
Key Point Subspace Acceleration and Soft Caching

Mark Meyer John Anderson
Pixar Technical Memo #06-04b

Pixar Animation Studios

Figure 1: An example of the Key Point Subspace Acceleration (KPSA) technique applied to character animation: (Top) Left: The facial
model computed by posing all 2986 articulated facial points using our in house posing engine. Middle: The 170 key points computed by
our KPSA algorithm. Right: The facial model computed by posing only the 170 key points using our in house posing engine and then using
KPSA to generate the 2986 facial points. Using the KPSA technique results in an 8.7x speedup in posing time. (Bottom) Several different
poses generated by our KPSA algorithm are displayed to demonstrate the range of poses possible using the KPSA technique.

Abstract

Many applications in Computer Graphics contain computationally
expensive calculations. These calculations are often performed at
many points to produce a full solution, even though the subspace
of reasonable solutions may be of a relatively low dimension. The
calculation of facial articulation and rendering of scenes with global
illumination are two example applications that require these sort of
computations. In this paper, we present Key Point Subspace Accel-
eration and Soft Caching, a technique for accelerating these types
of computations.

Key Point Subspace Acceleration (KPSA) is a statistical accelera-
tion scheme that uses examples to compute a statistical subspace
and a set of characteristic key points. The full calculation is then
computed only at these key points and these points are used to pro-
vide a subspace based estimate of the entire calculation. The soft

caching process is an extension to the KPSA technique where the
key points are also used to provide a confidence estimate for the
KPSA result. In cases with high anticipated error the calculation
will then “fail through” to a full evaluation of all points (a cache
miss), while frames with low error can use the accelerated statisti-
cal evaluation (a cache hit).

Keywords: Animation, Subspace Analysis, Statistical Models

1 Introduction

Many applications in graphics require expensive calculations to be
performed at many different locations. Facial articulation and ren-
dering global illumination are two such example applications - fa-
cial articulation computing the deformation of each point on the
face, and rendering computing the global illumination at many dif-
ferent locations in the scene. Although these computations are per-
formed at many different locations, there is often correlation be-
tween the solution values at these locations - they are not indepen-
dent. Due to this fact, recently there has been a great deal of interest
in the use of statistical models / subspace methods for many calcu-
lations in graphics; a sampling of which is described below.

Subspace methods have shown to be promising for character artic-
ulation and deformation tasks. One line of research illustrated by
Lewis [2000] and Wang and Phillips [2002] involves the creation
of a kinematic articulation model that is trained from poses which
can be generated from either physical simulations or hand corrected
posed models. The Lewis approach is based on a pose based inter-

polation scheme in animation variables while Wang and Phillips
base their approximation on multiple coefficient weighting of the
positions of points in various skeletal articulation frames. Both of
these approaches are more general than our technique since they do
not require the posing of key points, a limitation that precludes the
use of models depending upon history based simulation for posing.

The weakness of the kinematic schemes is related to their generality
- the required training sets for these methods can be very large and
it is essentially impossible to place bounds on the errors of the re-
constructions when poses are seen that are far from those included
in the training set.

The advent of programmable graphics hardware has enabled the
development of several subspace based deformation techniques that
run in real time with minimal main CPU costs [James and Pai 2002;
James and Fatahalian 2003; Kry et al. 2002]. EigenSkin [Kry et al.
2002] is one such technique for real time deformation of character
skin. EigenSkin uses principal component analysis to compute a
basis for the skin displacements resulting from perturbing each joint
of a model. Given several example poses consisting of joint angles
and skin displacements, specific joint angle values can be associ-
ated with coordinates in the basis space by projecting the skin dis-
placement into the basis. Skin displacements for novel joint angle
configurations are computed by using the joint angles to interpolate
these example basis coordinates, and the resulting coordinates de-
termine a displacement represented in the subspace formed by the
basis.

Subspace methods have also been beneficial in Rendering and Illu-
mination computations as shown by research in Precomputed Radi-
ance Transfer [Sloan et al. 2003] and its variants such as Precom-
puted Local Radiance Transfer [Kristensen et al. 2005]. Precom-
puted Local Radiance Transfer (PLRT) is a method for accelerating
the computation of illumination in a scene. First, the illumination is
computed for several example configurations (light positions, etc.)
the resulting illumination is stored at each vertex as the coefficients
to a spherical harmonic basis. Clustered PCA is then performed
on these coefficients to create a subspace and the subspace coordi-
nates (projection onto the basis vectors of the subspace) of the ex-
ample configurations are computed. The illumination from a novel
lighting position can be computed by using the light position to in-
terpolate the subspace coordinates of nearby example lights, and
the resulting subspace coordinates determine the illumination rep-
resented in the subspace.

Subspace techniques are also often used in machine learn-
ing and computer vision applications such as Facial Recogni-
tion/Reconstruction [Hwang et al. 2000], Facial Inpainting [Mo
et al. 2004], and Expression Mapping [Zhang et al. 2003]. Zhang et
al. [2003] use a subspace method to synthesize facial expressions
from a small set of tracked feature points on a performer’s face.
These feature points are chosen by hand using knowledge about a
performer’s face. The subspace method allows the systhesized char-
acter to have much greater detail then the small number of tracked
feature points would produce on their own.

Our Key Point Subspace Acceleration (KPSA) scheme is similar to
other subspace techniques in that it computes a subspace from ex-
amples and uses this subspace model to accelerate the correspond-
ing calculation. A key component of our technique is that instead
of using animation variables such as joint angles and light positions
to drive the subspace model, we instead use the samples of the cal-
culation itself (skin displacements, illumination, etc.) at a set of
carefully chosen key points to drive the projection. It is the use of
these key points that gives our subspace based acceleration tech-
nique many of its unique properties and advantages as described in
the remainder of the paper.

Contributions

The contribution of this paper is a general acceleration/caching
scheme with the following important properties:

• Generality – the technique does not use domain specific
knowledge and is applicable to several different applications
(facial articulation, global illumination, etc.). Additionally,
the acceleration/cache structure is keyed on the output of the
calculation at a small set of key points, which means that the
cache is independent of the parameterization of the input vari-
ables.

• Automatic Key Point Selection – The key points are au-
tomatically selected (again, without domain specific knowl-
edge). The key points are chosen such that the behavior of
the key points describes all the important nonlinearities of the
problem.

• Soft Caching – by computing an error estimate using the key
point values, the subspace acceleration scheme can be used
selectively - like a statistical or soft cache. In cases with high
estimated error, a “cache miss” occurs causing the full calcu-
lation to be performed at all points, while in cases with low es-
timated error, the subspace estimate can be used. This cache
like behavior allows the subspace scheme to be used more
widely than using a subspace scheme directly.

Taken together, this results in a powerful acceleration technique for
certain Computer Graphics applications.

2 KPSA and Soft Caching

This section describes the KPSA and Soft Caching (SC) tech-
nique in more detail. Although KPSA-SC is a general acceleration
scheme, for clarity and concreteness, the text and examples given
in this section will often refer to the example application of facial
articulation. A second application is shown in section 3.

A schematic block diagram of the general statistical modeling prob-
lem is shown in Figure 2. In this general model we have a core
black box that we would like to train to accept the animation vari-
ables (posing controls, light positions and properties) and produce
the desired outputs (point positions or illumination values). The
problem with this most general form is that the relationships be-
tween the input controls and the outputs can be highly nonlinear -
for example it is common to use an articulation variable to set either
the sensitivity or pivot point of another variable - an extremely non-
linear process that is essentially impossible to discover statistically
from a training set.

Statistical
Model

Animation
Controls

Posed
Points

Figure 2: Block Diagram of a basic statistical modeling system for
animation: The trained statistical model accepts as input the an-
imation variables and produces the posed points as output. Un-
fortunately, since the relationships between the animation variables
and the posed points can be extremely nonlinear, both the statistical
model as well as the training set must account for these complex
nonlinearities.

In order to deal with these nonlinearities, the KPSA approach is
structured slightly differently as shown in Figure 3. In a preprocess,
a training set is used to create a statistical subspace model as well

Posing
Engine

Animation
Controls

Posed
Points

KPSAKey
Points

Figure 3: Block Diagram of the KPSA system applied to animation:
Rather than taking the animation controls directly as input, KPSA
instead computes the positions of a small set of key points using
the standard posing engine and then takes these posed key points
as input. KPSA then uses the values of these key points to produce
all of the posed points. The advantage here is that if the key points
are chosen such that the behavior of these key points describes all
of the important nonlinearities of the problem, the statistical model
can compute the remaining point values without having to deal with
these nonlinearities.

as a set of key points. At runtime, the full computation is performed
only at these key points. The computed values are then projected
onto the subspace (via least squares projection) and the resulting
pose space coordinates are used to generate values for all points
(including the key points).

More formally, we wish to approximate a nonlinear function f using
a linear subspace:

f ≈ f̂ = Ap (1)

where f is the function to approximate (represented as a column
vector: fi is the displacement of point i for articulation, or the color
of point i for rendering), f̂ is the corresponding subspace approxi-
mation, A is the subspace matrix of size numPoints×numBasisVecs
(whose columns ai are the basis vectors), and p are the subspace co-
ordinates.

At runtime, the subspace coordinates are computed by first calcu-
lating the function f at a small subset of key points producing fkey.
These values are then projected onto the subspace to minimize the
error ‖fkey− f̂key‖:

p = argmin
p

‖fkey−Akeyp‖ (2)

where fkey, f̂key and Akey are versions of f, f̂ and A that contain only
the rows corresponding to the key points. Note that by using values
computed at the key points to drive the subspace model, we can
avoid having to discover and model the nonlinear interaction of the
animation variables and use a much simpler and more robust model
for the remaining points.

Since we have chosen to use a model that is linear in the key point
values, we should choose our key points from the training set such
that the behavior of the key points describes all of the important
nonlinearities of the problem. It is of course quite possible that
there may be new nonlinearities that are not seen in the training
set and that is where the need for the soft caching extension arises.
When using the soft caching extension, an error estimate due to the
subspace approximation is computed using the key points. If the
error estimate is high, the cache misses and a full computation is
performed at all points. When the error estimate is low, the values
are computed using the more efficient subspace model.

In the remainder of this section we will discuss the key issues: how
we select the subspace and key points, and how we provide error
estimates to be used in the fail through process.

2.1 Building the Subspace

In order to build the subspace, we start with a training matrix T
whose columns ti correspond to example calculations or “poses”
of f. This matrix therefore has dimensions numPoints×numPoses.
We then use Principal Component Analysis (PCA) to determine the
values for the subspace basis vectors ai. We use only the M most
significant basis vectors to produce our M-dimensional subspace A.
M is chosen such that the subspace projection error of the training
set is acceptably small.

It should also be noted that once the final number of basis vectors is
chosen, numBasisVectors = M, the ai vectors are not uniquely de-
termined by the minimization of error. The only critical property is
the subspace spanned by the basis vectors. In fact the multiplication
by any nonsingular matrix will result in vectors that span the same
space and the multiplication by any orthogonal M dimensional ro-
tation matrix will result in an orthonormal basis for the subspace.
This property is quite useful and is frequently exploited in the factor
analysis community [Harmon 1976] to generate basis vectors that
are more “local” in some sense than the original basis vectors. We
will take advantage of this when we select the key points.

2.2 Selection of Key Points

When using the KPSA technique there are two potential sources of
error. The first of these is the projection error that results from the
fact that the target pose itself may not be in the subspace:

epro j = ‖f−A ppro j‖ (3)
ppro j = argmin

p
‖f−A p‖ (4)

The second is the cueing error - the error that results from the fact
that the subspace location p determined from the least squares fit
to the key points (Equation 2) may not be the closest point in the
subspace to the desired pose:

ecue = ‖A ppro j −A p‖ (5)

Cueing error is due to using an inadequate set of key point val-
ues as distance proxies. We have derived an iterative approach for
selecting the key points that attempts to minimize this cueing er-
ror. Although there are many different techniques for choosing key
points (e.g. [Shashua and Wolf 2004]), our technique is relatively
simple and has worked well in our applications.

There are often critical fiducial points identified by the character
(or lighting) designer. We initialize our key points to contain these
points. For rendering applications we may also add a sparse grid of
points to ensure that no large regions are devoid of key points.

Our approach then generates a block of basis vectors, typically 10
to 20. The basis vectors often have large support with multiple
maxima which makes directly examining the raw basis vectors to
choose the key points problematic. For example, Figure 4 (top)
shows a few of the basis vectors computed from an articulation ap-
plication. Notice how the basis vectors represent global motions of
the face.

Although it is difficult to use the raw basis vectors to choose the
key points we can transform them to make them more useful. As
mentioned in the previous section, we can apply a rotation to the
basis vectors without changing the spanned subspace. We use the
Varimax method [Harmon 1976] which computes an orthogonal ro-
tation that maximizes the ratio of the 4th moment to the 2nd mo-
ment of the basis vectors, a measure of locality. Intuitively, this

Rest Pose

Figure 4: An example of some of the basis motions computed from a facial articulation application. (Top) Raw basis vectors computed by
PCA. Notice how the motion is quite global. (Bottom) Basis vectors after Varimax rotation. Notice how the motions are much more localized
leading to easier selection of representative points.

rotation localizes the basis vectors by maximizing the variation of
a small set of points in each basis vector (in turn driving the vari-
ation of the other points towards zero). Figure 4 (bottom) shows
a few of the basis vectors after the Varimax rotation. Notice how
the motions are much more localized making it easier to determine
representative points for each of the motions.

Once we have a set of suitably conditioned basis vectors we choose
two points from each basis vector v, the first point (i) is the point
with the largest magnitude in the basis vector and the second (j)
is the point whose inner product with our first point has the largest
negative value:

i = argmax
k

‖vk‖ (6)

j = argmin
k

(vi ·vk) (7)

This type of technique is used in many fields to discover statistical
structure and is known as teleconnection analysis. This technique is
essentially choosing the point that moves the most when this (local-
ized) basis function is excited as well as the most negatively corre-
lated point. For example the rotated basis vectors shown in Figure
4 (bottom) would produce key points on the brow, eyelid and lips.

Given this set of key points and the subspace basis vectors, we can
compute a KPSA approximation for each of the columns of the
training matrix T. Subtracting these approximations from the cor-
responding columns of T creates a residual matrix that represents
the error (both projection and cueing error) when approximating the
training set using the current set of key points. We then repeat the
key point selection process to add additional key points, using the
residual matrix to compute the basis vectors. Using the residual in
this iterative process allows the key point selection to choose points
to reduce the cueing error.

The process terminates when the maximum residuals reach an ac-
ceptable error bound. A subtle but important point is that the basis
vectors constructed during this phase in the second and later batches
should now be discarded - all basis vectors used for the runtime
KPSA reconstruction should be computed from the initial training
matrix T.

The process of selecting key points can be summarized as follows:

keyPoints = initial user defined key points
resid = T
Iterate until resid is small:

Compute basis vectors from resid
Varimax rotate the basis vectors
Choose the control points from each rotated basis vector (excluding points that

are already in keyPoints) and add them to keyPoints
Reconstruct the columns of T using KPSA with

the current set of key points, call this T̂
resid = T− T̂

2.3 Soft Caching and Fail Through

Although estimates produced by the KPSA technique are usually
quite accurate, there can be times when the statistical reconstruc-
tion is unable to produce an estimate with acceptable accuracy. An
example of this is shown in Figure 5 for the application of facial
animation. The facial pose resulting from posing all of the points
with our posing engine is shown on the left, while the result gener-
ated via KPSA using 170 key points is shown in the middle. Notice
how the tight lip pucker is incorrectly reconstructed.

Since we compute the function values at the key point positions
(fkey), we can use these to compute the root mean square key point
error:

ekey = rms(fkey− f̂key) (8)

Although this error is biased, if the key points are well chosen, the
error in this calculation is often a good measure of the total projec-
tion error (e = rms(f− f̂)). Large projection errors occur in cases
when we are calculating the results for a frame where an anima-
tion control is exercised that was not exercised in the training set
or a particular combination of animation controls is exercised that
result in a novel pose.

This suggests the possibility that we could treat the KPSA result
like a cache and use a large key point projection error as an in-
dication of a “cache miss”. Since the domain of applicability of
our method involves calculations easily performed on a point by
point basis, in the event of a cache miss, we could simply go on to

Figure 5: An example of Soft Caching applied to character animation: (left) The face generated by posing all 2986 points using our in house
posing engine. (middle) The pose generated by KPSA using 170 key points. Notice how the lips are improperly reconstructed. (right) That
pose generated using Soft Caching with ε = [0.1,0.15]. Notice that the pose generated by KPSA was correctly identified as inaccurate using
the key point error and the cache miss fail through correctly interpolated the KPSA computed pose with the fully computed pose producing
much more accurate lips.

perform the full calculation on all of the points. For animated se-
quences somewhat more subtlety is required since we do not want
to have any discontinuous behavior that will lead to popping. To
eliminate this problem we incorporate a transition zone of projec-
tion error values ε = [εmin,εmax] over which we do perform the full
calculation but interpolate between the KPSA computed result and
the full calculation result as a function of error:

i f (ekey < εmin) : out put = f̂ (9)
i f (ekey > εmax) : out put = f (10)

otherwise : out put = αf+(1−α)f̂ (11)

where α = ekey−εmin
εmax−εmin

.

Figure 5(right) shows the result of applying Soft Caching to the
incorrectly reconstructed facial pose in Figure 5(middle) using
ε = [0.1,0.15]. Notice how the cache miss was correctly identi-
fied and the resulting pose is much more accurate. We should also
mention that poses identified as cache misses can be tagged and
used as additional training for the KPSA-SC system. This results in
a system that learns more about the pose space as it is used. Train-
ing could be done each night resulting in a more accurate KPSA-SC
system for the animators and lighters to use the next day.

2.4 The Complete KPSA-SC Algorithm

Now that we have described all of the pieces, the complete KPSA-
SC algorithm can be formulated as follows:

Preprocess
1) Compute the basis vectors ai from the training set T (Section 2.1)
2) Compute the key points (Section 2.2)

Runtime
1) Compute values only at the key points: fkey
2) Least squares project the key points onto the subspace

to find the subspace coordinates p (Equation 2)
3) Reconstruct all points using p (Equation 1):

f̂ = Ap
4) Soft Cache (Section 2.3):

Compute ekey = rms(fkey − f̂key)
Using ekey and the user defined ε , compute the soft cache output,
blending f and f̂ if necessary

Note that the runtime component of the KPSA algorithm is ex-
tremely cheap (compared to the full solution), only requiring the
computation of the key point values, a small least squares projec-
tion and a linear combination of the basis vectors.

3 Results
This section discusses the results of applying our KPSA technique
to two different application domains: Character Articulation and
Rendering Global Illumination.

3.1 Applications to Character Articulation
One application of the KPSA technique is the computation of non-
skeletal character articulation, particularly facial articulation. Faces
are particularly difficult to replace with statistical models because
they often have hundreds of animation controls, many of which
are very complex and non-linear. On the other hand the results
of Guenter et al.’s [98] work have shown that, at least for human
faces, the number of real degrees of freedom is often quite small.
This suggests that a subspace based technique should work well for
faces. Unfortunately, using the animation variables directly to drive
the subspace model is difficult due to the complex nonlinearities.
Additionally, faces do not have the benefit of skeletal structure and
joint angles used by other parts of the body as input to their statis-
tical models. By using the computed key point positions as input,
our KPSA technique is able to avoid modeling these complex non-
linearities and performs well when applied to facial articulation.

In order to test our technique we used the facial animation for a
boy character from an entire full-length CG feature film. This is
a particularly difficult character for several reasons. First, the boy
is extremely animated and produces many exagerated facial poses.
Second, the boy is a superhero with super speed and this results in
extremely large deformations as well as extreme anticipation and
follow through.

The data set for the boy consists of 8322 frames of animation from
137 animation sequences. In order to provide an independent data
test for the KPSA process we divided the animation sequences into
two sets, one was used to train the model (2503 poses chosen from
44 randomly selected sequences) and the second was used for vali-
dation (the remaining 5819 poses). We found that 85 basis vectors
posed by 170 key points was sufficient to pose the model to very
small errors in the training segments. The character with the key
points indicated is shown in the top-middle of Figure 1.

One important question related to facial articulation is how much
acceleration is possible. On our characters, which employ fairly
complicated kinematic deformer networks, we have found that
faces lie in between the near linear cost per point calculation and

0

0.05

0.1

0.15

0.2

0.25

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 6: The RMS error (in centimeters) using KPSA for each pose in the boy example. The error is less than 0.1 for all but a few poses.

0

0.05

0.1

0.15

0.2

0.25

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 7: The RMS Error (in centimeters) using the Soft Caching extension for each pose in the boy example. Notice how the error has been
greatly reduced for the few poses that were problematic.

a constant cost (where posing a small set of points is no less expen-
sive than posing than the full face). For our boy character (Figure
1), we have found that the cost of posing our 170 key points is about
10% of the cost of posing the full 2986 points. In particular, all 2986
points can be posed in 0.5 seconds on average, while the 170 key
points can be posed in 0.05 seconds on average. The KPSA approx-
imation itself takes 0.00745 seconds on average resulting in an 8.7x
speedup in posing time. We do not achieve a speedup linear with
the key point to total point ratio for a few reasons: First, the key
points often require more complicated deformations than the other
points. For example, the mouth points require more effort to pose
than the points on the back of the head. Second, multiple points can
sometimes reuse computations - so posing twice the points won’t
necessarily require twice the computations. Once again we stress
that this character was the most difficult and other characters that
required fewer key points enjoy even more impressive speedups.

In order to validate our technique, we have examined the KPSA
results using the independent test poses. Figure 1 shows an exam-
ple of the quality of the KPSA result. The top-left image shows
the character with all 2986 points posed using our in house posing
engine, while the top-right shows the result of posing only the 170
key points with our in house posing engine and then using KPSA to
generate the 2986 facial points. Notice that the KPSA computed re-
sult is an extremely accurate recreation of the fully computed pose.
The accompanying video [Meyer and Anderson 2007] shows the
side by side results for the more than the first 800 poses in the inde-
pendent test set. As can be seen in the video, the KPSA computed
results match the fully computed results very well - the maximum
error for any point over 99.5% of the test poses is less than 1% of
the diagonal of the head bounding box.

For most of the test poses the KPSA computed result and the fully
computed result are visually similar and any differences are only
noticeable through detailed examination of the side by side results.
However, as noted in section 2.3, there are times when the estimated
pose does not accurately match the fully computed pose. Figure 5
and the video show an example of one of the worst poses in our test
set. The left image displays the pose generated by full computation,
while the middle shows the result of the KPSA technique. Notice

how the lips in particular do not match between the two techniques.
In these cases, the Soft Caching mechanism (section 2.3) can detect
and fix such poses. Using ε = [0.1,0.15], the Soft Cache detects
the incorrect poses and generates a more accurate pose as can be
seen on the rightmost image and in the video. With these settings,
we have a cache hit rate of 96.6% for the entire dataset (8042 poses
out of 8322 poses). Note that poses that cause a cache miss do
pose slightly slower than simply computing a full pose (due to the
subspace projection, error computation and possible interpolation),
however it has been less than 5% slower in all our tests.

Figure 6 shows the RMS error (in centimeters) for each pose in the
boy example. Notice how the error is less than 0.1 cm for all but
a few of the poses. Figure 7 shows the RMS error using the Soft
Caching extension. Notice how the error has been greatly reduced
for the few poses that were problematic.

In addition to the boy example, we tested our facial articulation
technique on a wide range of characters spanning 3 feature films,
including additional human characters, a car character and a rat
character. A selection of output poses from our KPSA technique
are shown in Figure 8 for the car character and Figure 9 for the rat
character, and statistics are given in Table 1. Since these characters
did not have as much extreme and unpredictable motion as the boy,
they required fewer basis vectors and key points and enjoyed larger
speedups. These examples demonstrate the wide applicability of
our technique.

Although our test characters all use a kinematic deformation rig, in-
teresting effects can be achieved for characters using poses defined
by physical simulation or hand sculpting. The user could define
a version of the face that can be manipulated by the animator at
runtime (the control face). Then we could create a training set con-
taining pairs of the physically simulated (or hand sculpted) face and
the corresponding pose of the control face. At runtime, the animator
poses the control face and the system uses the control face points to
find the projection into the joint (control face, simulated face) sub-
space and computes the corresponding simulated face. Note that in
this “Cross KPSA” case the Soft Cache fail through to a full calcu-
lation is not possible.

Figure 8: A selection of output poses from our KPSA technique applied to a car’s facial articulation (35 basis vectors, 70 key points). The
KPSA (without Soft Caching) results were accurate with the max error below 5.3 mm and the rms error below 0.5 mm for the entire animation.

Figure 9: A selection of output poses from our KPSA technique applied to a rat character’s facial articulation (with fur removed for display).
This model used 40 basis vectors and 80 key points. The KPSA (without Soft Caching) results were accurate with the max error below 1.0
mm and the rms error below 0.12 mm for the entire animation.

3.2 Applications to Rendering

A second application for our acceleration technique is the computa-
tion of indirect illumination. This example is presented as a second
application of the KSPA technique and is not meant to be a full-
fledged rendering algorithm. Although there are many different ac-
celeration schemes for indirect illumination, both using or not using
subspaces (e.g. [Ward et al. 1988; Ward and Heckbert 1992; Sloan
et al. 2003; Jensen 1996; Kristensen et al. 2005; Hasan et al. 2006;
Meyer and Anderson 2006]), these types of rendering problems are
potentially well suited to acceleration using KPSA since they often
have a large fraction of the total computation in a final gather step
whose computational costs vary nearly linearly with the number of
points computed.

Using KPSA on indirect illumination works in much the same way
as in facial articulation, except the values are now indirect illumina-
tion RGB triples at the points of the scene instead of position values.
We constructed a training set by computing the indirect illumina-
tion resulting from placing a point light in 144 different locations
in a room similar to the Cornell box (examples of the training im-
ages are shown in Figure 10(a)). Training results in 32 illumination
basis vectors and 200 key points. At runtime, the indirect illumi-
nation is computed only at these 200 key points and KPSA is used
to produce the final result. Figures 10(b,c,d) show comparisons of
the fully computed illumination versus the KPSA computed illumi-
nation for a few select frames with novel lighting configurations -
the KPSA computed illumination is visually very close to the full
computation.

Note that the use of the lighting at key points as input to our system
as opposed to lighting variables (such as light position) allows our
system to handle changes in the lighting variables rather easily. For
instance, changing the light type, or distance falloff, etc. will have
a complex, nonlinear effect on the resulting indirect illumination.
Since our system actually computes the indirect illumination at the
key points and uses the illumination itself to drive the statistical
model, we do not require a way to map each of these animation
variables to the final indirect illumination as other methods would.
In a production setting where lights have many complex and often
interacting controls, this is a huge benefit. We are in the process of
exploring the use of this sort of technique in interactive relighting
including global illumination (analogous to the system described in
[Hasan et al. 2006]).

4 Summary and Ongoing Work
In this paper we have presented KPSA - a method for accelerating
certain calculations in computer graphics. Using KPSA, a com-
putation is performed sparsely - only at automatically chosen key
points - and a linear subspace is driven by these key point values
to determine the values at the remaining points. By using the key
point values to capture the nonlinearities of the space, the statisti-
cal model can compute the additional points without having to deal
with these nonlinearities. The Soft Caching extension allows KPSA
to be used like a cache, falling back to a full calculation in the event
of a “cache miss”.

The main limitation of our method is that, like many subspace meth-
ods, it is dependent on a good training set. If a runtime pose is re-
quired that is not adequately modeled by the training set, the KPSA
approximation may not be accurate. Although Soft Caching re-
duces these types of problems, it does not alleviate the need for
good training. Additionally, the acceleration is determined mostly
by the time required to compute the values at the key points. For in-
stance, if computing the values at a subset of points is no faster than
computing the values at all points, KPSA is not applicable. One in-
teresting area of future research is to examine alternate key point
selection strategies, possibly trading off accuracy for acceleration.

Another area of ongoing work involves “local” fail through. In cer-
tain applications, it is reasonable to expect that subspace projection
error should be local, confined to a particular unexercised animation
control or local rendering feature such as a contact shadow. We are
currently in the process of exploring the use of various forms of
basis function rotation and clustering to be able to localize the pro-
jection error so that the fail through process would only need to
compute the full calculation on a subset of the domain.

Acknowledgements: We would like to thank Disney, Pixar Animation Stu-
dios, Pixar Studio Tools, and Pixar Research for supporting this work.
All images c© Disney/Pixar

References
GUENTER, B., GRIMM, C., WOOD, D., MALVAR, H., AND

PIGHIN, F. 98. Making faces. In SIGGRAPH ’98: Proceed-
ings of the 25th annual conference on Computer graphics and
interactive techniques, 55–66.

HARMON, H. H. 1976. Modern factor analysis, 3rd ed. University
of Chicago Press.

Bounding Box Points Poses BasisVecs KeyPoints PCA Solve Keypoint Solve Speedup
Boy Head 24cm x 26cm x 28cm 2986 2503 85 170 349s 0.0075s 8.7x

Car 2.2m x 4.3m x 1.3m 2625 242 35 70 19.6s 0.0045s 15x
Rat 6.3cm x 28cm x 27cm 4150 245 40 80 51s 0.0100s 20.75x

Table 1: Statistics using KPSA for facial articulation: Note that for our tests, all key points and basis vectors were automatically computed.
All timings were performed on an Intel Xeon 3.4Ghz with 4GB of ram.

(a) Example Training Images

(b) (c) (d)

Figure 10: An example of the KPSA technique applied to rendering indirect illumination: (a) Example images from the 144 training images.
(b,c,d) Comparisons of the fully computed solution using 160000 points (top) to the KPSA solution computed from the 200 key point values
(bottom) for novel light positions. Note that the KPSA results are visually similar.
HASAN, M., PELLACINI, F., AND BALA, K. 2006. Direct-to-

indirect transfer for cinematic relighting. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Papers, ACM Press, New York, NY,
USA, 1089–1097.

HWANG, B.-W., BLANZ, V., VETTER, T., AND LEE, S.-W. 2000.
Face reconstruction using a small set of feature points. In Bio-
logically Motivated Computer Vision, 308–315.

JAMES, D. L., AND FATAHALIAN, K. 2003. Precomputing inter-
active dynamic deformable scenes. ACM Trans. Graph. 22, 3,
879–887.

JAMES, D. L., AND PAI, D. K. 2002. Dyrt: dynamic response
textures for real time deformation simulation with graphics hard-
ware. In SIGGRAPH ’02: Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 582–585.

JENSEN, H. W. 1996. Global illumination using photon maps. In
Rendering Techniques ’96 (Proceedings of the 7th Eurographics
Workshop on Rendering).

KRISTENSEN, A. W., AKENINE-MOELLER, T., AND JENSEN,
H. W. 2005. Precomputed local radiance transfer for real-time
lighting design. ACM Transactions on Graphics (SIGGRAPH
2005) 24, 3, 1208–1215.

KRY, P. G., JAMES, D. L., AND PAI, D. K. 2002. Eigenskin: real
time large deformation character skinning in hardware. In SCA
’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics
symposium on Computer animation, 153–159.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformation: a unified approach to shape interpolation and
skeleton-driven deformation. In SIGGRAPH ’00: Proceedings
of the 27th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 165–172.

MEYER, M., AND ANDERSON, J. 2006. Statistical acceleration for
animated global illumination. ACM Transactions on Graphics
(SIGGRAPH 2006) 25, 3, 1075–1080.

MEYER, M., AND ANDERSON, J. 2007. Key point subspace ac-
celeration and soft caching. Tech. Rep. 06-04b, Pixar Animation
Studios. http://graphics.pixar.com/SoftCachingB/.

MO, Z., LEWIS, J., AND NEUMANN, U. 2004. Face inpainting
with local linear representations. In BMVC.

SHASHUA, A., AND WOLF, L. 2004. Kernel feature selection
with side data using a spectral approach. In Proceedings of the
European Conference on Computer Vision (ECCV).

SLOAN, P.-P., HALL, J., HART, J., AND SNYDER, J. 2003. Clus-
tered principal components for precomputed radiance transfer.
ACM Trans. Graph. 22, 3, 382–391.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight
enveloping: least-squares approximation techniques for skin
animation. In SCA ’02: Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM Press, New York, NY, USA, 129–138.

WARD, G., AND HECKBERT, P. 1992. Irradiance Gradients. In
Proceedings of the 3rd Eurographics Workshop on Rendering,
85–98.

WARD, G., RUBINSTEIN, F., AND CLEAR, R. 1988. A Ray Trac-
ing Solution for Diffuse Interreflection. In Computer Graphics
(ACM SIGGRAPH ’88 Proceedings), 85–92.

ZHANG, Q., LIU, Z., GUO, B., AND SHUM, H. 2003. Geometry-
driven photorealistic facial expression synthesis. In SCA ’03:
Proceedings of the 2003 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 177–186.

http://graphics.pixar.com/SoftCachingB/

	Introduction
	KPSA and Soft Caching
	Building the Subspace
	Selection of Key Points
	Soft Caching and Fail Through
	The Complete KPSA-SC Algorithm

	Results
	Applications to Character Articulation
	Applications to Rendering

	Summary and Ongoing Work

