
ar
X

iv
:c

s/
05

07
02

0v
1

 [
cs

.L
O

]
 7

 J
ul

 2
00

5

First-order queries on structures of bounded degree

are computable with constant delay

Arnaud Durand ∗ Etienne Grandjean †

August 30, 2018

Abstract

A bounded degree structure is either a relational structure all of whose relations
are of bounded degree or a functional structure involving bijective functions only.
In this paper, we revisit the complexity of the evaluation problem of not necessarily
Boolean first-order queries over structures of bounded degree. Query evaluation
is considered here as a dynamical process. We prove that any query on bounded
degree structures is CONSTANT-DELAYlin, i.e., can be computed by an algorithm
that has two separate parts: it has a precomputation step of linear time in the size
of the structure and then, it outputs all tuples one by one with a constant (i.e.
depending on the size of the formula only) delay between each. Seen as a global
process, this implies that queries on bounded structures can be evaluated in total
time O(f(|ϕ|).(|S| + |ϕ(S)|)) and space O(f(|ϕ|).|S|) where S is the structure, ϕ is
the formula, ϕ(S) is the result of the query and f is some function.

Among other things, our results generalize a result of [See96] on the data com-
plexity of the model-checking problem for bounded degree structures. Besides,
the originality of our approach compared to that [See96] and comparable results
is that it does not rely on the Hanf’s model-theoretic technic (see [Han65]) and is
completely effective.

Introduction

Evaluating the expressive power of logical formalisms is an important task in theoret-
ical computer science. It has many applications in numerous fields such as complexity
theory, verification or databases. In this latter case, it often amounts to determine how
difficult it is to compute a query written in a given language. In this vein, determining
which fragments of first-order logic defines tractable query languages has deserved much
attention.
It is well known, that over an arbitrary signature, computing a first-order query can
be done in time polynomial in the size of the structure (and even in logarithmic space
and AC0). However the exponent of this polynomial depends heavily on the formula

∗LACL - CNRS FRE 2673, Département d’informatique, Université Paris 12, 94010 Créteil - France.

Email: durand@univ-paris12.fr
†GREYC - CNRS UMR 6072, Université de Caen - Campus 2, F-14032 Caen cedex - France. Email:

grandjean@info.unicaen.fr

1

http://arxiv.org/abs/cs/0507020v1

size (more precisely, on the number of variables). Nevertheless, for particular kinds of
structures or formulas the complexity bound can be substantially improved. In [See96],
it is proved that checking if a given first-order sentence ϕ is true (i.e., the Boolean query
or model-checking problem) in a structure S all of whose relations are of bounded degree
can be done in linear time in the size of S. The method used to prove this result relies
on old model-theoretic technics (see [Han65]). It is perfectly constructive but hardly
implementable. Later, still using such kind of methods, several other tractability results
have been shown for the complexity of the model-checking of first-order formulas over
structures or formulas that admit nice (tree) decomposition properties (see [FFG02]).
In this paper, a bounded degree structure is either a relational structure all of whose
relations are of bounded degree or a functional structure involving bijective functions
only.
The main goal of this paper is to revisit the complexity of the evaluation problem of not
necessarily Boolean first-order queries over structures of bounded degree. We regard
query evaluation as a dynamical process. Instead of considering the cost of the evaluation
globally, we measure the delay between consecutive tuples, i.e., query problems are
viewed as enumeration problems. This latter kind of problems appears widely in many
areas of computer science (see for example [EG95, EGM03, BGKM00, KSS00, Gol94]
or [JYP88] for basic complexity notions on enumeration). However, to our knowledge,
relation to query evaluation has not been investigated so far.
We prove that any query on bounded degree structures is CONSTANT-DELAYlin , i.e.,
can be computed by an algorithm that has two separate parts: it has a precomputation
step whose time complexity is linear in the size of the structure and then, outputs all
the solution tuples one by one with a constant (i.e., depending on the size of the formula
only) delay between two successive tuples. Seen as a global process, this implies that
queries on bounded structures can be evaluated in total time O(f(|ϕ|).(|S|+|ϕ(S)|)) and
space O(f(|ϕ|).|S|) where |S| is the size of the structure S, |ϕ| is that of the formula ϕ,
|ϕ(S)| is the size of the result ϕ(S) of the query and f is some function. As a corollary,
it implies that the time complexity of the model-checking problem is O(f(|ϕ|).|S|) thus
providing an alternative proof of the result of [See96].
A particularity of the main method used in this paper is that it does not rely on model-
theoretic technic as previous results of the same kind (see, for example, [See96] or [Lin04]
for a generalization to least-fixed point formulas). Instead, we develop a quantifier elimi-
nation method suitable for bijective unary functions and apply it to obtain our complex-
ity bound. An advantage of this method is that it is effective and easily implementable.
Another advantage is that our paper is completely self-contained.
Besides, the CONSTANT-DELAYlin class is an interesting notion by itself and is, to our
knowledge, a new complexity class for enumeration problems: as proved for linear time
complexity (the class DLIN studied in [GS02]) it can be shown that CONSTANT-DELAYlin

is a robust class and is in some sense the minimal robust complexity class of enumeration
problems.
The paper is organized as follows. First, basic definitions are given in Section 1. In
particular, in Subsection 1.3, we recall definitions about enumeration problems and in-
troduce the notion of constant delay computation and prove some basic properties about
it. In Section 2, the quantifier elimination method is introduced and is applied to the
evaluation problem of first-order formulas over functional structures all of whose func-

2

tions are bijective. In Section 3, using classical logical interpretation technics, this later
problem is reduced in linear time to the first-order query problem over structures of
bounded degree thus providing the same bound for it. Finally, in Subsection 3.3, con-
sequences about the complexity of the subgraph (resp. induced subgraph) isomorphism
problem are given.

1 Definitions

1.1 Logical definitions and query problems

We suppose the reader to be familiar with basic notions of first-order logic. A signature
σ is a finite set of relational and functional symbols of given arities (0-ary function
symbols are constants symbols). The arity of σ is the maximal arity of its symbols. The
set σ is called unary functional if all its symbols are of arity bounded by one.
A (finite) σ-structure consists of a domain D together with an interpretation of each
symbol of σ over D (the same notation is used here for each signature symbol and its
interpretation).
In this paper, we will distinguish between two kinds of signatures on which semantical
restrictions on their possible interpretation are imposed:

• Either σ is made of constant and monadic (i.e., unary) relation symbols and unary
function symbols whose interpretation is taken among bijective functions (i.e.,
permutations) only,

• Or σ contains relation symbols only whose degrees are bounded by some given
constant (detailed definitions about bounded degree relations are delayed till sec-
tion 3).

Structures defined by either of semantical restrictions will be called bounded degree struc-
tures.
In what follows we make precise notions and problems about first-order logic over bijec-
tive structures.

Definition 1 Let σ = {c, U, f1, . . . , fk} be a signature consisting of constant symbols ci ∈ c,
of monadic predicates Ui ∈ U and of unary function symbols fi, i = 1, . . . , k. A bijective
σ-structure is a σ-structure S of the form S =

〈

D ; c, U, f1, . . . , fk
〉

where each fi is a permu-
tation on domain D.

One of the main results of this paper provides a quantifier elimination method over
bijective structures. As it is usual for such kind of result, the elimination will be done
in a richer language. The following definition is required.

Definition 2 A bijective term τ(x) is of the form f ǫ11 . . . f
ǫl
l (x) where l ≥ 0, x is a variable

and where each f ǫii is either the function symbol fi or its reciprocal f−1
i . The term τ−1(x)

denotes the reciprocal of the term τ(x).
A bijective atomic formula is of one of the following four forms where τ(x) and τ1(x) are
bijective terms:

3

• either a bijective equality τ(x) = τ1(y),

• or τ(x) = c where c is a constant symbol,

• or U(τ(x)) where U is a monadic predicate,

• or a cardinality statement ∃kxΨ(x) where the quantifier ∃kx is interpreted as ”there exist
at least k values of x such that” and Ψ is a Boolean combination of bijective atoms α(x)
over variable x only.

As the reciprocal of each function symbol can be used, each bijective equality τ(x) =
τ1(y) can be rephrased as τ2(x) = y where τ2(x) = τ−1

1 τ(x). A bijective literal is a
bijective atomic formula or its negation.

Definition 3 The set FOBij of bijective first-order formulas is the set of first-order formulas
built over bijective atomic formulas of some unary signature σ.

Let t = (t1, . . . , tk) be a k-tuple of variables and ϕ(t) and ϕ′(t) be two σ-formulas with
free variables t. Formulas ϕ(t) and ϕ′(t) are equivalent if for all σ-structures S and all
tuples a of element of the domain with |a| = |t| it holds that:

(S, a) |= ϕ(t) iff (S, a) |= ϕ′(t).

In this paper query problems are considered for specific classes of first-order formulas
(and structures). One of the specific problems under consideration here is the following.

QUERY(FOBij)
Input: a unary functional signature σ, a bijective σ-structure S and a first-order bijective
σ-formula ϕ(x) with k free variables x = (x1, . . . , xk)
Parameter: ϕ
Output: ϕ(S) = {a ∈ Dk : (S, a) |= ϕ(x)}.

The Boolean query problem (the subproblem where k = 0) is often called a model-
checking problem. It will be denoted by MC(FOBij) here. As suggested by the formu-
lation of the query problem, we are interested in its parameterized complexity and the
complexity results given here consider the size of the query formula ϕ as the parameter
(see [DF99]).

1.2 Model of computation and measure of time

The model of computation used in this paper is the Random Access Machine (RAM)
with uniform cost measure (see [AHU74, GS02, GO04, FFG02]). As query problems
are the main subject of this paper, instances of problems always consist of two kinds of
objects: first-order structures and first-order formulas.
The size |I| of an object I is the number of registers used to store I in the RAM. If E
is the set [n], |E| = card(E) = n. If R ⊆ Dk is a k-ary relation over domain D, with
|D| = card(D), then |R| = k.card(R): all the tuples (x1, . . . , xk) for which R(x1, . . . , xk)
holds must be stored, each in a separate k-tuple of registers. Similarly, if f is a unary
function from D to D, all values f(x) must be stored and |f | = |D|.

4

If ϕ is a first-order formula, |ϕ| is the number of occurrences of variables, relation or
function symbols and syntactic symbols: ∃,∀,∧,∨,¬,=, ”(”, ”)”, ”, ”. For example, if
ϕ ≡ ∃x∃y R(x, y) ∧ ¬(x = y) then |ϕ| = 17.

All the problems we consider in this paper are parameterized problems: they take as
input a list of objects made of a σ-structure S and a formula ϕ and as output the result
of the query size ϕ(S). Due to the much larger size, in practice, of the structure S
than the size of formula ϕ, |S| >> |ϕ|, this latter one, |ϕ| , in considered here as the
parameter.
A problem P is said to be computable in time f(|ϕ|).T (|S|, |ϕ(S)|) for some function
f : N → R+ if there exists a RAM that computes P in time (i.e., the number of
instructions performed) bounded by f(|ϕ|).T (|S|, |ϕ(S)|) using space, i.e., addresses and
register contents also bounded by f(|ϕ|).T (|S|, |ϕ(S)|). The notation Oϕ(T (|S|, |ϕ(S)|))
is used when one does not want to make precise the value of function f . It is also assumed
that the function T is at least linear and at most polynomial, i.e., T (n, p) = Ω(n + p)
and T (n, p) = (n+ p)O(1). To give an example and to relate our complexity measure to
the logarithmic cost measure, in case T is linear, i.e., T (n, p) = n + p, the number of
bits manipulated by the RAM is well linear in the number of bits needed to encode the
input and the output.

1.3 Enumeration algorithms and constant delay computation

In this section, A is a binary predicate. Enumeration problems will be defined by
reference to such a predicate.

Definition 4 Given a binary relation A, the enumeration function ENUM ·A associated to A
is defined as follows. For each input x:

ENUM ·A(x) = {y : A(x, y) holds }

Remark 1 Query problems may evidently be seen as enumeration problems. The input x is
made of the structure S and the formula ϕ(x), a witness y is a tuple a and evaluating predicate
A amounts to check whether (S, a) |= ϕ(x).

One may consider the delay between two consecutive solutions as an important point
in the complexity of enumeration problems. In [JYP88] several complexity measures for
enumeration have been defined. One of the most interesting is that of polynomial delay
algorithm. An algorithm A is said to run within a polynomial delay if there is no more
than a (fixed) polynomial delay between two consecutive solutions it outputs (and no
more than a polynomial delay to output the first solution and between the last solution
and the end of the algorithm). Polynomial delay is often considered as the right notion
of feasability for enumeration problems.
In this paper, we introduce a much stronger complexity measure that forces constant
delay between outputs.

5

Definition 5 An enumeration problem ENUM·A is constant delay with linear precomputation,
which is written ENUM·A ∈ CONSTANT-DELAYlin , if there exists a RAM algorithm A which,
for any input x, enumerates all the elements of the set ENUM ·A(x) with a constant delay, i.e.,
that satisfies the following properties.

1. A uses linear input space, i.e., space O(|x|)

2. A can be decomposed into the two following successive steps

(a) PRECOMP(A) which runs some precomputations in time O(|x|), and

(b) ENUM(A) which outputs all solutions within a delay bounded by some constant
DELAY(A). This delay applies between two consecutive solutions and after the last
one.

Allowing polynomial time precomputations (and polynomial space) instead of linear
time, one may define a larger class called CONSTANT-DELAYpoly .

Remark 2 As proved for the linear time class DLIN (see [GS02]), it can be shown that the
complexity enumeration class CONSTANT-DELAYlin is robust, i.e., is not modified if the set
of allowed operations and statements of the RAMs is changed in many ways. This is because
linear time (and linear space) precomputations give the ability to precompute the tables of new
allowed operations.

The following result is immediate, it evaluates the total time cost of any constant delay
algorithm.

Lemma 1 Let ENUM·A be an enumeration problem belonging to CONSTANT-DELAYlin then,
for any input x, the set ENUM ·A(x) can be computed in O(|x| + |ENUM ·A(x)|) total time,
i.e., in time linear in the size of |Input|+ |Output|, and linear input space O(|x|).

Remark 3 In the query problem we consider, the size of ϕ is considered as a parameter. Then,
|x| = |S| and the constant delay depends on |ϕ| only.

The two lemmas below give basic properties of constant delay computations.

Lemma 2 An enumeration problem ENUM·A computable in linear time O(|x|) for any input
x belongs to CONSTANT-DELAYlin .

Proof. For any input x, one only has to compute the set ENUM ·A(x), to sort it and
to eliminate the possible multiple occurrences of solutions. These steps can be viewed
as the precomputation part of the algorithm running in time O(|x|). Then, one has to
enumerate one by one the solutions of the sorted list. This is obviously a constant delay
process. ✷

Lemma 3 Let ENUM ·A and ENUM ·B be two disjoint enumeration problems, i.e., such that,
for any input x, ENUM·A(x)∩ENUM·B(x) = ∅. Let ENUM·(A ∪B) be the union of this two
enumeration problems defined by, for any x:

6

ENUM ·(A ∪B)(x) = {y : A(x, y) or B(x, y) holds }.

If ENUM·A and ENUM·B belong to CONSTANT-DELAYlin then, problem ENUM·A ∪B also
belongs to CONSTANT-DELAYlin .

Proof. Due to the disjointness of the two solutions sets for any input, the proof is
evident. Given A and B the algorithms for problems ENUM ·A and ENUM ·B, the
following algorithm correctly computes for the problem ENUM ·A ∪B.

Algorithm 1 Constant delay algorithm for Enum·A ∪B

1: Input: x

2: precomp(A); precomp(B)
3: enum(A); enum(B)

Obviously, the delay is bounded by the maximum of DELAY(A) and DELAY(B). ✷

Remark 4 Note that the disjointness condition in the Lemma above is not always necessary.
In case there exist a total ordering ≤ and constant delay enumeration algorithms for ENUM ·A
and ENUM·B that enumerate solutions with respect to this unique ordering ≤ then, it is easily
seen that ENUM ·A ∪B belongs also to CONSTANT-DELAYlin even if the problems are not
disjoints.

2 First-order queries on bijective structures

2.1 Quantifier elimination on bijective structures

The key result of this paper consists of a quantifier elimination method for FOBij for-
mulas.

Theorem 4 (quantifier elimination for FOBij) Each bijective first-order formula is equiv-
alent to a Boolean combination of bijective atomic formulas. More precisely, let ϕ(t) ∈ FOBij

with free variables t then, there exists a Boolean combination of bijective atomic formulas ϕ′(t)
over the same free variables t equivalent to ϕ(t).
In the special case where ϕ is closed (i.e., without free variable) then, ϕ is equivalent to a Boolean
combination of cardinality statements.

Proof. As ∀xϕ ≡ ¬(∃x¬ϕ), we only have to consider elimination of existentially
quantified variables. W.l.o.g., we consider formulas in disjunctive normal form and,
as existential quantifier commutes with disjunction we may consider the case of the
elimination of a single existentially quantified variable y in a formula of the form:

ϕ(x) ≡ ∃y (α1 ∧ . . . ∧ αr) (1)

7

where each αi is a bijective literal among variables x and y. Literals depending on x

only and cardinality statements need not be considered since they do not involve y, so
ϕ(x) may be supposed of the following form:

ϕ(x) ≡ ∃y [ψ(y) ∧ y =ǫ1 τ1(xi1) ∧ . . . ∧ y =ǫk τk(xik)] (2)

where each y =ǫj τj(xij) with ǫj = ±1 is y = τj(xij) if ǫj = 1 or y 6= τj(xij) if ǫj = −1.
To eliminate quantified variable y two cases may happen.
Suppose first there is at least one index j such that ǫj = 1. In this case, the equality
y = τj(xij) is used to replace each occurrence of y in the formula by the term τj(xij).
The process results in a new formula ϕ′(x) without variable y.
The second possibility leads to a more complicated replacement scheme. Suppose that
for every j, ǫj = −1. Then,

ϕ(x) ≡ ∃y [ψ(y) ∧
∧

j≤k

y 6= τj(xj)] (3)

(For simplicity of notations but w.l.o.g. we have supposed that ij = j for j = 1, . . . , k).
The basic idea is now the following : suppose h ≤ k is the number of distinct values
among the k terms τj(xj) such that ψ(τj(xj)) is true; then, formula ϕ(x) is true if and
only if the number of y such that ψ(y) holds is strictly greater than h (i.e., ∃h+1

y ψ(y) is
true). Introducing (new) cardinality statements in the formula, ϕ(x) can be equivalently
rephrased as the following Boolean combination of bijective atomic formulas:

ϕ(x) ≡
k
∨

h=0

∨

P⊆[k],Q⊆P,|Q|=h

∧

j∈Q

ψ(τj(xj)) ∧
∧

i∈P

∨

j∈Q

τi(xi) = τj(xj) ∧
∧

j∈[k]\P

¬ψ(τj(xj)) ∧ ∃h+1
y ψ(y)

(4)
where [k] = {1, . . . , k}.
More generally, starting from a prenex bijective first-order formula ϕ(t) with free vari-
ables t, one eliminates all quantified variables from the innermost to the outermost one.
This will result in an equivalent Boolean combination of bijective atomic formulas over
t. In the case where ϕ is without free variable (i.e., t is empty), it is easily seen that
the elimination process results in a Boolean combination of cardinality statements (note
that, of course, ∃xϕ(x) ≡ ∃1xϕ(x)). ✷

One interesting consequence of Theorem 4 is the following result.

Corollary 5 (Seese [See96]) The problem MC(FOBij) is decidable in time Oϕ(|S|).

Proof. From Theorem 4, we know that there exists a Boolean combination of cardinality
statements over the same signature σ equivalent to Φ. Given a formula ∃kxΨ(x) one can
test whether a given σ-structure S satisfies S |= ∃kxΨ(x) in time OΨ(|S|): it suffices to
enumerate all the elements a of the domain, test whether (S, a) |= Ψ(x) in constant
time and count those for which the answer is positive. If this number is greater than

8

or equal to k then ∃kxΨ(x) is true in S. The final answer for Φ is given by the boolean
combination of the answers for each cardinality statement. ✷

2.1.1 Considerations on an efficient implementation of the algorithm

Compared to the method of [See96], the proofs given in this paper are constructive and
easily implementable. But, due to the case of Formula 3 in Theorem 4 which leads to the
equivalent Formula 4 the whole process is in Oϕ(|S|) = O(f(|ϕ|).|S|) for some function
f that may be a tower of exponentials. It can be shown that it heavily depends on the
number of variables and of quantifier alternations of the formula. However, the size of
the function f can be substantially reduced in case there are few quantifier alternations.
In what follows, we revisit the method of the proof of Theorem 4 to prove a slightly
different result in a specific case. We focus on formulas with existentially quantified
variables only and show that the model-checking problem for such formulas can be
efficiently evaluated. A FOBij formula is in Σ1−FOBij if it is of the form:

∃y ϕ

where ϕ is quantifier-free and in disjunctive normal form (DNF).

Corollary 6 The model-checking problem for Σ1−FOBij formulas can be evaluated in time
O(|ϕ|d.|S|) where d is the number of distinct variables of ϕ.

Proof. The result obviously holds for d = 1. So, assume d > 1. For the same reason as
in Theorem 4, we may consider any formula of the form:

ϕ(x) ≡ ∃y (α1 ∧ . . . ∧ αr) (5)

where each αi is a bijective literal 1 with variables among x and y. For sake of com-
pleteness here, we consider also terms not containing y. Then, ϕ(x) is of the form:

ϕ(x) ≡ ∃y [ψ(y) ∧ y =ǫ1 τ1(xi1) ∧ . . . ∧ y =ǫk τk(xik) ∧ γ(x)] (6)

with the same notation ǫj as in the proof of Theorem 4 and γ(x) involves variables of x
only. Again, if ǫj = 1, for some j, then all the occurences of y are replaced by τj(xij)
and ϕ(x) is equivalent to a conjunction of literals without variable y.
Suppose now that ǫj = −1 for all j ≤ k. Let A = {a ∈ D : (S, a) |= ψ(y)}. Since ψ(y) is
quantifier-free, A can be computed in time O(|ψ|.|S|). Two cases need to be considered
now. If |A| > k, since there are at most k different values τj(xj) for j = 1, . . . , k, then
the conjunction ∃y[ψ(y) ∧ y 6= τ1(xi1) ∧ . . . ∧ y 6= τk(xik)] is always true and ϕ(x) is
simply equivalent to γ(x). If |A| ≤ k let A = {a1, . . . , ah}, with h ≤ k. Formula ϕ(x) is
replaced by the equivalent formula below over the richer signature σ ∪ {a1, . . . , ah}:

∨

i≤h

(
∧

j≤k

ai 6= τj(xij) ∧ γ(x))

1In this proof, bijective literals do not involve cardinality statements

9

In all cases, the formula obtained is also in DNF. Time O(|ϕ|.|S|) is needed to eliminate
variable y and the new formula is of size bounded by O(k.|ϕ|), i.e., less than O(|ϕ|2).
Elimination of all the d existentially quantified variables except the last one can be
pursued from this new formula (without need for a normalisation). In the worst case
(where all literals are of the form xi 6= τ1(xj)), the process will result in a disjunction
of less than |ϕ|d−1 conjunctions of at most |ϕ| literals. ✷

2.2 Constant delay algorithm for first-order queries on bijective struc-

tures

We are now ready to state the main result of this section.

Theorem 7 The problem QUERY(FOBij) ∈ CONSTANT-DELAYlin . In particular, from
Lemma 1, it can be computed in time Oϕ(|S|+ |ϕ(S)|) and space Oϕ(|S|).

Definition 6 A bijective literal is a bijective atomic formula or its negation.

Before proving Theorem 7, we establish the following lemma.

Lemma 8 Let S be a bijective structure and Ψ be a conjunction of bijective literals. Computing
query S 7→ Ψ(S) can be done in CONSTANT-DELAYlin .

Proof. The result is proved by induction on k the number of free variables of Ψ(x)
where x = (x1, . . . , xk). We even assume that Ψ makes use of explicit constants from
domain D of S.
For the case k = 1, it is evident that the one variable query Q = {a ∈ D : (S, a) |=
Ψ(x)} can be evaluated in time OΨ(|D|) = OΨ(|S|) and hence, by Lemma 2, is in
CONSTANT-DELAYlin .
The result is supposed to be true for k (k ≥ 1) and proved now for k+1. Let’s consider
the query:

Q = {(a, b) ∈ Dk+1 : S |= Ψ(x, y)}

where the conjunction of bijective literals Ψ is over variables x = (x1, . . . , xk) and y. As
for Theorem 4, two cases need to be distinguished.

1. Ψ contains at least one literal of the form τ1(y) = τ2(xi0), 1 ≤ i0 ≤ k, that can
also be rephrased as y = τ(xi0),

2. Ψ does not contain such a literal.

In the first case, Ψ can rewritten as:

Ψ(x, y) = Ψ0(x, y) ∧ y = τ(xi0).

Query Q is then equivalent to:

Q = {(a, τ(ai0)) ∈ Dk+1 : (S, a) |= Ψ0(x, τ(xi0))},

10

which is essentially the following k variable query Q′:

Q′ = {a ∈ Dk : (S, a) |= Ψ0(x, τ(xi0)}.

To be precise, Q = {(a, τ(ai0)) : a ∈ Q′}. By the induction hypothesis, query Q′ can be
computed by some algorithm A′ in constant delay. This provides the following constant
delay procedure for query Q.

Algorithm 2 Evaluating query Q

1: Input: S,Ψ
2: precomp(A′)
3: Apply enum(A′) and for each enumerated tuple a, output (a, τ(ai0)) instead

Case 2 is a little more complicated. Formula Ψ can be put under the following form:

Ψ ≡ Ψ1(x) ∧Ψ2(y) ∧
∧

1≤i≤r

y 6= τi(xji)

with 1 ≤ ji ≤ k for 1 ≤ i ≤ r. By induction hypothesis, the k variable query:

Q1 = {a ∈ Dk : (S, a) |= Ψ1(x)}

can be computed by an algorithm A1 on input S with constant delay. For similar reason,
the k variable query Qb over structure (S, b) defined by:

Qb = {a ∈ Dk : (S, a, b) |= Ψ(x, y)}}

can be enumerated by an algorithm using constant delay. Let now Q2 be:

Q2 = {b ∈ D : (S, b) |= Ψ2(y)}.

If |Q2| ≤ r then, by Lemma 3, there exists an algorithm A0 which enumerates the
disjoint union ∪b∈Q2

Qb ×{b} with constant delay. Note that ∪b∈Q2
Qb ×{b} = Q. From

what has been said Algorithm 3 below correctly computes query Q.

Up to step 5 of the algorithm, all can be done in linear time.
It remains to show that, in the case where |Q2| ≥ r+1, the delay between two successive
solutions is bounded by some constant. Since |Q2| ≥ r + 1 and the number of b ∈ Q2

that verify (S, a, b) 6|=
∨

1≤i≤r y = τi(xji) is bounded by r, the algorithm outputs at
least one (a, b) for each a ∈ Q1. More precisely, it outputs |Q2| − r such tuples. For
the same reasons, the maximal delay between two successive outputs is then bounded
by 2r. The same arguments apply for the delay between the last solution and the end
of the algorithm. Then, computing Q can be done in constant delay. ✷

Proof of Theorem 7. Let S and ϕ(x) be instances of the QUERY(FOBij) problem. From
Theorem 4, one can transform ϕ(x) into the following equivalent formula in disjunctive
normal form:

ϕ(x) ≡ Ψ1(x) ∨ . . . ∨Ψq(x)

where each Ψi is a conjunction of bijective literals and for all i, j, 1 ≤ i < j ≤ q and
all bijective structures S, Ψi(S) ∩ Ψj(S) = ∅. The Theorem immediately follows from
Lemma 3 since the enumeration problem of each query S 7→ Ψi(S), 1 ≤ i ≤ q, belongs
to CONSTANT-DELAYlin by Lemma 8. ✷

11

Algorithm 3 Evaluating query Q

1: Input: S,Ψ
2: Compute Q2 and |Q2|
3: if |Q2| ≤ r then run A0

4: else

5: precomp(A1)
6: for a ∈ enum(A1) do
7: for b ∈ Q2 do

8: if (S, a, b) 6|=
∨

1≤i≤r y = τi(xji) then Output (a, b)
9: end if

10: end for

11: end for

12: end if

3 Relational structures of bounded degree

3.1 Two equivalent definitions

Let ρ = {R1, . . . , Rq} be a relational signature, i.e., a signature made of relational
symbols Ri each of arity ai. Recall that arity(ρ) = max1≤i≤q(ai) = m.
Let S = 〈D ;R1, . . . , Rq〉 be a ρ-structure. For each i ≤ q, Ri ⊆ Dai . The degree of an
element x in S is defined as follows:

degreeS(x) =
∑

1≤i≤q

∑

1≤j≤ai

♯{(y1, . . . , yai) ∈ Dai : ∃j ≤ ai s.t. x = yj and S |= Ri(y1, . . . , yai)}.

Intuitively, degreeS(x) is the total number of tuples of relations Ri to which x belongs
to. One defines the degree of a structure as degree(S) = maxx∈D(degreeS (x)).

Remark 5 In [See96] a different definition of the degree of a structure is given. It counts, for
each x, the number of distinct elements y 6= x adjacent to x, i.e., that appear in some tuple with
x. More precisely,

degree1S (x) = ♯{y : y 6= x and ∃i ≤ q, t ∈ Dai , s.t. S |= Ri(t) and x, y ∈ t},

and degree1(S) = maxx∈D(degree
1
S (x)).

Since each tuple containing x contains at most m− 1 elements different from x, it is easily seen
that:

degree1(S) ≤ (m− 1).degree(S) where m = arity(ρ).

.
Conversely, for each x, if there exist at most d elements y ∈ D adjacent to x then, the number
of distinct tuples involving x and y is bounded by q.m.dm−1. Hence,

degree(S) ≤ q.m.(degree1(S))m−1.

So, the two measures yield the same notion of bounded degree structure.

12

We are interested in the complexity of the following query problem for bounded degree
structures (which is clearly independent of either measure of degree we choose).

QUERY(FODeg)
Input: an integer d, a relational signature ρ, a ρ-structure S with degree(S) ≤ d and a
first-order ρ-formula ϕ(x) with k free variables x = (x1, . . . , xk)
Parameter: d, ϕ
Output: ϕ(S) = {a ∈ Dk : (S, a) |= ϕ(x)}.

3.2 Interpreting a structure of bounded degree into a bijective struc-

ture

In this section, we present a natural reduction from QUERY(FODeg) to QUERY(FOBij)
which is obtained by interpreting any structure of bounded degree into a bijective one.
Let S = 〈D ;R1, . . . , Rq〉 be a ρ-structure of domain D, of arity m = max1≤i≤qarity(Ri)
and of degree bounded by some constant d. One associates to S a bijective σ-structure
S ′ = 〈D ′;D,T1, . . . , Tq, g, f1, . . . , fm〉 of domain D′ where D,T1, . . . , Tq are pairwise
disjoints unary relations (i.e. subsets of D′) and g, f1, . . . , fm are permutations of D′.
Structure S ′ is precisely defined as follows:

• D corresponds to the domain of S.

• Ti (1 ≤ i ≤ q) is a set of elements each representing a tuple of Ri (hence, card(Ti) =
card(Ri)).

The new domain D′ is the disjoint union: D ∪ (D × {1, . . . , d}) ∪ T1 ∪ . . . ∪ Tq.
Let us use the following convenient abbreviations: U = D ∪ (D × {1, . . . , d}) and
T =

⋃

1≤i≤q Ti.

• g creates a cycle that relates d copies of each element x of the domain. More
precisely, for each x ∈ D, it holds g(x) = (x, 1), g((x, i)) = (x, i+1) for 1 ≤ i < d,
and g((x, d)) = x. We also set g(x) = x for all other x (x ∈ T).

• Each fi is an involutive permutation and essentially represents a projection of T
into D as follows. Let Ri(x1, . . . , xk) be true in S for some relation Ri of arity
k ≤ m and some k-tuple (x1, . . . , xk) ∈ Dk. Suppose Ri(x1, . . . , xk) is represented
by element t ∈ Ti, then, for each j ≤ k, set fj(t) = (xj , h) and set the reciprocal
f((xj , h)) = t if R(x1, . . . , xk) is the hth tuple in which xj appears (with h ≤ d).
The construction is completed by loops fj(x) = x for all other x ∈ D′.

Figure 1 details the reduction on an example.
It is clear that, by construction, S ′ is a bijective structure and that we have the following
interpretation Lemma.

Lemma 9 Let θi be the σ-formula below associated to any symbol Ri ∈ ρ of arity k:

θi(x1, . . . , xk) ≡ ∃t(Ti(t) ∧
∧

1≤j≤k

∨

1≤h≤d

fj(t) = gh(xj)).

13

T

e

bc

d

a

a

b

c

d

e

t(a, b)

t(b, c)

t(c, a)

t(c, d)

f1

f2

f2 f2

f1

f1

f1

f2

U

Figure 1: Our reduction on an example: the original structure (digraph) of degree 3 is
on the right side of the picture

Then, for all (a1 . . . , ak) ∈ Dk:

(S, a1, . . . , ak) |= Ri(x1, . . . , xk) ⇐⇒ (S ′, a1, . . . , ak) |= θi(x1, . . . , xk).

To each first-order ρ-formula ϕ(x1, . . . , xp), one associates the σ-formula ϕ′′(x1, . . . , xp)
obtained by replacing each quantification ∃v (resp. ∀v) by the relativized quantifica-
tion (∃vD(v)) (resp. (∀vD(v))) (that can be written respectively as ∃v(D(v) ∧ ...) and
∀v(D(v) → ...)) and by replacing each subformula Ri(x1, . . . , xk) by θi(x1, . . . , xk).
The following proposition and lemma express that our reduction is correct and linear in
|S|. Because of Lemma 9, Proposition 10 can be easily proved by induction on formula
ϕ.

Proposition 10 (interpretation of S into S ′) For all (x1 . . . , xp) ∈ Dp:

(S, a1, . . . , ap) |= ϕ(x1, . . . , xp) ⇐⇒ (S ′, a1, . . . , ap) |= ϕ′′(x1, . . . , xp).

In other words: ϕ(S) = ϕ′′(S ′) ∩ Dp. Then, setting ϕ′(x1, . . . , xp) ≡ ϕ′′(x1, . . . , xp) ∧
∧

i≤pD(xi), it holds: ϕ(S) = ϕ′(S ′)

Lemma 11 Computing S ′ from S can be done in linear time Oρ,d(|S|).

14

Proof. As computing S ′ from S is easy, one has only to compare the size of the two
structures. The size of S is:

|S| = Θ(|D|+

q
∑

i=1

card(Ri).arity(Ri)) = Θρ(|D|+

q
∑

i=1

card(Ri)).

For S ′, by construction, it holds that:

|D′| = (d+ 1).|D| +

q
∑

i=1

card(Ri) = Θd,ρ(|S|).

Hence, |S ′| = Θ(m|D′|) = Θd,ρ(|S|). ✷

We are now ready to state and prove the main result of this section.

Theorem 12 QUERY(FODeg) belongs to CONSTANT-DELAYlin .

Proof. Let A be a constant delay algorithm that computes queries of QUERY(FOBij).
By using Proposition 10, the algorithm below correctly evaluates queries in QUERY(FODeg).

Algorithm 4 Evaluating Query(FODeg)

1: Input: S, d, ϕ
2: Compute the σ-formula ϕ′(x) associated to ϕ (and d)
3: Compute the bijective σ-structure S ′ associated to S (and d)
4: Run A on input S ′, ϕ′

The cost of instruction 2 is Oϕ,d(1), that of instruction 3 is Oϕ,d(|S|) (by Lemma 11) and
the precomputation part of algorithm A (included in instruction 4) is Oϕ′(|S ′|) (hence
Oϕ,d(|S|)) by Theorem 7. These steps form a precomputation phase of time complexity
Oϕ,d(|S|). Finally, the effective enumeration of ϕ(S) = ϕ′(S ′) is handled on S ′, ϕ′ by A
and is performed with constant delay. ✷

3.3 Complexity of subgraphs problems

In this part, we present a simple application of our result to a well-known graph problem.
Given two graphs G = 〈V ;E〉 and H = 〈VH ;EH〉, H is said to be a subgraph (resp.
induced subgraph) of G if there is a one-to-one function g from VH to V such that, for
all u, v ∈ VH , E(g(u), g(v)) holds if (resp. if and only if) EH(u, v) holds.

GENERATE SUBGRAPH (resp. GENERATE INDUCED SUBGRAPH)
Input: any graph H and a graph G of degree bounded by d

Parameter: |H|, d.
Output: All the subgraphs (resp. induced subgraphs) of G isomorphic to H.

The treewidth of a graph G is the maximal size of a node in a tree decomposition of G
(see, for example, [DF99]). In [PV90] it is proved that for graphs H of treewidth at most

15

w, testing if a given graph H is an induced subgraph of a graph G of degree at most d
can be done in time f(|H|, d).|G|w+1. In what follows, we show that there is no reason
to focus on graphs of bounded treewidth and that a better bound can be obtained for
any graph H (provided G is of bounded degree). In the result below, we prove that not
only the complexity of this decision problem is f(|H|, d).|G| but that generating all the
(induced) subgraphs isomorphic to H can be done with constant delay.

Corollary 13 The problem GENERATE SUBGRAPH (resp. GENERATE INDUCED SUBGRAPH)
belongs to CONSTANT-DELAYlin

Proof. The proof is given for the erate geinduced subgraph problem. Let G = 〈V ;E〉
and H = 〈VH = {h1 , . . . , hk};EH〉 (|VH | = k) be the two inputs of the problem. Since G
is of maximum degree d, we can partition its vertex set V into d sets V 0, . . . , V d where
each V α is the set of vertices of degree α. This can be done in linear time O(|G|). We
proceed the same for graph H and obtain the sets V 0

H , . . . , V
d
H . In case there exists a

vertex in H of degree greater than d, it can be concluded immediately that the problem
has no solution. Now, let Q be the following formula:

Q(x1, . . . , xk) ≡
∧

i<j≤k

xi 6= xj ∧
∧

V α
H
(hi)

V α
G (xi) ∧

∧

EH (hi,hj)

E(xi, xj).

Formula Q simply checks that H is a subgraph of G and that each distinguished vertex
xi of G has the same degree as its associated vertex hi in H. Note that formula Q only
depends on H and d. The result follows now from Theorem 12. ✷

4 Conclusion

In this paper, we study the complexity of evaluating first-order queries on bounded
degree structures and consider this evaluation as a dynamical process, i.e., as an enu-
meration problem. Our main contributions are two-fold. First, we define a simple
quantifier elimination method suitable for first-order formulas which have to be eval-
uated against a bijective structure. Second, we define a new complexity class, called
CONSTANT-DELAYlin , for enumeration problem which can be seen as the minimal ro-
bust complexity class for this kind of problems and we prove that our query problem on
bounded degree structures belong to this class.
There are several interesting directions for further researches. Among them, the two
following series of questions seem worth to be studied:

• Which ”natural” query problems belong to CONSTANT-DELAYlin ? More gen-
erally, which kind of combinatorial or algorithmic enumeration problems admit
constant delay procedures ?

The same questions can be asked for the larger class CONSTANT-DELAYpoly of
constant delay enumeration problems for which polynomial time (instead of linear
time) precomputations are allowed.

16

• What are the structural properties of the class CONSTANT-DELAYlin or of the
larger CONSTANT-DELAYpoly ? Do they have complete problems ? Under which
kind of reductions ? Could they be proved to be different from the classes of
enumeration problems solvable with linear or polynomial delay ?

Acknowledgment. We thank Ron Fagin for a very fruitful email exchange that lead
us to define complexity notions about constant delay computation.

References

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[BGKM00] E. Boros, V. Gurvich, L. Khachiyan, and K. Makino. Generating partial and
multiple transversals of a hypergraph. In U. Montanari, J. D. P. Rolim, and
E. Welzl, editors, Proceedings 27th International Conference on Automata, Lan-
guages, and Programming (ICALP 2000), Geneva (Switzerland), volume 1853
of Lecture Notes in Computer Science, pages 588–599. Springer-Verlag, 2000.

[CH90] K.J. Compton and C.W. Henson. A uniform method for proving lower
bounds on the computational complexity of logical theories. Annals of pure
and applied logic, 48:pp.1–79, 1990.

[DF99] R. G. Downey and M. R. Fellows. Parameterized complexity. Springer-Verlag,
1999.

[EG95] T. Eiter and G. Gottlob. Identifying the minimal transversals of a hyper-
graph and related problems. SIAM Journal on Computing, 24(6):1278–1304,
1995.

[EGM03] T. Eiter, G. Gottlob, and K. Makino. New results on monotone dualiza-
tion and generating hypergraph transversals. SIAM Journal on Computing,
32(2):514–537, 2003.

[FFG02] J. Flum, M. Frick, and M. Grohe. Query evaluation via tree decompositions.
Journal of the ACM, 49(6):716–752, 2002.

[Gai82] H. Gaifman. On local and nonlocal properties. In J. Stern, editor, Logic
Colloquium’81, pages 105–135. North-Holland, 1982.

[GO04] E. Grandjean and F. Olive. Graphs properties checkable in linear time in the
number of vertices. Journal of Computer and System Sciences, 68(3):546–597,
2004.

[Gol94] L. A. Goldberg. Listing graphs that satisfy first order sentences. Journal of
Computer and System Sciences, 49(2):408–424, 1994.

[GS02] E. Grandjean and T. Schwentick. Machine-independent characterizations
and complete problems for deterministic linear time. SIAM Journal on Com-
puting, 32(1):196–230, 2002.

17

[Han65] W. Hanf. Model-theoretic methods in the study of elementary logic. In
L. Henkin J. Addison and A. Tarski, editors, The Theory of Models, pages
132–145. North-Holland, 1965.

[JYP88] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating
all maximal independent sets. Information Processing Letters, 27(3):119–123,
1988.

[KSS00] D. J. Kavvadias, M. Sideri, and E. C. Stavropoulos. Generating all maximal
models of a boolean expression. Information Processing Letters, 74(3-4):157–
162, 2000.

[Lin04] S. Lindell. Monadic fixed-points are in linear time on bounded degree graphs.
Unpublished manuscript, 2004.

[PV90] J. Plehn and B. Voigt. Finding minimally weighted subgraphs. In Springer,
editor, 16th workshop on graph theoretic concepts in computer science, volume
484 of Lecture Notes in Computer Science, pages 18–29, 1990.

[See96] D. Seese. Linear time computable problems and first-order descriptions.
Mathematical Structures in Computer Science, 6(6):505–526, December 1996.

18

