skip to main content
article

Simulating biped behaviors from human motion data

Published:29 July 2007Publication History
Skip Abstract Section

Abstract

Physically based simulation of human motions is an important issue in the context of computer animation, robotics and biomechanics. We present a new technique for allowing our physically-simulated planar biped characters to imitate human behaviors. Our contribution is twofold. We developed an optimization method that transforms any (either motion-captured or kinematically synthesized) biped motion into a physically-feasible, balance-maintaining simulated motion. Our optimization method allows us to collect a rich set of training data that contains stylistic, personality-rich human behaviors. Our controller learning algorithm facilitates the creation and composition of robust dynamic controllers that are learned from training data. We demonstrate a planar articulated character that is dynamically simulated in real time, equipped with an integrated repertoire of motor skills, and controlled interactively to perform desired motions.

Skip Supplemental Material Section

Supplemental Material

pps106.mp4

mp4

44.1 MB

References

  1. AIST Human Body Properties Database, 2006. http://www.dh.aist.go.jp/bodydb.Google ScholarGoogle Scholar
  2. Anderson, F., and Pandy', M. 2001. Dynamic optimization of human walking. Journal of Biomechanical Engineering 123, 381--390.Google ScholarGoogle ScholarCross RefCross Ref
  3. Arikan, O., Forsyth, D. A., and O'Brien, J. F. 2003. Motion synthesis from annotations. ACM Transactions on Graphics (SIGGRAPH 2003) 22, 3, 402--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Arikan, O., Forsyth, D., and O'Brien, J. 2005. Pushing people around. In SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 59--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bruderlin, A., and Calvert, T. W. 1989. Goal-directed, dynamic animation of human walking. In Computer Graphics (Proceedings of SIGGRAPH 89), vol. 23, 233--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cohen, M. F. 1992. Interactive spacetime control for animation. In proceedings of SIGGRAPH 92, 293--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dasgupta, A., and Nakamura, Y. 1999. making feasible walking motion of humanoid robots from human motion capture data. In Proceedings of IEEE Intl. Conference on Robotics and Automation (ICRA), 1044--1049.Google ScholarGoogle Scholar
  8. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proceedings of SIGGRAPH 2001, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Transactions on Graphics (SIGGRAPH 2003) 22, 3, 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hertzmann, A., 2004. Introduction to bayesian learning, siggraph course notes. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hodgins, J. K., and Pollard, N. S. 1997. Adapting simulated behaviors for new characters. In Proceedings of SIGGRAPH 97, 153--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. In Proceedings of SIGGRAPH 95, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa, H. 2003. Biped walking pattern generation by using preview control of zero-moment point. In Proceedings of the IEEE International Conference on Robotics and Automation, 1620--1626.Google ScholarGoogle Scholar
  14. Komura, T., Leung, H., and Kuffner, J. 2004. Animating reactive motions for biped locomotion. In VRST'04: Proceedings of the ACM symposium on Virtual reality software and technology, 32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. ACM Transactions on Graphics (SIGGRAPH 2002) 21, 3, 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Laszlo, J., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proceedings of SIGGRAPH 96, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Laszlo, J., van de Panne, M., and Fiume, E. 2000. Interactive control for physically-based animation. In Proceedings of SIGGRAPH 2000, 201--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lee, J., and Shin, S. Y. 1999. A hierarchical approach to interactive motion editing for human-like figures. In Proceedings of SIGGRAPH 99, 39--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. 2002. Interactive control of avatars animated with human motion data. ACM Transactions on Graphics (SIGGRAPH 2002) 21, 3, 491--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Liu, C. K., and Popović, Z. 2002. Synthesis of complex dynamic character motion from simple animations. vol. 21, 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Liu, C. K., Hertzmann, A., and Popovic, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics (SIGGRAPH 2005) 24, 3, 1071--1081. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Loken, K. 2006. Imitation-based Learning of Bipedal Walking Using Locally Weighted Learning. Master's thesis, Computer Science Department, The University of British Columbia.Google ScholarGoogle Scholar
  23. Mount, D., and Arya, S., 2006. Ann: Library for approximate nearest neighbor searching, http://www.cs.sunysb.edu/algorith/implement/ann/distrib/index1.html.Google ScholarGoogle Scholar
  24. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., and Kawato, M. 2004. Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems 47, 79--91.Google ScholarGoogle ScholarCross RefCross Ref
  25. Nakaoka, S., Nakazawa, A., and Yokoi, K. 2003. Generating whole body motions for a biped humanoid robot from captured human dances. In Proceedings of the IEEE International Conference on Robotics and Automation, 3905--3910.Google ScholarGoogle Scholar
  26. Oshita, M., and Makinouchi, A. 2001. A dynamic motion control technique for human-like articulated figures. Computer Graphics Forum (EUROGRAPHICS 2001) 20, 3, 192--202.Google ScholarGoogle Scholar
  27. Popović, Z., and Witkin, A. P. 1999. Physically based motion transformation. In Proceedings of SIGGRAPH 99, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Press, W. H., Teukolskey, S. A., Vetterling, W. T., and Flannery, B. P. 2002. Numerical Recipes in C++ (2nd Edition). Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Safonova, A., Pollard, N. S., and Hodgins, J. K. 2003. Optimizing human motion for the control of a humanoid robot. In Proceedings of 2nd International Symposium on Adaptive Motion of Animals and Machines (AMAM2003).Google ScholarGoogle Scholar
  30. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics (SIGGRAPH 2004) 23, 3, 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Schaal, S., Ijspeert, A., and Billard, A. 2003. Computational approaches to motor learning by imitation. Philosophical Transaction of the Royal Society of London: Series B, Biological Sciences 358, 537--547.Google ScholarGoogle ScholarCross RefCross Ref
  32. Sharon, D., and van de Panne, M. 2005. Synthesis of controllers for stylized planar bipedal walking. In International Conference on Robotics and Automation (ICRA 2005), 18--22.Google ScholarGoogle Scholar
  33. Smith, R., 2006. Open dynamics engine, http://www.ode.org.Google ScholarGoogle Scholar
  34. Sulejmanpasić, A., and Popović, J. 2005. Adaptation of performed ballistic motion. ACM Transactions on Graphics 24, 1, 165--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sun, H. C., and Metaxas, D. N. 2001. Automating gait animation. In Proceedings of SIGGRAPH 2001, 261--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tak, S., Song, O.-Y., and Ko, H.-S. 2000. Motion balance filtering. Computer Graphics Forum (Eurographics 2000) 19, 3, 437--446.Google ScholarGoogle Scholar
  37. Yamane, K., and Nakamura, Y. 2000. Dynamics filter - concept and implementation of on-line motion generator for human figures. In Proceedings of the IEEE International Conference on Robotics and Automation, 688--695.Google ScholarGoogle Scholar
  38. Yin, K., Pai, D. K., and van de Panne, M. 2005. Data-driven interactive balancing behaviors. In Pacific Graphics.Google ScholarGoogle Scholar
  39. Yin, K., Loken, K., and van de Panne, M. 2007. Simbicon: Simple biped locomotion control. ACM Transactions on Graphics (SIGGRAPH 2007) 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zordan, V. B., and Hodgins, J. K. 2002. Motion capture-driven simulations that hit and react. In Proceedings of ACM SIGGRAPH Symposium on Computer Animation, 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Zordan, V. B., Majkowska, A., Chiu, B., and Fast, M. 2005. Dynamic response for motion capture animation. ACM Transactions on Graphics (SIGGRAPH 2005) 24, 3, 697--701. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Simulating biped behaviors from human motion data

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader