Check for
Updates

Creator: General and Efficient Multilevel Concurrent Fault
Simulation

P. L. Montessoro

CENS/CNR
Politecnico di Torino
Torino, Italy

Abstract

Accuracy, generality and efficiency are critical factors
when fault simulation of VLSI circuits is the target. The
concurrent algorithm is the only approach that satisfies
these requirements.

In the paper the minimal information concept is dis-
cussed, and its applications on the key algorithms for
concurrent event-driven simulation are shown. New ad-
vanced generalized techniques are presented for the first
time in a truly unified context. They are not related
to a specific abstraction level, and lead to an intrinsic
multilevel concurrent simulation algorithm. The imple-
mentation in the fault simulator Creator is described.

1 Introduction

Concurrent event-driven simulation [1] is a consolidated
technique to handle many simulation experiments at
once, as in the case of fault simulation. The key point
is the similarity of the experiments. If every experiment
differs from a particular one, arbitrarily chosen as ref-
erence experiment, only in a small part, then only the
reference experiment needs to be completely simulated.
Any other experiment is simulated only when its behav-
ior becomes different from the reference one. Different
behavior may occur when the faults propagate their ef-
fects.

To handle this differential representation of the exper-
iments dynamic lists are used. The network topology,
i.e., the elements and their connections, is represented
by a linked data structure, and for each element the
status is stored in a list of dynamic descriptors, one
for the reference experiment, the others for the concur-
rent ones. Concurrent experiments are identified by the
Concurrent IDentifier (CID). The reference experiment
has CID zero. Dynamic descriptors are ordered by as-
cending CID in the lists. When a concurrent descriptor
becomes equal to the reference one it can be converged,
i.e., removed from the list. It becomes implicit, since
its status is represented by the reference one. On the
contrary, if the behavior becomes different from the ref-
erence one, the implicit concurrent descriptor needs an
ezplicil representation. A new descriptor is therefore
created, and it is said to be diverged.

At a given time the status of some related network el-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copynight notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

S. Gai

Dip. di Automatica ed Informatica

Politecnico di Torino
Torino, Italy

ements, e.g., a gate and the elements connected to its
fanin, is represented by a set of lists. The key algorithm
to handle this kind of information is the Multiple List
Traversal (MLT).

Two versions of MLT, the Propagation MLT (P-MLT,
and the Evaluation MLT (E-MLT) are described in [4].
Each is optimized for a particular kind of elements, like
gates or Register-Transfer blocks, but their integration
in a multilevel environment is complex. As result, part
of the efficiency of the two standalone algorithms is lost
when integrated. Moreover, many additional techniques
are needed to speed-up the MLT: trigger inhibition, fra-
ternal event processing, list events, clock suppression.
For best results they should work in a general and uni-
fied environment.

In the following the generalized E-MLT version imple-
mented in the concurrent fault simulator Creator is pre-
sented. It can accomodate all the techniques mentioned
above. Moreover, high-level fault simulation is ad-
dressed, allowing edge sensitive inputs, compile-driven
evaluation functions and functional fault sources. Al-
gorithms, implementation techniques and experimental
results are compared with the ones of the state-of-the-
art concurrent fault simulator Mozart [4].

2 The Minimal Information Concept

Most of the known techniques for concurrent fault sim-
ulation use redundant information. Examples are jump
tables, that replicate large parts of the source code,
zoom words, that replicate the data, mode and code,
that replicates both.

Redundant information is stored in a more or less en-
coded form to remember what has been done, and to
make future decisions and computations less expensive.
In the zoom words, for example, the actual and fore-
casted values of a gate are stored together with the copy
of the values on its inputs. After a word is modified in
accordance with an input change, it is used to access
a zoom table that returns a pointer to the actions to
be undertaken. This of course minimizes the evaluation
time, but requires keeping up-to-date the zoom words.

The tradeoff of storing redundant information to speed
up retrieving vs. the cost of updating it must be care-
fully considered. Often this approach is convenient only
if limited to Essentially Permanent or Periodic Infor-
mation f{EPPI), and CPU time can be saved at the ex-
pense of storage.

When redundant information is included in concur-
rent simulation, its modification requires list traversals.
This is the case, for example, of the zoom words, that
should be stored in the concurrent descriptors. The P-
MLT algorithm avoids proliferation of list traversals by

28th ACM/IEEE Design Automation Conference®

Paper 10.5
160

©1991 ACM 0-89791-395-7/91/0006/0160 $1.50

http://crossmark.crossref.org/dialog/?doi=10.1145%2F127601.127653&domain=pdf&date_stamp=1991-06-01

pre-evaluating the descriptors while updating the zoom
word. However, this technique is feasible for gate-level
only, and cannot be generalized for higher abstraction
levels. Moreover, it is questionable if keeping redun-
dant information is really less expensive than reading
the same information in its original place only when it
is needed.

The minimal information concept consists in writing al-
gorithms that do not require redundant information and
that can take the needed decisions directly looking at
the original data. This approach greatly helps in ob-
taining very generalized algorithms.

3 The Status Concept

In the proposed approach, the status is represented by 4-
tuple (Vg, Te, Vr, Tr), where Vg is the current value,
Vr is the future value, and TF is the next activation
time, i.e., the time at which the element is scheduled to
change value. T¢, the last transition time, is the time
at which the last output change leading to the current
value occurred, and represents an innovation in respect
of coventional techniques.

In the following, the term active descriptor will denote a
descriptor related to an element whose output is sched-
uled to change. A non-active descriptor is called gquies-
cent. An element is said to be active if it has at least
one active descriptor in its list, quiescent otherwise.

4 List Events

A simplified version of the Mozart’s List Events [3] [4]
is used. Fraiernal events represent the simultaneous ac-
tivity of dynamic descriptors belonging to the same el-
ement. A list event is a tuple (E, T), where E is the
element affected by the activity and T is the time.

The time information T in a list event is the activation
time Tp in the corresponding dynamic descriptors, and
this could seem a redundancy. However, the events and
the descriptors belong to different contexts: the time
queue and the data structure representing the network
_ status. Time is the most natural key to build the rela-
tion (one-to-many) between them. Every other solution
would be more expensive.

5 Simulation Phases

In a Levelized Two-Pass (LTP) simulation algorithm [3]
three main phases can be identified: update, evaluation,
postprocessing although in some implementations some
phases are merged together. Fig. 1 shows the simulation
cycle and how the Creator’s modules interact.

5.1 The Update Phase

The update phase is driven by the events retrieved from
the time wheel: its main purpose is to change the value
of the active descriptors. In Creator it consists of a Sin-
gle List Traversal (SLT) of the active list. No other list
is traversed, since no redundant information is stored
and needs to be updated. Active descriptors are iden-
tified by using the time information TF of the future
status.

The SLT and the simplified list events make very natu-
ral and efficient the fraternal event processing. Fraternal
event processing is a technique to update all the active
descriptors on a list related to a set of fraternal events

Time Queue

Insert
Hst events

No more events for
current simulation time

Evaluation
(MLT)

Retriave
for avail\uadon

Enqueus zero-delay
slement for evaluation

Enqueve
for evaluation

Evaluation Queue

Figure 1: Creator’s modules

during the same traversal. It is evident the advantage of
using the list events, that represent the fraternal events
with a single descriptor. During the SLT, triggered by
the first list event extracted from the time queue for
that element at the current simulation time, the list is
visited looking for all the descriptors scheduled for the
current simulation time. The list itself is also flagged as
“updated at time T”, thus allowing immediate discharg-
ing of any eventual replicated list event for the same list
at time T.

During the update phase those concurrent descriptors
whose persistence time has expired are tested for con-
vergence.

5.2 The Evaluation Phase

According to the LTP simulation algorithm, each time
an active list is updated all the elements (and there-
fore their status lists) whose values depend on it must
be enqueued for the evaluation, ordered by levels. For
example, in gate level simulation all the elements con-
nected to the fanout are collected.

When a list is retrieved from the evaluation queue, the
future status must be computed for each concurrent de-
scriptor involved in the new activity. The key point is to
reach, for each concurrent experiment to be evaluated,
the sets of homogeneous descriptors, i.e., those descrip-
tors (explicit or implicit) whose status represents the
concurrent experiment to be evaluated. This is done
during the MLT.

5.2.1 The Positioning Algorithm

Since no redundant information is stored in the Cre-
ator’s data structure, all the fanin descriptors, i.e., the
dynamic descriptors belonging to the fanin elements,
must be accessed to perform the element’s evaluation.
Indeed, they contain the values needed to compute the
future status. Due to the differential representation of
the concurrent experiments they can be implicit or ex-
plicit; if implicit, the reference descriptor must be used.

After each evaluation another set of descriptors belong-
ing to the next concurrent experiment to be evaluated
must be accessed. The process terminates when the
end of all the lists is reached. To solve this positioning
problem the algorithm shown in Fig. 2 is used. Two
vectors of pointers are needed: FEwval-Vector and Tra-
verse_Vector. The former contains pointers to the de-
scriptors currently used to evaluate the element, the lat-
ter to the next descriptors on the lists.

Paper 10.5
161

E_MLT ()
{

Eval_Vector points to the reference descriptors;
Traverse_Vector points to the next descriptors;

0
% perform the evaluation using the descriptors
addressed by Eval_Vector;
next_CID = minimum CID in descriptors pointed
by Traverse_Vector;

if (end of the lists)
return;
or each fanin list

if Traverse_Vector[fanin_list]->CID
== next_CID

copy the pointer in Eval_Vector;
advance the pointer in Traverse_Vector;

1se

copy the pointer to the reference
descriptor in Eval_Vector;

}

diverge a descriptor if not explicit on the
list(s) to be evaluated;

evaluate ();
} while (TRUE);

Figure 2: The positioning algorithm during the Evalu-
ation MLT

It should be noted that the number of lists to be evalu-
ated that can be processed by the positioning algorithm
is not limited to one. This not only allows multioutput
elements and elements with an internal status different
from the output, but it is also very important when the
data size of an element output is too wide to be stored
in a single descriptor (e.g., a vector). The data can be
split and stored on some additional lists, that must be
evaluated together. Those lists do not differ from the
lists so far considered, and only the user interface and
the evaluation functions must be aware of the split. This
allows writing more simple and eflicient code for MLT
and related functions.

5.2.2 Evaluation Triggering Algorithm

During MLT useless evaluations must be avoided. A
typical case occurs when activity does not involve the
reference descriptors, and therefore only few concurrent
experiments must be evaluated.

This is achieved by using the extended status stored in
the descriptors. In fact, before starting an evaluation,
the last transition time of each fanin descriptor is com-
pared with the current simulation time. The evaluation
is triggered only if at least one transition time is equal
to the current time. In other words, the last transition
time is used as “activity flag”, with the benefit of be-
ing automatically updated at zero cost when the global
simulation time is incremented.

An important advantage is that the trigger activation
technique, in conjunction with the positioning algo-
rithm, does not need any special action in case of ac-
tivity of the reference descriptors. The active reference
descriptor is selected by the positioning algorithm when

Paper 105
162

the concurrent one is implicit, and the triggering algo-
rithm activates the evaluation looking at its last transi-
tion time field, no matter if it is reference or concurrent.

Experiments have also been performed to simulate
VHDL descriptions using the Retargetable VHDL Code
Generator (RVCG) by CAD Language Systems, Inc.,
(CLSI) [5]. An extension of the Creator’s trigger acti-
vation algorithm has been developed to handle signals
that can dynamically become triggering. Very low over-
head and good flexibility have been achieved.

5.3 The Postprocessing Phase

After a new value has been computed by an evaluation
function, it must be considered together with the status
of the evaluated descriptor to decide if, and for what
time, new activity must be generated. This is the post-
processing phase, and requires an independent SLT. It
could be merged with the evaluation phase, but it would
be more expensive. In fact, MLT’s data structure is
quite complex, and uses vectors of pointers. On the con-
trary, SLT needs very few pointers that can be allocated
in the CPU registers. Moreover, since the whole list is
visited, all the descriptors that become active for the
same time can be scheduled using the same list event.

In addition to the evaluation phase, also during the
postprocessing phase convergences are performed. In
both the cases, in fact, the status of the descriptors is
modified: current status during update, future status
during postprocessing.

6 Evaluation Functions, Fault Sources
and Functional Lists

Element evaluation in Creator is based on the evaluation
functions. They can be written in a very general way
thanks to the positioning algorithm, that collects in the
Eval_Vector the addresses of the locations where to find
the input data and to store the ouputs. The evaluation
functions can be hand-written, (e.g., for built-in primi-
tives), can load a User Defined Primitive precompiled in
a table (either combinational or sequential), or can be
automatically generated by the network compiler. The
last case is particular useful for the behavioral level. The
RVCGQG, for example, starting from the VHDL descrip-
tion generates C evaluation functions for the execution
of VHDL processes.

So far, the evaluation functions have been considered
related to the network elements, therefore representing
the behavior of the element in a generic experiment (ei-
ther reference or concurrent). Conventional concurrent
fault simulators have considered such a behavior “con-
stant” along the list, and have delegate the insertion
of faults and the observations to special descriptors in-
serted on the lists (e.g., fault sources, observers). Cre-
ator, on the contrary, uses a more general approach: the
functional lists. A functional list is composed by func-
tional descriptors, containing pointers to the evaluation
functions, and is traversed during MLT along with the
status lists. Fig. 3 shows the functional list for an AND
gate with 3 independent stuck-at faults.

Several advantages come from the functional list. In
particular, if the status of a faulty concurrent descrip-
tor becomes equal to the reference one, it can be con-
verged, whereas the conventional fault sources are al-
ways explicit, increasing the average list length. More-

A
L Ret. cD #
machine 1 o
Hst
were [
Ref.
machine 4
list
¢ L1 Ret. ciDwt~ coml—{ co s
;‘T"M A snd B 0 | [1endB]| |Aand1
'mcdin I~ Ret. cip #1 |~ cib &
et 1 0 0
Cref = Fres (ARes, Bres) = 1AND1 = 1
C1 = Fres (A1, Bref) = 0AND1 = 0
C; = F; () = 0
Cy = F4(Bgey) = 1AND1 = 1
Cs = Fs;(Apeyf) = 1AND1 = 1

Figure 3: dynamic descriptors and functional list of the
AND gate

over, functional and timing faults can be easily modeled,
just providing the correct evaluation functions.

7 Experimental Results

Some experimental results are reported in Tab. 1. All
the experiments have been run on a VAX 8700 under
VMS operating system. The circuits are taken from the
ISCAS ’85 and ’89 benchmark sets. Clock suppression
results refer to a very prototypal version of the imple-
mentation.

For fault-free simulation the number of events and eval-
uations per second are reported, For fault simulation
those items are replaced by the number of list events
(levt) and list evaluations (levl) per second. In fact, in
fault simulation the number of events per second is not
very meaningful. The concept of equivalent concurrent
event could be introduced, but it would lead to very high
numbers, not really related with actual measurement of
the simulation speed. The list evaluations count, on the
contrary, is just the extension to the concurrent simula-
tion of the evaluations count in logic verification.

The Mozart’s simulation times are reported too. Even
though the chosen circuits are described at the gate-
level, the best case for Mozart, Creator is faster in al-
most all the experiments, even when the clock suppres-
sion is disabled (Mozart cannot perform clock suppres-
sion). Moreover, the generality of the Creator’s imple-
mentation guarantees that when simulating higher ab-
straction levels only the evaluation cost is increased due
to the increased complexity of the evaluation functions.
About the complexity of the two simulators, the source
code of the Mozart’s kernel is more than 10 times bigger
than the one of Creator.

8 Conclusions and Future Directions

A generalized technique for concurrent fault simulation
has been presented. It is based on an advanced imple-
mentation of the MLT completely independent on the
abstraction levels of the network. It is comprehensive
of the most important techniques for concurrent sim-
ulation, strictly integrated without overhead. Future
directions of our research include electrical simulation,
accurate gate-level timing models, and fault simulation
of VHDL descriptions.

References

[1] E.Ulrich, T.Baker, “The Concurrent Simulation of
Nearly Identical Digital Networks,” Proc. 10th De-
sign Automation Workshop, June 1973, pp. 145-160,
and IEEE Computer, April 1974, pp. 1449-1473.

[2] E.Ulrich, “Concurrent Simulation at the Switch,
Gate, and Register Levels,” Proc. ?77? International
Test Conference, Philadelphia, November 1985

(3] S.Gai, F.Somenzi, E.Ulrich, “Advances in Concur-
rent Multilevel Simulation”, IEEE Transactions on
Computer-Aided Design, vol. 6, no. 6, November
1987, pp. 1006-1012

[4] S.Gai, P.L.Montessoro, F.Somenzi, “MOZART, a
Concurrent Multilevel Simulator”, IEEE Transac-
tions on Computer-Aided Design, vol. 7, no. 9,
September 1988, pp. 1005-1016

[5] “Retargetable VHDL Code Generator, Demonstra-
tion and Integration Test,” CAD Language Systems,
Inc., Rockville, MD

Exp. Fpatt. | #laults | Cover. | CPU time perform. CPU tiume perform. Mozart
(ck suppr.) | (ck suppr.)

88 256 0 - 2.49s 15985 evt/s - - 5.47 s
co2 23900 evl;s - - 7377 evt/s
C6288 256 7680 92.59 3591 s 2153 levt/s - - 59.69 s

2852 levl/s - - 1300 Sl)e8v1:‘/s
5526 1500 ck - 5.34s 5344 evt/s 2.74 s 9503 evt/s 11.98's
cycles 0 22054 evl//s 20733 ev{/s 3176 evt/s
5526 1500 ck 555 77.12 154.38 s 552 levt/s 115.40 s 711 levt/s 136.54 s
cycles 1160 levl/s 1005 levl/s | 645 levt/s
S359327 [455 ck 0 - 173.10 s 8140 evt/s 101.54 s 13687 evt/s 248.06 s
cycles 20107 evl/s 18495 evt/s | 176 evt/s
S35932 [455 ck 8451 88.79 1147.18 s 1791 levt/s 797.86 s 2565 levt/s 1330.73 s
cycles 3688 levl/s 3304 levt/s | 1541 levt/s

Table 1: Experimental results

Paper 10.5

163

