulate circuits.

After logic design is mastered, junior students take
the course in basic computer architecture. This course
introduces the basic architecture concepts, including
assembly programming, pipelining and memory hier-
archies. The students are required to perform logic
design and simulation of several parts of a computer.

In parallel or after this course, students take a hard-
ware laboratory course. This course actually comes in
several flavors, and is taken by both undergraduate


http://crossmark.crossref.org/dialog/?doi=10.1145%2F1275182.1275183&domain=pdf&date_stamp=1998-06-01

and graduate students. The work involves the use of
field-programmable gate arrays (FPGA) or other com-
modity components to design systems like memory or
cache controllers, processors, memory systems or net-
work components. The purpose of the course is to gain
hands-on experience in building a system.

The last undergraduate course is computer organi-
zation. This course is taken by both seniors and first-
year graduate students. The goal of the course is to
give a solid base in computer architecture and give
insight into where the research areas are. The main
topics covered are pipelining, instruction level paral-
lelism, memory hierarchies, I/0, and multiprocessors.
The material is covered in a fairly high-level manner,
with an emphasis on quantitative analysis. The course
also includes exercises to design and simulate several
parts of a computer.

Finally, there is a VLSI design course taken by both
graduate and undergraduate students. The course
covers tools for design capture, simulation, verifica-
tion, logic minimization, and fiming analysis. Stu-
dents design and simulate various circuits. One of
them is a large system, for example a cache with its
control circuitry.

2,2 Graduate Courses

The graduate courses are high-level in nature and em-
phasize concepts. In general, they can be taken in any
order. Ome course teaches parallel programming. It
is taken by both graduate and advanced undergrad-
uate students. The course examines how to program
in the shared-memory, message passing, and data par-
allel paradigms. Students are required to write pro-
grams for several classes of parallel machines. They
get accounts in several machines from supercomput-
ing centers.

A second graduate course teaches advanced unipro-
cessor architecture. This course focuses on advanced
uniprocessor microarchitecture and compilation is-
sues. It covers issues like advanced instruction is-
sue, branch prediction, register renaming, advanced
pipeline design, functional unit organization, predica-
tion and advanced code optimization techniques.

A third graduate course teaches parallel architec-
tures. It covers the major architectural issues in cur-
rent parallel machines. Its focus is on issues, not
on descriptions of specific machines. It covers issues
like cache coherence protocols, latency-handling tech-
niques, multiple processors on a chip, multithreading,
processors in memeory, fast networking, operating sys-

tem support and new workloads. The students are
required to examine a research topic in detail.

Another graduate course teaches tools and tech-
niques for performance modeling, monitoring, evalu-
ation, tuning, and debugging of parallel machines. It
examines both analytical and experimental methods.
It describes existing performance tools.

In addition to these courses, there is a wide variety
of courses on special topics in computer architecture.
They are not offered on a regular basis, and the actual
topic depends on the interest of the faculty member
offering the course. Similarly, there is a wide vari-
ety of computer architecture research seminars, either
offered by the department or offered by individual re-
search groups within the department.

Finally, there are several other courses that comple-
ment the computer architecture education of gradu-
ate students. Some of the most important ones are
those on intermediate- and advanced-level compilers,
intermediate- and advanced-level operating systems
and programming languages.

3 . The Undergraduate Experi-
ence

We conducted an informal poll among undergraduate

" students who had taken the courses described. While

their opinions varied, several broad issues emerged.

The students valued the courses as formative, up
to date, and relevant to their later careers. They
especially valued the hands-on experience that they
gathered with the designs in the hardware laborato-
ries. Similarly, they valued the machine problems that
allowed them to evaluate the performance of differ-
ent parts of a computer through simulations. Finally,
they valued the broad-based view given to them by
the most advanced undergraduate course on computer
architecture. In that course, many issues are covered
from a high-level point of view, and their relationships
analyzed.

Asked about how to improve their education, they
suggested more hands-on problem sets that give them
insight into the practical implications of the concepts
studied. One example that they gave was problem sets
on the impact of code blocking on cache performance.
Making small changes to the code and seeing wide
performance variations on a real machine was an eye
opener for many students.

Another improvement would be providing them
with some research experience. The students who have



had a research experience are almost always enthusi-
astic about it.

Finally, students suggested increasing the fraction of
the instruction devoted to parallel systems. Many stu-
dents, after they graduate, are developing some type
of parallel software or testing hardware that supports
some type of concurrency.

4 The Graduate Experience

We also conducted the poll among graduate students
who had taken the graduate courses described. In gen-
eral, the courses are seen as very good vehicles for a
student to catch up with the state-of-the-art research
and advanced development in the field. In addition,
for the students with industrial experience, the courses
provide rational explanations to observed behaviors
and common-wisdom assumptions.

One of the most positive experiences is the use of
simulation and tracing tools in the courses. In addi-
tion to giving insight into how a CPU, cache or disk
performs, the simulations give a flavor of what re-
search is like. At the beginning of a graduate student’s
career, such experiences may trigger career decisions
that have a long-term impact.

A second resource very valued by the students is the
many research seminars that take place in the depart-
ment. While some of the seminars may seem too deep
for junior graduate students, it gives them some back-
ground and forces them to think in a broader mind
set. Large research-group meetings are particularly
valued.

There are, however, some weak points in the cur-
riculum that need to be addressed. One of them is that
there is not enough emphasis on low-level, VLSI-like,
implementation issues. One example is that caches
are studied in great detail from a high-level viewpoint,
including the effect of different organizations and pa-
rameters. However, how all these issues are actually
implemented in VLSI and how area and timing are
affected are insufficiently covered.

Another weak point is that there is some duplica-
tion of material across courses. Prominent examples
of topics suffering duplication are virtual memory and
networking. These topics are usually seen by students

in other courses. Given the amount of material that

needs to covered in the computer architecture courses,
any material that is already covered in other courses
needs to be eliminated from the former.

Finally, a criticism of the computer architecture dis-

cipline is that it is not rigorous enough. Many of the
methods and techniques used are based on rules of
thumb and tradition rather than provable optimal-
ity. In spite of the current emphasis on quantita-
tive analysis, computer architecture is seen as signifi-
cantly “softer” than other engineering disciplines and
sciences.

A related complaint is that the contents of the most
advanced computer architecture courses vary signifi-
cantly depending on the instructor of the course. This
may be due to the youth of the computer architecture
discipline, which prevents studying the issues with
enough perspective. As a result, not everybody agrees
on what the most important issues are. Alternatively,
it may be due to the relative lack of rigor that was
mentioned above.

5 Discussion

The analysis of the students’ opinions suggests some
ideas to improve the computer architecture curricu-
lum.

The undergraduate curriculum seems to need rela-

- tively few changes. We need to keep the laboratories,

for they provide valuable hands-on experience to the
students. We need to increase the emphasis on ma-
chine problems and homeworks that give insight into
the practical implications of the concepts discussed in
class. It can argued that this can be easily done given
the many simulation tools that we have available and
the fact that computing hardware is widespread. Fi-
nally, we should strive to give more research experi-
ences to undergraduate students. -

The graduate curriculum can certainly be improved.
In our effort to expose the students to the wide range
of new architecture ideas, we cannot neglect to cover
the arguably less-glamorous, low-level implementation
issues. A possible way to address this issue is to of-
fer courses that cover the boundary between computer
architecture and VLSI. This approach seems particu-
larly suitable at this time when large increases in the
number of on-chip transistors are driving architectural
changes.

It is important that junior graduate students gain
insight into what computer architecture research is,
early in their careers. One possible way to accomplish
this is to offer a course where students simulate parts
of a computer. The course could be organized into
several two-week long periods. Each of these periods
would be focused on one component of the computer,
for instance CPU, cache or disk. At the beginning of



each period, the instructor would discuss the funda-
mental issues associated with the corresponding com-
ponent. Then, the students would be provided with
a simulator of that component. They would have to
make some modifications to it and simulate certain as-
pects. This format would allow the students to gain
valuable insights without having to code too much.
This type of course can have high impact on junior
graduate students considering a career in computer
architecture.

Finally, there are the issues of relative lack of rigor
in computer architecture and wide variations in mate-
rial covered by different instructors. These issues are
more fundamental and harder to address. Maybe the
discipline is too young and changing too rapidly to
make significant progress on these fronts for now.

Acknowledgments

The author would like to thank all the students who
participated in the informal poll, especially Sujoy
Basu, Zhenzho Ge, Yi Kang and Vihn Lam.





