
DARC2: 2nd Generation DLX Architecture Simulator
Roger Luis Uy

De La Salle University
2401 Taft Avenue

Malate, Manila
+(632) 524-0402

uyr@ccs.dlsu.edu.ph

Marizel Bernardo
De La Salle University

2401 Taft Avenue
Malate, Manila

+(632) 524-0402
marizel@yahoo.com

Josiel Erica
De La Salle University

2401 Taft Avenue
Malate Manila

+ (632) 524-0402
Osie_22@yahoo.com

ABSTRACT
Renewed interest in computer architecture
education in our university started three years ago.
Since then, research framework in computer
architecture has been established with emphasis on
simulation of different computer architecture
concepts. One of the concepts, which have
generated a lot of excitement, is the topic on
pipelining. Our research group had already
developed a pipeline simulator based on the DLX
architecture called DARC [1]. The simulator was
used as a supplementary tool for both
undergraduate and graduate students. It was
received favorably and at the same time, they gave
feedbacks and suggestions on improving the
simulator. With those suggestions, DARC2, the
2nd generation pipeline simulator based on DLX
architecture was developed. This paper describes
the DARC2 system.

Keywords
Computer Architecture, undergraduate teaching,
graduate teaching, pipelining, DLX Architecture

1. INTRODUCTION
In the past, computer architecture education was
given less emphasis in our university. But this has
change in recent years due to the following
reasons:
a.) Creation of Academic Area Chair. The
Academic Area Chair is in charge of the
development of the curriculum in their respective
area. In the past, faculty members who were
assigned to teach a particular subject in an
academic area, developed their own syllabi and
course contents. Thus, there is no continuity in the
development of this area. With the academic area
chair, he is task to develop a research framework,
which will serve as a roadmap for the development
of its area. He is also task to make sure that all
appropriate textbooks and reference materials are
up-to-date. Computer Architecture is classified as
one academic area.
b.) Adoption of the computer architecture book
“Computer Architecture, A Quantitative
Approach” by Patterson & Hennessy [2]. The
university has adopted many references but not

textbook for computer architecture. Finally, in our
opinion, a good book in computer architecture.
The current research framework of computer
architecture in our university is focused on the
development of simulation tools for the different
concepts of computer architecture. In an
environment where financial resources are limited,
finding less expensive alternatives is always
welcomed. With simulators, a quality-learning
environment that is equivalent to the actual system
itself is presented to students without incurring
additional expenditures. Initial project is centered
on the pipelining concept based from the DLX
architecture. Many students are fascinated with
the concept though they have a hard time
visualizing them. Initially, simulation is through
Microsoft® Excel file, then some students
volunteered to write a module, then another.
Eventually, a research group was formed to
develop a “full-blown” pipeline simulator based on
DLX architecture called DARC. Though there
are simulation tools on this concept, but each
institution is unique in their learning needs and the
learning process of developing a pipeline
simulation more than justify the development of
our own pipeline simulation project.

2. The DARC2 ORIGIN: DARC
DARC2 is the 2nd generation of DLX
Architecture Pipeline Simulator (DARC). DARC
is a windows-based software system with a built-in
text editor. It simulates a DLX code segment
using different pipeline algorithms. We defined
Pipeline 0 as the un-pipelined version of the
algorithm; Pipeline 1 as the pipelined version and
Pipeline 2 as the modified pipelined to minimized
branch hazard. All of the algorithms are based
from [2]. As an added bonus, dynamic scheduling
algorithms - Scoreboarding and Tomasulo, are also
provided. Users may enter up to 1,024
instructions, with the provision for saving the
program. It incorporates a compiler for identifying
syntax errors, and a help file that aids the user in
correcting such errors. Pipelining results obtained
are displayed through a trace of the pipeline
stages, while dynamic scheduling algorithms are
processed in the standard table form.

Copyright held by author

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1275571.1275597&domain=pdf&date_stamp=2004-06-19

The system uses two simulation modes: one-pass
and stepwise. One-pass mode allows continuous
execution. Stepwise mode, on the other hand,
allows instructions to be simulated one at a time.
The simulator can be configured to support either
shared or separate memory as option to illustrate
structural hazard. Forwarding and non-forwarding
are used as option to visualize data hazard. While
control hazard can be resolved using pipeline
freeze, predict-not-taken and pipeline 2. During
simulation, hazards encountered are displayed and
explained to the user.
As seen, DARC demonstrates great aid in the
study of the DLX architecture. The simulator was
initially offered to around 160 students in four
separate classes. It was a sighed of relief for them
since they could now visualize and experiment
different options and situations in pipelining.
They also suggested several changes, correction
and enhancements. One such change is that the
memory contents should be displayed as 32-bit
word instead of displaying it as byte. Another
suggestion is that there should be a provision for
breaking out of infinite loops. The system also
does not support floating-point values in IEEE
standards. Students also reported some
inconsistencies with the results obtained. They
also suggest that besides that standard “pipeline”
view, they could also visualize the flow of data to
the individual components of the DLX architecture
(i.e., pipeline registers, program counter) as well
as the generation of the control signals. These
suggestions warrant a major design of the
simulation system. Thus, a new version of
pipeline simulator is created – DARC2.

3. DARC2: DLX ARCHITECTURE
SIMULATOR 2
DLX Architecture Pipeline Simulator 2 (DARC2)
is an improved version of DARC. It is a windows-
based system that utilizes graphical user interface
to simulate both DLX pipelining algorithms and
dynamic scheduling algorithms. Unpipelined
instruction execution, Pipeline 1 and Pipeline 2
algorithms are now illustrated both through the
standard tracing of the pipeline stages and through
an animated diagram of the DLX data path. The
animation shows the data flow through the major
components of DLX architecture. DLX
instructions are showed as they are processed,
together with the control signals associated with
them. Through the animation, the user is informed
on how each internal component works and on the
actual process of passing along data from each
unit. To ensure consistency, all the diagrams are
presented in the same manner as in [2], matching
both the look and the function of the architecture.
This improves the learning process and the
usability of the simulator. On the other hand,

results obtained through the dynamic scheduling
algorithms – Scoreboarding and Tomasulo – are
shown in the usual tabular form.
As with the original version, there are two modes
of simulation: one-pass and step mode. Apart
from this, the user also chooses among other
simulation options specific of each pipelining
algorithm. These options are forwarding, pipeline
freeze, pipeline flush, predict-not-taken, and the
use of unified or separate memory. The chosen
options are greatly important since they set the
conditions to be followed during the simulation
process.
Moreover, users are given the freedom to choose
which memory address to be assigned as base
address for the instructions in the program code.
This is especially useful when unified memory is
utilized. The system also enables the user to
change the value of the registers and the memory
at any point during the simulation. With this, users
can test different register values without having to
construct another program code. Changes made
would apply to DLX instructions that are not yet
decoded in the Instruction Decode (ID) stage.
Another feature integrated to the system is the
option for backtracking. DARC 2 allows values
stored in the pipeline registers, as well as the other
registers to be viewed at any clock cycle. From the
final trace of the pipeline diagram, the user may
choose the required clock cycle and the
corresponding data path diagram showing data
stored in the different components is displayed.
During the simulation process, the system also
gathers statistical data that aids in determining the
effectiveness of the DLX program code used as
input. The number of hazards encountered is
considered and updated per clock cycle of the
simulation, after which it is displayed.
A text editor, syntax checker and help system are
also incorporated into the system. The text editor
allows the user to key in the DLX instruction code
to be simulated. The syntax checker checks the
instruction code for syntax errors and notifies the
user if such are encountered, providing
opportunity to correct them. The help function
provides topics and references related to the DLX
Architecture.

4. SYSTEM STRUCTURE
The DARC 2 system is an integration of several
major components that work together to achieve
the requirements and specifications of the
simulator. The interaction of these components -
the text editor, the assembler and the function
manager – is illustrated in the system’s block
diagram. A more detailed description of each of
these components follows.

Assembler

Syntax
Checker

Opcode
Translator

Text Editor Function
Manager

DARC 2 SIMULATOR SYSTEM

USER
Pipeline diagrams

DLX data path diagrams

Scheduling diagrams

OBJ file

Program
code

Assemble
messages

Figure 1. Block Diagram of DARC2

4.1 Text Editor
The built-in text editor of the system, as illustrated
in Figure 2, accepts a DLX assembly code
consisting of at most 1,024 instructions. The
program code comprises of instructions written in
DLX mnemonics, constructed either from scratch
or chosen among the initial sample programs
installed in the system. The text editor also allows
the user to save written assembly codes for later
use.
The program code entered contains not only DLX
instructions, but also data variable declarations as
well. The user defines all variable declarations in
the. DATA segment. All DLX instructions are
included in the separate .CODE segment.
Immediate addresses included within the
instruction code itself may be in decimal, binary or
hexadecimal form. For decimal, the format is
#immediate. For binary, the format is $immediate.
Unless written in any of these formats, the
immediate is considered as hexadecimal.
After the user has keyed in the DLX instruction
code through the text editor and clicking the
Assemble button, illustrated in Figure 2, the
assemble options window is displayed. The user
inputs the base address of the instructions in the
program code to be simulated. Upon which, the
program code together with the value set as base
address is passed on to the assembler for
processing.
4.2 Assembler
The assembler module handles the processing and
translation of the DLX mnemonics. The module is
comprised of two sub-modules: the syntax checker
and the opcode translator. After the user has
created the instruction code through the text editor,
the syntax checker checks the code for syntax
errors. If no errors are identified, the program code
is then passed on to the opcode translator.
However, if errors arise, assembling is considered
unsuccessful and error messages are displayed to

the user. The opcode translator then gets the
instruction mnemonics and translates them into
opcodes, that are in turn used as input to the
simulator.

Figure 2. DARC 2 Text Editor

4.2.1 Syntax Checker
The Syntax Checker handles the instruction code
written through the text editor. Each instruction
line is checked for syntax errors. If there are no
errors, the program code is passed on to the
Opcode Translator. In the case that an error is
encountered, the Syntax Checker takes note of the
line number and proceeds with checking the
remaining instructions, until the last instruction is
reached. A message box is then displayed to
inform the user of unsuccessful assembling and of
the line numbers where the errors were found.
Upon receiving the program code, the Syntax
Checker identifies variable declarations by
checking the presence of a .DATA segment. If
such exists, variable declarations are checked for
correctness. Format should be label = target
address. Label names or variables can be
alphanumeric. Special characters, except for the
underscore (_), are not allowed. The labels and
their corresponding target addresses are stored in a
temporary array for reference during simulation. In
case there is no defined .DATA segment, all text
input are considered DLX instructions.
Following the .DATA segment is the .CODE
segment, consisting of the DLX instructions to be
simulated. With each instruction, the DLX
mnemonic is compared with each entry in a library
of DLX instructions, called main.lib. The format
of R-type instructions contained in the library is
mnemonic : instruction type : opcode;. I-type and
J-type instructions, on the other hand, have the
format mnemonic : instruction type : opcode : EX
: MEM : WB;. The opcode is an assigned two-digit
binary code for each of the instructions. The EX,
MEM and WB portions of the library entries

pertain to the attributes of the particular instruction
during simulation, specifically during the Execute
(EX), Memory (MEM) and Write Back (WB)
stages. In EX, the type of ALU operation (e.g.,
memory reference, register to register, register to
immediate, or branch), the type of operation (e.g.,
basic arithmetic, logical comparison, shifting,
conversion, move, or comparison) and the type of
registers (e.g., immediate, floating-point or double
precision) are all stated. Instructions may include
additional details such as the sign of the result
(e.g., signed, unsigned or floating-point) and the
type of the extension (e.g., sign or zero). This is
primarily due to the differences in the way
instructions are executed. Thus, their parameters
also vary. In the MEM portion, it is noted if the
instruction is active during the MEM stage. For
active instructions such as Load/Store instructions,
the length of data to be loaded or stored (e.g., byte,
halfword, word, single-precision floating point or
double-precision floating point), together with the
type and sign of the destination register, is
indicated. Evidently, entries for other instructions
inactive during this stage do not include such
parameters. In WB, the type of operation done
(e.g., register-to-register integer, register-to-
register floating-operation, register to immediate,
among others) is specified. All information
indicated in EX, MEM and WB portions of the
library entries are accessed later on during
simulation and are used as bases in the methods
that are to be performed.
Once the corresponding mnemonic is found, a
library, called type.lib, which contains the different
formats for each R-type, I-type and J-type
instruction, is accessed. The library is searched for
the corresponding mnemonic in order to find the
correct format of that particular instruction, and
compare the instruction against it. For r-type
instructions, the format is mnemonic
<operandtype datatype>,<operandtype
datatype>,<operandtype datatype>;.
Operandtype may be rd(destination register), rs1
(source register 1) or rs2 (source register 2).
Datatype may be i (integer), f (single precision
floating point) or d (double precision floating
point). Operands are enclosed in brackets and are
separated by commas. For i-type instructions,
instruction formats vary for every instruction
available. For instructions with memory access, the
immediate is checked if it has been declared. The
temporary array previously initialized is searched
for a match. If the label is not found, it is then
checked if it decimal, binary, or hexadecimal, by
checking the first character. # denotes a decimal
immediate, while $ denotes a binary immediate. In
any case, the immediate is treated as hexadecimal.

Aside from ensuring that the instructions in the
program code are of correct format, the validity of
the operands used is also verified. Registers are
ensured to reach until R31 only, and that R0 is not
the destination field. For branch instructions, it is
first determined whether the target address exists
or not. For double precision floating point
instructions, only even-numbered floating-point
registers should be used.
In general, the Syntax Checker is not case-
sensitive. The presence of commas and spaces
between instruction fields are considered.
Operands should always be separated by commas.
Space in between the mnemonic and the first
operand is important, while those in between
commas and operands is negligible.
4.2.2 Opcode Translator
After the program code is checked for syntax
errors, it is then passed on to the Opcode
Translator. This sub-module decodes the program
into codes conforming to the DLX instruction
formats. For every instruction in the program
code, the DLX instruction library main.lib is
accessed. Each entry in the library contains the
instruction type and opcode of different instruction
mnemonics. The format for each entry is
mnemonic : instruction type : opcode. The
mnemonic of the instruction being translated is
compared against each entry in the library. Once
the matching mnemonic is found, its
corresponding opcode is obtained. If the opcode
obtained is 00, a separated library, special.lib, is
accessed. This library contains the mnemonics and
the corresponding opcode of DLX instructions that
involve general purpose registers. If the opcode
obtained is 01, the fparith.lib library is accessed.
Fparith.lib contains entries of DLX instructions
using floating-point registers. The entries
contained in special.lib and fparith.lib follows the
same format as those in the main.lib, each
consisting of the mnemonic and a corresponding
code. The difference is that, this code is for the
function of that instruction, which constitutes the
last 11 bits of the code. After obtaining the
opcode, the operands are translated into their
corresponding binary codes.
To illustrate further the decoding process, suppose
the instruction ADD R1, R0, R2 is to be decoded
into its corresponding code. This instruction is an
R-type instruction and follows the format,
illustrated in Figure 3.

Opcode source1 source2 destination
0 105 6 11 15 16 31

function
20 21

Figure 3. R-type instruction format

From main.lib, the entry of the ADD instruction
would be ADD : R-type : 00. The value of opcode
field is then 00. Then, the value of the function
field is divided into two – the first 5 bits, which is
unused and has the value of 0, and the last 6 bits,
which contains the opcode from the special.lib. In
this case, the opcode of the ADD instruction is 00.
Therefore, the final code of the instruction in
binary code is shown in Figure 4.

000000 00000 00010 00001
0 105 6 11 15 16 31

00000 000000
20 21

Figure 4. Sample ADD code

If errors are encountered before decoding is
finished, the translator terminates without
completing and error messages are displayed to the
user. If there is no error, an object file is created.
This file contains the corresponding binary code of
each of the instructions in the program and is
forwarded to the function manager to execute the
necessary algorithms.
4.3 Function Manager
The function manager serves as the core of the
DARC 2 system. It handles all the algorithms that
the system uses, and implements the specifications
defined by the user for each algorithm. It receives
as input the binary codes of all the instructions in
the program, as generated by the assembler.
It receives as input the object file generated by the
assembler. The file contains the binary codes
corresponding to each instruction of the program.
The function manager analyzes the first 6 bits of
each code and determines the type of instruction
that will be executed and the type of operands that
it will have. There are only three types of
instruction: ALU operations, Load/Store
operations and Branch operations. Look-up tables,
containing the instructions under each type and
their corresponding 6-bit code, are used in
executing the different algorithms since there are
different executions for different types of
instructions.
The function manager implements pipelining
algorithms – unpipelined, pipeline 1 and pipeline
2. After creating the codes, the count of the clock
cycle starts. The memory, as well as registers and
pipeline registers, are updated every clock cycle
and whose values are stored in a text file.
The configurations defined by the user among the
simulation options have different effects and
implementations on the algorithms. These
differences are reflected more in the data path
diagrams than the pipeline diagrams, since it is the
data flow that differs mainly with each pipeline
algorithm. The data path diagram and pipeline
diagrams are illustrated in Figures 5 and 6.

Figure 5. Output Window for Pipelining (Data

Path Diagram)

Figure 6. Pipeline Diagram of the Output

Window
Unpipelined execution, Pipeline 1 and Pipeline 2
are each treated as modules. The modules contain
different procedures each representing the pipeline
stages. Each procedure involves only the
components present within the stage. It accepts
input, such as register values, from one stage, and
the necessary methods are performed. The
required output produced is then passed on to the
next procedure. If it is pipelined execution, this
does not necessarily mean the next pipeline stage.
Thus, each stage is indifferent of what instruction
is currently processed, and is concerned only with
the methods it needs to accomplish.

Before the simulation begins, the value of the
Program Counter (PC) of the last instruction is
noted. This is for purposes of monitoring the end
of the simulation. Then, during the IF stage, the
first Program Counter (PC) is used as input. The
Instruction Register (IR) takes the value of the
memory location pertained to by PC. This is the
first instruction, whose first six bits are then
analyzed in the ID stage. Since instructions differ
mainly in the EX, MEM and WB stages, each
instruction is treated differently. The conditions to
be followed during these stages are indicated in the
corresponding entry of each instruction in the
library files main.lib, special.lib and fparith.lib.
Each instruction entry found in any of these
libraries include the EX After noting these
conditions, appropriate methods are performed.
After the WB stage, the Next Program Counter
(NPC) is checked and is compared against the
value of PC of the last instruction noted earlier. If
the NPC is greater, this means that the end of the
program code has been reached and that the
simulation is finished. Else, the next instruction is
fetched and the simulation continues.
4.4 Infinite Loop
An instruction is said to be an infinite loop when it
has exceeded the intended frequency of execution,
usually brought about by logical errors made. To
ensure accurate results, the system is equipped
with the ability to detect infinite loops. This
facility is also presented in the simulation options
windows, wherein the user defines the number of
times a certain instruction is executed before it can
be considered an infinite loop. This becomes the
threshold of the frequency of every instruction
execution, and is applicable to both unpipelined
and pipelined algorithms. To monitor infinite
loops, each instruction is then assigned a counter,
which counts the number of times that particular
instruction is executed during simulation. If the
counter value exceeds the threshold defined, that
instruction is said to be an infinite loop. Whenever
an infinite loop is encountered in either the
unpipelined or the pipelined algorithms, simulation
is terminated for that particular algorithm.
Simulation of other algorithms continues unless an
infinite loop is also met.

For instance, a user defines ten (10) as the
frequency threshold in the simulation options
window. This means that if a certain instruction is
executed more than 10 times as indicated by the
instruction’s counter, it will be considered an
infinite loop. There may be cases wherein an
infinite loop is encountered only in one pipeline
algorithm and not in the others. An instruction may
be loop infinitely in pipeline 1, but not in the
unpipelined execution and in pipeline 2. In this
case, only the simulation of pipeline 1 terminates;

simulation of unpipelined execution and pipeline 2
continues.
5. CONCLUSIONS AND FUTURE WORK
DARC 2 provides an effective environment for the
simulation and exploration of the DLX
Architecture. The animation facility in the system
proves useful for allowing the students to visualize
the interaction of different components employed
in the DLX architecture. It allows students to
understand better the flow of data through the
architecture and how each instruction is executed,
while removing the difficulty that is often
experienced with manual tracing and redrawing of
pipeline and data path diagrams. With all the
improvements incorporated in DARC2, it is
hopeful that new batch of students will have a
clearer understanding of the pipeline concept. It is
hopeful that this will boost the appreciation of
studying computer architecture even higher and
thus, creating great possibilities of constructing
new architectures.
Subsequent improvement involves adding
advanced concepts such as superpipelining,
superscalar execution, cache memory, branch
target buffers and others to the simulators.
Eventually, the simulator will evolve to a DLX
Virtual machine. This is similar to the “Java
machine” concept. In the virtual machine, actual
DLX code will be executed in x86 machine. The
DLX Virtual Machine projects will involve
modules relating to runtime operating system, a
compiler module to convert high-level language to
DLX and others. With the research framework in
place, our university is excited with the revival of
Computer Architecture field.
6. ACKNOWLEDGEMENT
The author would like to acknowledge the 1st
generation DARC development team composed of
Mr. Jonathan Lee, Jonathan Ray Roque, John
Jerrick Sy, and Aldrich Nino Lorenzo. This
project, which is the development team’s
undergraduate thesis project also won grand prize
award sponsored by a local software institution.
7. REFERENCES
[1] Uy, Roger Luis, Lee, J., Roque, J.R. Sy, J.J.,

and A.N. Lorenzo. DARC. Undergraduate
Thesis, De La Salle University, Manila,
Philippines, 2003.

[2] Hennessy, John L., and Patterson, David A.
Computer Architecture: A Quantitative
Approach 3rd Edition. Morgan Kaufmann
Publishers, 2003.

