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ABSTRACT 
Renewed interest in computer architecture 
education in our university started three years ago.   
Since then, research framework in computer 
architecture has been established with emphasis on 
simulation of different computer architecture 
concepts.   One of the concepts, which have 
generated a lot of excitement, is the topic on 
pipelining.  Our research group had already 
developed a pipeline simulator based on the DLX 
architecture called DARC [1].  The simulator was 
used as a supplementary tool for both 
undergraduate and graduate students.  It was 
received favorably and at the same time, they gave 
feedbacks and suggestions on improving the 
simulator.   With those suggestions, DARC2, the 
2nd generation pipeline simulator based on DLX 
architecture was developed.   This paper describes 
the DARC2 system. 

Keywords 
Computer Architecture, undergraduate teaching, 
graduate teaching, pipelining, DLX Architecture 

1. INTRODUCTION 
In the past, computer architecture education was 
given less emphasis in our university.  But this has 
change in recent years due to the following 
reasons: 
a.) Creation of Academic Area Chair.  The 
Academic Area Chair is in charge of the 
development of the curriculum in their respective 
area.  In the past, faculty members who were 
assigned to teach a particular subject in an 
academic area, developed their own syllabi and 
course contents.  Thus, there is no continuity in the 
development of this area.  With the academic area 
chair, he is task to develop a research framework, 
which will serve as a roadmap for the development 
of its area.  He is also task to make sure that all 
appropriate textbooks and reference materials are 
up-to-date.  Computer Architecture is classified as 
one academic area. 
b.) Adoption of the computer architecture book 
“Computer Architecture, A Quantitative 
Approach” by Patterson & Hennessy [2].  The 
university has adopted many references but not 

textbook for computer architecture.  Finally, in our 
opinion, a good book in computer architecture. 
The current research framework of computer 
architecture in our university is focused on the 
development of simulation tools for the different 
concepts of computer architecture.  In an 
environment where financial resources are limited, 
finding less expensive alternatives is always 
welcomed.  With simulators, a quality-learning 
environment that is equivalent to the actual system 
itself is presented to students without incurring 
additional expenditures.   Initial project is centered 
on the pipelining concept based from the DLX 
architecture.  Many students are fascinated with 
the concept though they have a hard time 
visualizing them.  Initially, simulation is through 
Microsoft® Excel file, then some students 
volunteered to write a module, then another.  
Eventually, a research group was formed to 
develop a “full-blown” pipeline simulator based on 
DLX architecture called DARC.   Though there 
are simulation tools on this concept, but each 
institution is unique in their learning needs and the 
learning process of developing a pipeline 
simulation more than justify the development of 
our own pipeline simulation project. 

2. The DARC2 ORIGIN: DARC 
DARC2 is the 2nd generation of DLX 
Architecture Pipeline Simulator (DARC).  DARC 
is a windows-based software system with a built-in 
text editor.  It simulates a DLX code segment 
using different pipeline algorithms.  We defined 
Pipeline 0 as the un-pipelined version of the 
algorithm; Pipeline 1 as the pipelined version and 
Pipeline 2 as the modified pipelined to minimized 
branch hazard.  All of the algorithms are based 
from [2].  As an added bonus, dynamic scheduling 
algorithms - Scoreboarding and Tomasulo, are also 
provided. Users may enter up to 1,024 
instructions, with the provision for saving the 
program. It incorporates a compiler for identifying 
syntax errors, and a help file that aids the user in 
correcting such errors. Pipelining results obtained 
are displayed through a trace of the pipeline 
stages, while dynamic scheduling algorithms are 
processed in the standard table form.   
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The system uses two simulation modes: one-pass 
and stepwise. One-pass mode allows continuous 
execution. Stepwise mode, on the other hand, 
allows instructions to be simulated one at a time. 
The simulator can be configured to support either 
shared or separate memory as option to illustrate 
structural hazard.  Forwarding and non-forwarding 
are used as option to visualize data hazard.  While 
control hazard can be resolved using pipeline 
freeze, predict-not-taken and pipeline 2.  During 
simulation, hazards encountered are displayed and 
explained to the user. 
As seen, DARC demonstrates great aid in the 
study of the DLX architecture. The simulator was 
initially offered to around 160 students in four 
separate classes.  It was a sighed of relief for them 
since they could now visualize and experiment 
different options and situations in pipelining.  
They also suggested several changes, correction 
and enhancements.  One such change is that the 
memory contents should be displayed as 32-bit 
word instead of displaying it as byte.  Another 
suggestion is that there should be a provision for 
breaking out of infinite loops.   The system also 
does not support floating-point values in IEEE 
standards. Students also reported some 
inconsistencies with the results obtained.  They 
also suggest that besides that standard “pipeline” 
view, they could also visualize the flow of data to 
the individual components of the DLX architecture 
(i.e., pipeline registers, program counter) as well 
as the generation of the control signals.   These 
suggestions warrant a major design of the 
simulation system.  Thus, a new version of 
pipeline simulator is created – DARC2. 

3. DARC2: DLX ARCHITECTURE 
SIMULATOR 2 
DLX Architecture Pipeline Simulator 2 (DARC2) 
is an improved version of DARC.  It is a windows-
based system that utilizes graphical user interface 
to simulate both DLX pipelining algorithms and 
dynamic scheduling algorithms. Unpipelined 
instruction execution, Pipeline 1 and Pipeline 2 
algorithms are now illustrated both through the 
standard tracing of the pipeline stages and through 
an animated diagram of the DLX data path. The 
animation shows the data flow through the major 
components of DLX architecture.  DLX 
instructions are showed as they are processed, 
together with the control signals associated with 
them. Through the animation, the user is informed 
on how each internal component works and on the 
actual process of passing along data from each 
unit. To ensure consistency, all the diagrams are 
presented in the same manner as in [2], matching 
both the look and the function of the architecture. 
This improves the learning process and the 
usability of the simulator. On the other hand, 

results obtained through the dynamic scheduling 
algorithms – Scoreboarding and Tomasulo – are 
shown in the usual tabular form. 
As with the original version, there are two modes 
of simulation: one-pass and step mode.  Apart 
from this, the user also chooses among other 
simulation options specific of each pipelining 
algorithm. These options are forwarding, pipeline 
freeze, pipeline flush, predict-not-taken, and the 
use of unified or separate memory. The chosen 
options are greatly important since they set the 
conditions to be followed during the simulation 
process. 
Moreover, users are given the freedom to choose 
which memory address to be assigned as base 
address for the instructions in the program code. 
This is especially useful when unified memory is 
utilized. The system also enables the user to 
change the value of the registers and the memory 
at any point during the simulation. With this, users 
can test different register values without having to 
construct another program code. Changes made 
would apply to DLX instructions that are not yet 
decoded in the Instruction Decode (ID) stage. 
Another feature integrated to the system is the 
option for backtracking. DARC 2 allows values 
stored in the pipeline registers, as well as the other 
registers to be viewed at any clock cycle. From the 
final trace of the pipeline diagram, the user may 
choose the required clock cycle and the 
corresponding data path diagram showing data 
stored in the different components is displayed. 
During the simulation process, the system also 
gathers statistical data that aids in determining the 
effectiveness of the DLX program code used as 
input. The number of hazards encountered is 
considered and updated per clock cycle of the 
simulation, after which it is displayed. 
A text editor, syntax checker and help system are 
also incorporated into the system. The text editor 
allows the user to key in the DLX instruction code 
to be simulated. The syntax checker checks the 
instruction code for syntax errors and notifies the 
user if such are encountered, providing 
opportunity to correct them.  The help function 
provides topics and references related to the DLX 
Architecture. 

4. SYSTEM STRUCTURE 
The DARC 2 system is an integration of several 
major components that work together to achieve 
the requirements and specifications of the 
simulator. The interaction of these components - 
the text editor, the assembler and the function 
manager – is illustrated in the system’s block 
diagram. A more detailed description of each of 
these components follows. 
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Figure 1. Block Diagram of DARC2 

 
4.1 Text Editor 
The built-in text editor of the system, as illustrated 
in Figure 2, accepts a DLX assembly code 
consisting of at most 1,024 instructions. The 
program code comprises of instructions written in 
DLX mnemonics, constructed either from scratch 
or chosen among the initial sample programs 
installed in the system. The text editor also allows 
the user to save written assembly codes for later 
use. 
The program code entered contains not only DLX 
instructions, but also data variable declarations as 
well. The user defines all variable declarations in 
the.  DATA segment. All DLX instructions are 
included in the separate .CODE segment. 
Immediate addresses included within the 
instruction code itself may be in decimal, binary or 
hexadecimal form.  For decimal, the format is 
#immediate. For binary, the format is $immediate. 
Unless written in any of these formats, the 
immediate is considered as hexadecimal. 
After the user has keyed in the DLX instruction 
code through the text editor and clicking the 
Assemble button, illustrated in Figure 2, the 
assemble options window is displayed. The user 
inputs the base address of the instructions in the 
program code to be simulated. Upon which, the 
program code together with the value set as base 
address is passed on to the assembler for 
processing. 
4.2 Assembler  
The assembler module handles the processing and 
translation of the DLX mnemonics. The module is 
comprised of two sub-modules: the syntax checker 
and the opcode translator. After the user has 
created the instruction code through the text editor, 
the syntax checker checks the code for syntax 
errors. If no errors are identified, the program code 
is then passed on to the opcode translator. 
However, if errors arise, assembling is considered 
unsuccessful and error messages are displayed to 

the user. The opcode translator then gets the 
instruction mnemonics and translates them into 
opcodes, that are in turn used as input to the 
simulator. 

 
Figure 2. DARC 2 Text Editor 

4.2.1 Syntax Checker 
The Syntax Checker handles the instruction code 
written through the text editor. Each instruction 
line is checked for syntax errors. If there are no 
errors, the program code is passed on to the 
Opcode Translator. In the case that an error is 
encountered, the Syntax Checker takes note of the 
line number and proceeds with checking the 
remaining instructions, until the last instruction is 
reached. A message box is then displayed to 
inform the user of unsuccessful assembling and of 
the line numbers where the errors were found.  
Upon receiving the program code, the Syntax 
Checker identifies variable declarations by 
checking the presence of a .DATA segment. If 
such exists, variable declarations are checked for 
correctness. Format should be label = target 
address. Label names or variables can be 
alphanumeric. Special characters, except for the 
underscore (_), are not allowed. The labels and 
their corresponding target addresses are stored in a 
temporary array for reference during simulation. In 
case there is no defined .DATA segment, all text 
input are considered DLX instructions. 
Following the .DATA segment is the .CODE 
segment, consisting of the DLX instructions to be 
simulated. With each instruction, the DLX 
mnemonic is compared with each entry in a library 
of DLX instructions, called main.lib. The format 
of R-type instructions contained in the library is 
mnemonic : instruction type : opcode;. I-type and 
J-type instructions, on the other hand, have the 
format mnemonic : instruction type : opcode : EX 
: MEM : WB;. The opcode is an assigned two-digit 
binary code for each of the instructions. The EX, 
MEM and WB portions of the library entries 



pertain to the attributes of the particular instruction 
during simulation, specifically during the Execute 
(EX), Memory (MEM) and Write Back (WB) 
stages. In EX, the type of ALU operation (e.g., 
memory reference, register to register, register to 
immediate, or branch), the type of operation (e.g., 
basic arithmetic, logical comparison, shifting, 
conversion, move, or comparison) and the type of 
registers (e.g., immediate, floating-point or double 
precision) are all stated. Instructions may include 
additional details such as the sign of the result 
(e.g., signed, unsigned or floating-point) and the 
type of the extension (e.g., sign or zero). This is 
primarily due to the differences in the way 
instructions are executed. Thus, their parameters 
also vary. In the MEM portion, it is noted if the 
instruction is active during the MEM stage. For 
active instructions such as Load/Store instructions, 
the length of data to be loaded or stored (e.g., byte, 
halfword, word, single-precision floating point or 
double-precision floating point), together with the 
type and sign of the destination register, is 
indicated. Evidently, entries for other instructions 
inactive during this stage do not include such 
parameters. In WB, the type of operation done 
(e.g., register-to-register integer, register-to-
register floating-operation, register to immediate, 
among others) is specified. All information 
indicated in EX, MEM and WB portions of the 
library entries are accessed later on during 
simulation and are used as bases in the methods 
that are to be performed. 
Once the corresponding mnemonic is found, a 
library, called type.lib, which contains the different 
formats for each R-type, I-type and J-type 
instruction, is accessed. The library is searched for 
the corresponding mnemonic in order to find the 
correct format of that particular instruction, and 
compare the instruction against it. For r-type 
instructions, the format is mnemonic 
<operandtype datatype>,<operandtype 
datatype>,<operandtype datatype>;. 
Operandtype may be rd(destination register), rs1 
(source register 1) or rs2 (source register 2). 
Datatype may be i (integer), f (single precision 
floating point) or d (double precision floating 
point). Operands are enclosed in brackets and are 
separated by commas. For i-type instructions, 
instruction formats vary for every instruction 
available. For instructions with memory access, the 
immediate is checked if it has been declared. The 
temporary array previously initialized is searched 
for a match. If the label is not found, it is then 
checked if it decimal, binary, or hexadecimal, by 
checking the first character. # denotes a decimal 
immediate, while $ denotes a binary immediate. In 
any case, the immediate is treated as hexadecimal. 

Aside from ensuring that the instructions in the 
program code are of correct format, the validity of 
the operands used is also verified. Registers are 
ensured to reach until R31 only, and that R0 is not 
the destination field. For branch instructions, it is 
first determined whether the target address exists 
or not. For double precision floating point 
instructions, only even-numbered floating-point 
registers should be used. 
In general, the Syntax Checker is not case-
sensitive. The presence of commas and spaces 
between instruction fields are considered. 
Operands should always be separated by commas. 
Space in between the mnemonic and the first 
operand is important, while those in between 
commas and operands is negligible. 
4.2.2 Opcode Translator 
After the program code is checked for syntax 
errors, it is then passed on to the Opcode 
Translator. This sub-module decodes the program 
into codes conforming to the DLX instruction 
formats.  For every instruction in the program 
code, the DLX instruction library main.lib is 
accessed. Each entry in the library contains the 
instruction type and opcode of different instruction 
mnemonics. The format for each entry is 
mnemonic : instruction type : opcode. The 
mnemonic of the instruction being translated is 
compared against each entry in the library. Once 
the matching mnemonic is found, its 
corresponding opcode is obtained. If the opcode 
obtained is 00, a separated library, special.lib,  is 
accessed. This library contains the mnemonics and 
the corresponding opcode of DLX instructions that 
involve general purpose registers. If the opcode 
obtained is 01, the fparith.lib library is accessed. 
Fparith.lib contains entries of DLX instructions 
using floating-point registers. The entries 
contained in special.lib and fparith.lib follows the 
same format as those in the main.lib, each 
consisting of the mnemonic and a corresponding 
code. The difference is that, this code is for the 
function of that instruction, which constitutes the 
last 11 bits of the code. After obtaining the 
opcode, the operands are translated into their 
corresponding binary codes. 
To illustrate further the decoding process, suppose 
the instruction ADD R1, R0, R2 is to be decoded 
into its corresponding code. This instruction is an 
R-type instruction and follows the format, 
illustrated in Figure 3. 

Opcode source1 source2 destination
0 105 6 11 15 16 31

function
20 21

 
Figure 3. R-type instruction format 

 



From main.lib, the entry of the ADD instruction 
would be ADD : R-type : 00. The value of opcode 
field is then 00. Then, the value of the function 
field is divided into two – the first 5 bits, which is 
unused and has the value of 0, and the last 6 bits, 
which contains the opcode from the special.lib. In 
this case, the opcode of the ADD instruction is 00. 
Therefore, the final code of the instruction in 
binary code is shown in Figure 4. 

000000 00000 00010 00001
0 105 6 11 15 16 31

00000 000000
20 21

 
Figure 4. Sample ADD code 

If errors are encountered before decoding is 
finished, the translator terminates without 
completing and error messages are displayed to the 
user. If there is no error, an object file is created. 
This file contains the corresponding binary code of 
each of the instructions in the program and is 
forwarded to the function manager to execute the 
necessary algorithms. 
4.3 Function Manager 
The function manager serves as the core of the 
DARC 2 system. It handles all the algorithms that 
the system uses, and implements the specifications 
defined by the user for each algorithm. It receives 
as input the binary codes of all the instructions in 
the program, as generated by the assembler. 
It receives as input the object file generated by the 
assembler. The file contains the binary codes 
corresponding to each instruction of the program. 
The function manager analyzes the first 6 bits of 
each code and determines the type of instruction 
that will be executed and the type of operands that 
it will have. There are only three types of 
instruction: ALU operations, Load/Store 
operations and Branch operations. Look-up tables, 
containing the instructions under each type and 
their corresponding 6-bit code, are used in 
executing the different algorithms since there are 
different executions for different types of 
instructions. 
The function manager implements pipelining 
algorithms – unpipelined, pipeline 1 and pipeline 
2. After creating the codes, the count of the clock 
cycle starts. The memory, as well as registers and 
pipeline registers, are updated every clock cycle 
and whose values are stored in a text file. 
The configurations defined by the user among the 
simulation options have different effects and 
implementations on the algorithms. These 
differences are reflected more in the data path 
diagrams than the pipeline diagrams, since it is the 
data flow that differs mainly with each pipeline 
algorithm. The data path diagram and pipeline 
diagrams are illustrated in Figures 5 and 6. 

 
Figure 5. Output Window for Pipelining (Data 

Path Diagram) 
 

 
Figure 6. Pipeline Diagram of the Output 

Window  
Unpipelined execution, Pipeline 1 and Pipeline 2 
are each treated as modules. The modules contain 
different procedures each representing the pipeline 
stages. Each procedure involves only the 
components present within the stage. It accepts 
input, such as register values, from one stage, and 
the necessary methods are performed. The 
required output produced is then passed on to the 
next procedure. If it is pipelined execution, this 
does not necessarily mean the next pipeline stage. 
Thus, each stage is indifferent of what instruction 
is currently processed, and is concerned only with 
the methods it needs to accomplish. 



Before the simulation begins, the value of the 
Program Counter (PC) of the last instruction is 
noted. This is for purposes of monitoring the end 
of the simulation. Then, during the IF stage, the 
first Program Counter (PC) is used as input. The 
Instruction Register (IR) takes the value of the 
memory location pertained to by PC. This is the 
first instruction, whose first six bits are then 
analyzed in the ID stage. Since instructions differ 
mainly in the EX, MEM and WB stages, each 
instruction is treated differently. The conditions to 
be followed during these stages are indicated in the 
corresponding entry of each instruction in the 
library files main.lib, special.lib and fparith.lib. 
Each instruction entry found in any of these 
libraries include the EX After noting these 
conditions, appropriate methods are performed. 
After the WB stage, the Next Program Counter 
(NPC) is checked and is compared against the 
value of PC of the last instruction noted earlier. If 
the NPC is greater, this means that the end of the 
program code has been reached and that the 
simulation is finished. Else, the next instruction is 
fetched and the simulation continues. 
4.4 Infinite Loop 
An instruction is said to be an infinite loop when it 
has exceeded the intended frequency of execution, 
usually brought about by logical errors made. To 
ensure accurate results, the system is equipped 
with the ability to detect infinite loops. This 
facility is also presented in the simulation options 
windows, wherein the user defines the number of 
times a certain instruction is executed before it can 
be considered an infinite loop. This becomes the 
threshold of the frequency of every instruction 
execution, and is applicable to both unpipelined 
and pipelined algorithms. To monitor infinite 
loops, each instruction is then assigned a counter, 
which counts the number of times that particular 
instruction is executed during simulation. If the 
counter value exceeds the threshold defined, that 
instruction is said to be an infinite loop. Whenever 
an infinite loop is encountered in either the 
unpipelined or the pipelined algorithms, simulation 
is terminated for that particular algorithm. 
Simulation of other algorithms continues unless an 
infinite loop is also met. 

For instance, a user defines ten (10) as the 
frequency threshold in the simulation options 
window. This means that if a certain instruction is 
executed more than 10 times as indicated by the 
instruction’s counter, it will be considered an 
infinite loop. There may be cases wherein an 
infinite loop is encountered only in one pipeline 
algorithm and not in the others. An instruction may 
be loop infinitely in pipeline 1, but not in the 
unpipelined execution and in pipeline 2. In this 
case, only the simulation of pipeline 1 terminates; 

simulation of unpipelined execution and pipeline 2 
continues. 
5. CONCLUSIONS AND FUTURE WORK 
DARC 2 provides an effective environment for the 
simulation and exploration of the DLX 
Architecture. The animation facility in the system 
proves useful for allowing the students to visualize 
the interaction of different components employed 
in the DLX architecture. It allows students to 
understand better the flow of data through the 
architecture and how each instruction is executed, 
while removing the difficulty that is often 
experienced with manual tracing and redrawing of 
pipeline and data path diagrams.  With all the 
improvements incorporated in DARC2, it is 
hopeful that new batch of students will have a 
clearer understanding of the pipeline concept.  It is 
hopeful that this will boost the appreciation of 
studying computer architecture even higher and 
thus, creating great possibilities of constructing 
new architectures.   
Subsequent improvement involves adding 
advanced concepts such as superpipelining, 
superscalar execution, cache memory, branch 
target buffers and others to the simulators.  
Eventually, the simulator will evolve to a DLX 
Virtual machine.  This is similar to the “Java 
machine” concept.  In the virtual machine, actual 
DLX code will be executed in x86 machine.  The 
DLX Virtual Machine projects will involve 
modules relating to runtime operating system, a 
compiler module to convert high-level language to 
DLX and others.  With the research framework in 
place, our university is excited with the revival of 
Computer Architecture field. 
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