Check for
Updates

s Design Flow Management in the NELSIS CAD Framework
K.O. ten Bosch, P.Bingley and P.van der Wolf

Delft University of Technology
DIMES Design and Test Centre
Feldmannweg 17, 2628 CT Delft
The Netherlands

ABSTRACT

In this paper a new approach for design flow management is
presented. We describe how the input/output relations between
tools can be defined in a flowmap. For this, several concepts are
introduced, such as defining activities for tools, run-time activity
identification, hierarchical flow graphs, modification versus
extension, and the possibility to have loops in the flowmap. We
also address tool scheduling and the integration of design flow
management in the architecture of a frame-based design system.

1. INTRODUCTION

Powerful integrated design systems are required for the design of
complex electronic circuits. An essential base component of such
a design system is a CAD framework, which serves as a basis for
tool integration and provides the designer with assistance for data
organization and design management,

Because of the increasing number of tools and variety of
functions these tools perform, it becomes very difficult for a
designer to learn about the available tools, their specific behavior,
and the dependencies between tools. In addition, more advanced
support is required for managing the status of the design and
deciding on design steps to be performed.

It is for these reasons that it becomes necessary to extend
frameworks with design flow management capabilities, which
must be usable for a wide range of diverse tools. In this paper we
present a concept for design flow management and how it fits in
the architecture of a frame-based design system. The Nelsis
framework, which is an open CAD-framework supporting
versioning, hierarchy browsing, meta data management and easy
tool integration, serves as an example. The concept of flow
management however, is defined independent of the Nelsis
framework and is therefore also applicable in other environments.

Section 2 describes some general requirements for flow
management. One of them is the definition of dependencies
between tools, which is described in section 3. A data schema for
defining a flowmap is proposed in section 4. Section 5 and 6 are
concerned with tool scheduling and some examples of the
definition of a flowmap. Finally, in section 7 we will indicate
how the flow concept can be implemented to yield powerful run-
time capabilities.

This research was supported in part by the commission of the EC under
project 5082 (Jessi-CAD-Frame).

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

2. FLOW MANAGEMENT
2.1 Requirements

Several authors [1,2,3, 4] have proposed requirements for design
flow management, from which we summarize the following list:

1. Flowmap configuration: the description of tools and
dependencies between tools.

2. Tool scheduling: which tools can be invoked?

3. Automatic tool activation: tools which only perform a data
transformation should be executed automatically.

4. Conflict resolution: which tool to choose when several
possibilities exist to do the same task (e.g. 2 simulators).

5. Exception handling: when an error occurs in a design object
the designer should be able to jump back to the state where
this error was introduced (usually an editor).

6. Option and parameter selection: rules can be given to
describe the parameters for each tool.

7. Methodology: design steps described in a general, tool-
independent manner.

There are two aspects to executing design tools: performing a
design task (for instance, simulate a design), or producing data
(for instance, produce a plot file). In case a tool merely performs
a transformation from one data format to another, it can generally
be executed automatically and hidden from the user at the user
interface level. It is the primary focus of a designer to
successfully perform design tasks. Therefore it is more user
oriented to have a flow concept dominated by design tasks to be
performed, rather than data to be produced.

2.2 Configuration and Run-time Information

We divide the information concerned with flow management into
configuration information and run-time information.

o Configuration information specifies the available tools and the
relations between different tools. It is typically brought in by a
design methodology manager before starting the actual design
work. Configuration information is put in a flowmap.

o Run-time information is generated during the design process to
correctly administer the state of design. It can be exploited to
« monitor the consistency of design data,
o inform the user about the state of the design, and
o decide what tools can or should be run (tool scheduling).

The run-time information is updated after each tool run, while the
configuration information changes only when tools are added,
removed or replaced.

3. FLOWMAP DESIGN

Two ideas form the foundation of our flow concept regarding the
description of tools and the dependencies between tools:

1. In frame-based design systems, data generated by one tool
will be used as input for another tool. We model this

28th ACM/IEEE Design Automation Conference®

©1991 ACM 0-89791-395-7/91/0006/0711 $1.50

Paper 40.4
711

http://crossmark.crossref.org/dialog/?doi=10.1145%2F127601.127756&domain=pdf&date_stamp=1991-06-01

communication by treating tools as "functional units", which
can be connected by "channels” to describe data transfer.

2. By describing the communication between tools in terms of
abstract "datatypes"” file details are hidden from the user. So
the user may think in terms of "layout data", "test data”, etc,
while data of these datatypes is actually made up of several
related files.

To describe more formally how a flowmap is built of functional
units and channels, we introduce "ports™:

Definition: Each functional unit can have ports. A port is either
an input port or an output port of a functional unit and
corresponds to a specific datatype. Channels connect ports of the
same datatype.

From this definition it follows that it is possible that:

1. Several functional units need the same datatype as input,
which is produced by one other functionatl unit.

2. A functional unit needs a specific datatype as input, which
can be produced by one of several other functional units.

So a flowmap can have branches as well as merges, as can also be
seen from the example in figure 1. This is in contrast with the
approach of van den Hamer [5] where one input port can not be
connected to several output ports. In that way a situation where
layouts can be generated by several editors or synthesis tools, and
used by another tool, can not easily be modeled.

>FU24

P FU3 4

Figure 1. Flowmap with functional units (rectangles), ports
(diamonds) and channels (arrows)

3.1 Activities

At first sight it is easy to design a flowmap that describes the data
dependencies between tools. However, in practice the interaction
between tools is more complex, since it is not always possible to
know in advance how a tool will act, as tool behavior may vary
due to several external factors, such as

o command line arguments, like options and parameters
» other parameters, such as process technology

« input data files

» user interaction.

We will refer to these four categories as "tool variables”. Due to
the influence of tool variables tools may produce data of different
sets of datatypes for different runs. If these datatypes are not
fixed for a particular tool it is unknown after a tool run if the
appropriate data is available. Without this knowledge tool
scheduling is impossible.

We solve this problem by removing the dependencies of tool
variables. This is achieved by defining "activities" for tools such
that for each activity its behavior is well defined.

Definition: An activity is a functional unit, which can only run
when data is present for all its input ports and which produces
data for all its cutput ports every time it runs.

A 1ool needs to be split into different activities if the input/output
characteristics are different for these activities. On the other
hand, if a tool does not act differently concerning its inputs and
outputs, it may be split into activities, but there is no direct need

Paper 40.4
712

to do so. Generally, an activity will correspond to a design
function of a tool. However, it will be a decision of the
flowmap-designer to split a tool into several different activities.

3.2 Hierarchy of Flow Graphs

Another valuable concept in defining a flowmap, is the concept of
hierarchy. We introduce the term "flow graph” as a
generalization of activity.

Definition: A flow graph is either an activity, or consists of
several other flow graphs.

The flow graph hierarchy describes the instantiation of child flow
graphs in their parent flow graphs. A flowmap is a flow graph
without parents (the highest level in the hierarchy), activities are
flow graphs without children (the lowest level). At intermediate
levels all kinds of compound flow graphs can be constructed. The
only constraint for this hierarchy is that it is a directed acyclic
graph. The hierarchy depicted in figure 2a shows that flow graph
C is instantiated in several other flow graphs, that flow graph E is
instantiated more than once in the same parent flow graph and
that several flowmaps can be defined in the same hierarchy (FM1
and FM2). Channels are used to connect ports of a compound
flow graph to poris of its child flow graphs (see figure 2b).

a M1 FM2 b.

Compound
Flow
Graphs

Activities

Figure 2. Hierarchy of flow graphs

The hierarchy concept is valuable in several ways. For instance,
it is possible to define a "macro" by grouping a set of activities
which must be executed automatically in a predefined sequence.
Also, several similar activities may be instantiated in the same
compound flow graph to clarify that they have almost the same
function. Only one of them needs to be chosen by the user, or by
an earlier specified personal preference. Summarizing, the
hierarchy concept can be used to

o teduce the complexity at the user interface level by hiding
details in compound flow graphs.

¢ improve project organization by defining compound flow
graphs which correspond to high-level design tasks.

3.3 Properties of Ports

3.3.1 Input Ports

The definition of activity states that it consumes all its input
datatypes and produces all its output datatypes. Although this
concept is powerful enough to model all possible situations, we
introduce "optional” input ports for convenience, to prevent an
activity split when an input datatype is optional.

Definition: When an activity has an optional input port, it can run
with or without data of the datatype corresponding to this input
port. An input port which is not optional is "required”.

3.3.2 Output Ports

Many frameworks offer a version mechanism to support the
existence of different versions of the parts of a design. For
instance, in case of an editor modifying a design object, a new
version of this object is created. To support versioning it is
necessary to distinguish between two types of output ports:

modification ports and extension ports. By extension is meant
that the produced data is stored in an existing design object. For
example, an expanded netlist may be stored with the
corresponding schematic. In the case of modification a new
design object is created for storing the produced data.

When an activity generates data via an extension port, while data
of the same datatype already exists for the design object, the
existing data should be invalidated. For modification ports data is
never overwritten since it is stored in a new design object. So
modification ports never invalidate existing data. For extension
ports we define the following invalidation rule:

Invalidation rule: When an activity produces data via an
extension port while data of the same datatype already exists, the
existing data and all its derived data produced via extension ports
becomes invalid.

3.4 Loops

It is often necessary to define loops of activities in a flowmap.
However, we must prevent that the activities in a loop can never
be executed (deadlock). It is useless to define a loop (a cyclic
sequence of activities) in a flowmap, which has no starting point,
because in that case no activity of the loop can ever be executed.
The starting point of a loop is an activity which can be activated
when no other activity of that loop has been executed. This
results in the following definition:

Definition: A loop of activities is allowed if it contains at least
one starting point, that is, an activity for which each input port is
either an optional port or a port connected to an activity not
contained in the loop.

In figure 3, situation 1 contains a forbidden loop because the
activities can never be executed. The loop in situation 2 is
allowed since activity A can fill port IP1, thereby providing a
starting point for the execution of the activities in the loop.
Optional ports are represented by solid circles.

4 <
9 4

4 <>—-l
- ol

Figure 3. 1 contains a forbidden loop, the loop in 2 is allowed

Since loops are allowed in a flowmap, we have to refine the
invalidation rule. Consider the situation as shown in figure 4.
According to the invalidation rule, a run of activity A would
invalidate the data corresponding to the output ports OP1, OP2,
OP3 and OP4. So it would invalidate its own output data. The
invalidation rule is refined as follows:

Invalidation rule: When an activity produces data via an
extension port while data of the same datatype already exists, the
existing data and all its derived data produced via extension ports
becomes invalid, except for data produced by the activity itself.

3.5 Design Constraints

There is a relation between channels, input ports and freedom of
design. When input ports are added to activities, data of the
corresponding datatypes must be present in order to run the
activities. This specifies constraints. When channels are added to

OP3
Jorr | OP2 4

Op4

Figure 4. A invalidates OP1 and OP2

connect ports, these specify the possible ways to produce data of
the needed datatypes. This specifies a relaxation of constraints.
Because it is the responsibility of the flowmap designer to add the
appropriate channels and ports, this gives him the opportunity to
specify constraints that are not really necessary from a datatype
point of view. This can be used to implement for example, an
electronic signature. In this way design constraints, which should
otherwise be specified as external rules, can be defined as part of
the flowmap. An example of the specification of additional
constraints is given in section 6.

4. THE DATA SCHEMA

In Nelsis the OTO-D data modeling technique [6] is used to
define a data schema for the meta data (data about the design
data) [7]. It is possible to use this method also to define a data
schema in which the flowmap can be defined. From the
discussion in the previous sections follows that this schema
should at least contain object types such as, activity, flow graph,
port, channel and datatype. We will briefly explain the most
important object types in the data schema of figure 5.

Figure S. Data schema for defining a flowmap

4.1 The configuration part

Flow Graph: Either a leaf flow graph or a compound flow graph.
A compound flow graph may be a coded flow graph. A flow
graph may be defined to be automatic by the attribute Flag.

Coded Flow Graph: A flow graph which directly corresponds
with a tool. This tool may perform an arbitrary number of
activities related to this tool, or invoke other tools which perform
their activities.

Activity: A coded flow graph, for which the input/output
characteristics are known in advance. Activities are always leafs
in the flow hierarchy and leaf flow graphs are always activities.

Tool: An executable program, characterized by its Path,
ToolName, Options and CFI-Tool Abstraction attributes [8].

FlowHierarchy: This type is used to instantiate Child flow graphs
in Parent flow graphs, i.e. to define a hierarchy of flow graphs.

Port: A flow graph can have several ports. Each port is either an
input port or an output port, specified by the attribute InOut, and
corresponds to a datatype, specified by DataType. The Type of a
port specifies for an input port whether it is required or optional

Paper 40.4
713

and for an output port whether its type is extension or
modification.

DataType: Set of data to be handled together. A datatype belongs
to exactly one view type.

StreamType: A datatype contains no, one or several streamtypes.
A streamtype belongs to exactly one datatype.

Channel: Data transport channel for transporting data of one
specific datatype. A channel is connected to ports by a number of
producer links (at least one) and a number of consumer links (at
least one).

PortinstanceLink: A PortInstanceLink connects a channel to a
port of an instantiated flowgraph. If this port is an input port the
link is a consumer link otherwise it is a producer link.

PortLink: A PortLink comnects a channel to an uninstantiated
port. If this port is an input port the link is a producer link
otherwise it is a consumer link.

4.2 The run-time part

ActivityRun: When an activity has been executed this is
administered in the run-time part of the meta data. Besides the
activity that has been performed, the activity run has additional
attributes (not shown) like date, time, user and used options.

Transaction: An activity may work on certain design objects and
may produce certain design objects. A transaction relates design
objects to activity runs in such a way that an activity run may be
related to several design objects, and one design object may be
involved in several activity runs.

4.3 The data-management part

Design Object: The design object is the central object type in the
data management part. For a description of the data management
part of the data schema we refer to [7].

5. TOOL SCHEDULING

The flow manager should specify at each stage in the design
process which tools can be invoked. First of all we define the
semantics of "invoking" a flow graph.

Definition: Invoking a flow graph causes
« the corresponding tool to execute with the fixed options, if the
flow graph is a coded flow graph.
¢ to invoke several child flow graphs based on an invocation
algorithm, in other cases.

The goal of such an invocation algorithm will be to fill as many
output ports of the flow graph as possible. Since there may be
several ways to fill all output ports, due to parallel paths, it is
useful to define "execution paths" of a compound flow graph:

Definition: An execution path of a compound flow graph is a
sequence of child flow graphs which, when executed, fill all its
output ports.

For example, the compound flow graph D in figure 2b has two
execution paths (executing A and B, or executing C). For an
arbitrary flow graph the executable execution path(s) can be
searched for by a simple algorithm which traces recursively from
the output ports to the input ports. In the case where several
different execution paths exist, one could be chosen according to
a specified preference, or the user could be asked to make a
selection. Now that we have defined the invocation of a flow
graph, we give suggestions of how a user interface can show
whether a flow graph can be invoked.

Paper 40.4
714

Definition: A flow graph is executable iff
o all required input ports are filled, if the flow graph is an
activity.
o all its output ports can be filled, in other cases. When it has
no output ports, it is executable if all its children are
executable or have executed.

Because an activity fills all its output ports when it runs, there is a
strong equivalence between both cases. Note that a compound
flow graph is either not executable or completely executable. For
increased designer assistance we would like to know whether a
compound flow graph can be partly executed by executing one or
more of its children. Therefore we define:

Definition: A flow graph is partly executable iff
o it is executable,
o or it has at least one child which is partly executable.

We also have to define when a flow graph has executed:

Definition: A flow graph has executed iff
e an activity run is administered and its output data has not been
invalidated, if the flow graph is an activity.
o all its output ports are filled, in other cases. When it has no
output ports, it is executed when all its children have
executed.

Similar to the definition of partly executable, we define:

Definition: A flow graph has partly executed iff
o it has executed,
o or it has at least one child which has partly executed.

These definitions provide a basis for implementing tool
scheduling, to assist the designer in selecting design tasks to be
performed. When these mechanisms are used in the right way,
they can become powerful instruments.

6. FLOWMAP EXAMPLE

In this section we will describe some possibilities to define a
flowmap for the checking and simulation of a layout. Suppose
that our design environment consists of the following tools:

o LAYOUT EDIT: a layout editor

« EXP: expands a layout description

+ CHECK: a layout design rule checker

« EXTRACT: extracts a circuit description from a layout
¢ SIM1, SIM2, SIM3: several simulators

CHECK

p SIM1
LAYO!

EDIT P EXP 4

PEXTRA P SIM2

SIM3

Figure 6. A flowmap for layout design

In order to run either CHECK or EXTRACT on a layout, EXP
must have been executed. Simulating a layout can only be done
when the layout is extracted. If no compound flow graphs were
used, the flowmap would look like figure 6. A modification port
is represented by a solid square.

However, it is desirable to present the flowmap to the user as
simple as possible. So some related tools can be combined into a
compound flow graph. For instance, a compound flow graph
consisting of the three different simulators can be defined. Other

compounds DRC and EXTR can be built from EXP and CHECK,
and EXP and EXTRACT respectively. This would produce a
flowmap as shown in figure 7. The internals of the compound
flow graphs DRC, EXTR and SIM are also shown.

Figure 7. A flowmap with compound flow graphs

Note that the activity EXP is instantiated in two different
compound flow graphs. At the user interface level, this means
that at any moment both will have the same state and when EXP
in DRC is executed, both CHECK and EXTRACT become
executable. Because data management is done by the framework
kernel, this is handled correctly.

As described earlier, additional design constraints can be
specified in the flowmap. For instance, the flowmap designer
may wish to forbid the extraction of a circuit from a layout,
before the layout has been checked. This is described by creating
channels to connect an output port of DRC to an input port of
EXTRACT, as shown in figure 8.

Figure 8. DRC must be executed before EXTRACT
7. IMPLEMENTATION

7.1 Introduction

The presented design flow concept is claimed to be completely
general, in the sense that it does not contain any assumption about
a particular design environment. However, successful application
of the design flow concept strongly depends on the way it is
incorporated in the architecture of a design system. In the
following sections, we will describe some implementation
choices. The Nelsis IC Design System serves as an example.

7.2 The Nelsis Architecture

The architecture of the Nelsis IC Design System [9] is presented
in figure 9. It shows that tools, which may be either encapsulated
tools or tightly integrated tools, are integrated on top of a
framework. The framework provides various kernel services,

a———

Framgwork
TOOLS Design Tools!

Si%e =5
i

Figure 9. The Nelsis IC Design System architecture

such as version management and design transaction management,
implemented on top of a high level meta data management
module [10]. This module can be configured by a data schema,
such as the data schema presented in figure 5.

7.3 Implementation Alternatives and Activity Identification

The presented flow concept can be implemented in a CAD system
in various ways:

1. as a desktop-like framework tool only, which displays the
flowmap, handles user interaction, fires tools and maintains
the status of the design.

2. as a kemel framework service together with a desktop-like
framework tool as the user interface. The kernel service
monitors data accesses, to identify and correctly administer
activity runs. The administration is made available to the
user interface to display flows, present statuses and give
advice on tasks to be performed. Tools can then be started
from this user interface (but this is not necessary).

To decide on one of these alternatives we have to take the run-
time identification of activities into account. As described in
section 3.1 we permit multiple activities to correspond to a single
tool. When tool behavior depends on command line arguments,
parameters or input files, the activity can be identified before the
actual tool run. A desktop will then be able to identify the
activity by interpreting the tool variables. However, when tool
behavior depends on user interaction, a desktop can identify the
activity only after the actual tool run, if at all. Interactive tools
can perform complex tasks on multiple design objects, under
control of the designer. For these tools it is often not possible to
identify the activities by inspection of output data after a tool run.
Hence, only a desktop does not suffice. Since a kernel framework
service monitors data accesses while they are being performed by
the tool, it can identify and administer activities at run-time,
provided that the following constraint is satisfied:

When a tool implements several activities, these activities must be
recognizable by datatypes or command line arguments.

7.4 Implementation of Flow Management in Nelsis

Tools interact with the framework via the Data Management
Interface (DMI) [11] to obtain access to design data. By offering
a proper set of "anchor points”, the standard DMI greatly
facilitates software exchangeability and permits framework and
tools to evolve separately to a large extent. As an illustration of
how the DMI functions cooperate, we present a calling pattern in
figure 10. Besides cell names, modes, etc. such information as
view type, tool name, and streamtypes is passed as arguments via
the DMI functions.

Paper 40.4
715

DM_ENVIRON envkey;
DM_PROIJECT projectkey;
DM_CELL cellkey;
DM_STREAM streamkey;

envkey := dmInit (toolname);
projectkey := dmOpenProject (envkey, projid, openprojmode);
cellkey := dmCheckOut (projectkey, cellid, checkoutmode);
streamkey := dmOpenStream (cellkey, streamid, iomode);
dmPutDesignData (streamkey, format, arguments);
dmGetDesignData (streamkey, format, arguments);
dmCloseStream (streamkey, closestreammode);
dmCheckIn (cellkey, checkinmode),
dmCloseProject (projectkey, closeprojmode);
dmQuit (envkey);
Figure 10. DMI calling pattern

By matching the information obtained via the DMI against the
configuration information as modeled in the data schema,
activities can be identified and activity runs can be administered.
In Nelsis, design data is organized as design objects, and per
design object data is organized as one or more streams. For
example, streams may correspond to design files. Since each
datatype corresponds to a number of streamtypes, as administered
in the data schema of figure 5, activity identification can be based
on stream accesses performed by the tools.

Hence our implementation of the presented design flow concept
can handle encapsulated tools being run from a desktop, as well
as tightly integrated tools which at run-time determine the activity
to be performed. For example, it can handle interactive editors
that may perform multiple edit operations during a single run,
with cells being selected interactively by the designer. Also, it
can handle tools whose actual behavior is controlled by a
command file which is interpreted at run-time. Desktop systems
can handle this situation only by interpreting the command file
prior to the actual tool-run, which is cumbersome and inefficient.

8. RELATED WORK

In the HILDA environment [1] a mechanism based on
Predicate-Transition Petri nets is used to specify tools and their
interactions. Production rules with automatically updated
certainty factors, are used to give designers additional help.

The ULYSSES {3] environment uses a blackboard architecture
for the communication among CAD tools. A scheduler selects
the appropriate CAD tool based on current design goals. A
language is used to define tasks, subtasks and consistency rules.

Van den Hamer [5] defines a data flow based architecture for
CAD frameworks. It includes the description of dependencies
between tools together with a version mechanism which supports
derivation, modification and regression.

In contrast with these other approaches, which implement flow
management as a desktop-like tool or specify nothing about the
implementation in a framework, we presented a concept fto fit
design flow management in a frame-based design system.
Furthermore, by introducing activities, we specified how to cope
with tools that do not act straightforward at all with respect to
flow management. This makes our concept usable for a wide
range of diverse tools, while some of the other approaches have
difficulties in handling, for example, interactive tools. In our
approach the flowmap contains reliable information, which can be
used to reflect the exact state of the design at any moment. This
has enabled us to give definitions for tool scheduling, which can
be used to build a user interface for designer assistance.

Paper 40.4
716

9. CONCLUSIONS

In this paper a concept for design flow management in an
integrated design environment has been presented. It incorporates
a powerful concept for describing design flows, based on a
general approach, to minimize the restrictions on tools to be
incorporated. Design flows can be defined in terms of activities
and relationships between activities. A single tool is allowed to
perform one of many possible activities. Hierarchical design
flows are supported and loops are allowed under well-defined
conditions. Run-time identification and administration of
activities is handled in the most flexible way by implementing the
concept as a kernel framework service.

Definitions of the executability of tools have been presented. The
user interface of the flow manager can exploit the presented flow
concept to combine data browsing capabilities, status display
based on flows, tool scheduling advice and automatic tool
activation.

We are currently upgrading a first prototype, implementing the
presented concepts, for incorporation in existing user interfaces.
In addition we are looking for solutions to the problem of conflict
resolution, which occurs when there are parallel paths in the
flowmap. We are also investigating ways to incorporate design
methodology management, by extending design flow
management with concepts for management of design policies
and strategies.

References

1. F. Bretschneider, et al.,, ‘“‘Knowledge Based Design Flow
Management,’’ Proc. ICCAD - 90, (1990).

2. J. Daniell and S.W. Director, ‘*‘An Object Oriented
Approach to CAD Tool Control Within a Design
Framework,”” Proc. 26th DAC, pp. 197-202 (June 1989).

3. M. Bushnell and S.W. Director, *‘Automated Design Tool
Execution in the Ulysses Design Environment,”’ IEEE
Trans. on Computer-Aided Design 8(3)(March 1989).

4. A. Di Janni, ‘‘A Monitor for complex CAD systems,’’
Proc. 23rd DAC, pp. 145-151 (1986).

5. P.vanden Hamer and M.A. Treffers, ‘‘A Data Flow Based
Architecture for CAD Frameworks,”’ Proc. ICCAD - 90,
(1990).

6. JH. ter Bekke, ‘‘Database Design (in Dutch),”’ Stenfert
Kroese, (1988). English version: ‘‘Semantic Data
Modelling®’, Prentice Hall, ISBN 0-13-80605 0-9.

7. P. van der Wolf and T.G.R. van Leuken, ‘‘Object Type
Oriented Data Modeling for VLSI Data Management,”’
Proc. 25th DAC, (1988).

8. CFI Design Methodology Management TSC, ‘‘Tool
Abstraction Specification (Draft Proposal),”” Document 51,
Version 0.21, (February 5, 1991).

9. P. van der Wolf, P. Bingley, and P. Dewilde, *‘On the
Architecture of a CAD Framework: The NELSIS
Approach,”’ Proc. Ist IEEE European Design Automation
Conference, (1990).

10. P. van der Wolf, G.W. Sloof, P. Bingley, and P. Dewilde,
‘““Meta Data Management in the NELSIS CAD
Framework,”’ Proc. 27th DAC, (1990).

11. N. van der Meijs, P. van der Wolf, I. Widya, and P.
Dewilde, ‘A Data Management Interface to Facilitate
CAD/IC Software Exchanges,’’ Proc. ICCD *87, (1987).

