
16

Multistep-Ahead Neural-Network Predictors
for Network Traffic Reduction in Distributed
Interactive Applications

AARON McCOY, TOMAS WARD, and SEAMUS McLOONE

National University of Ireland Maynooth

and

DECLAN DELANEY

Eni

Predictive contract mechanisms such as dead reckoning are widely employed to support scalable

remote entity modeling in distributed interactive applications (DIAs). By employing a form of

controlled inconsistency, a reduction in network traffic is achieved. However, by relying on the

distribution of instantaneous derivative information, dead reckoning trades remote extrapolation

accuracy for low computational complexity and ease-of-implementation. In this article, we present

a novel extension of dead reckoning, termed neuro-reckoning, that seeks to replace the use of

instantaneous velocity information with predictive velocity information in order to improve the

accuracy of entity position extrapolation at remote hosts. Under our proposed neuro-reckoning

approach, each controlling host employs a bank of neural network predictors trained to estimate

future changes in entity velocity up to and including some maximum prediction horizon. The effect

of each estimated change in velocity on the current entity position is simulated to produce an

estimate for the likely position of the entity over some short time-span. Upon detecting an error

threshold violation, the controlling host transmits a predictive velocity vector that extrapolates

through the estimated position, as opposed to transmitting the instantaneous velocity vector. Such

an approach succeeds in reducing the spatial error associated with remote extrapolation of entity

state. Consequently, a further reduction in network traffic can be achieved. Simulation results

conducted using several human users in a highly interactive DIA indicate significant potential

for improved scalability when compared to the use of IEEE DIS standard dead reckoning. Our

proposed neuro-reckoning framework exhibits low computational resource overhead for real-time

use and can be seamlessly integrated into many existing dead reckoning mechanisms.

This research is based upon works supported by Enterprise Ireland under Grant SC/2002/129/, and

by the Science Foundation of Ireland and Enterprise Ireland under Grant IRCSET/ SC/04/CS0289.

Authors’ addresses: A. McCoy, T. Ward, and S. McLoone, Department of Electronic Engineer-

ing, National University of Ireland Maynooth, Maynooth, Co. Kildare, Republic of Ireland; email:

{amccoy, tomas.ward, seamus.mcloone}@eeng.nuim.ie; D. Delaney, Eni S.p.A., Milan, Italy; email:

declan.delaney@eni.it.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permission@acm.org.
C© 2007 ACM 1049-3301/2007/09-ART16 $5.00 DOI 10.1145/1276927.1276929 http://doi.acm.org/

10.1145/1276927.1276929

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 2 • A. McCoy et al.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed

Systems—Distributed applications; I.5.1 [Pattern Recognition]: Models—Neural nets; I.6.8

[Simulation and Modeling]: Types of Simulation—Distributed

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Distributed interactive applications, distributed interactive

simulation, networked virtual environments, collaborative virtual environments, networked mul-

tiplayer computer games, predictive contract mechanisms, dead reckoning, network bandwidth

reduction, consistency, scalability, multistep-ahead prediction, neural networks, wargames

ACM Reference Format:
McCoy, A., Ward, T., McLoone, S., and Delaney, D. 2007. Multistep-ahead neural-network pre-

dictors for network traffic reduction in distributed interactive applications. ACM Trans. Model.

Comput. Simul. 17, 4, Article 16 (September 2007), 30 pages. DOI = 10.1145/1276927.1276929

http://doi.acm.org/10.1145/1276927.1276929

1. INTRODUCTION

A distributed interactive application (DIA) is a networked virtual reality system
through which geographically dispersed participants can share information via
individual and collaborative interaction with each other and their environment
[Churchill et al. 2001]. DIAs offer the realization of simulated virtual worlds
that embody a modern extension of communication encompassing the concepts
of shared time, shared space, and shared presence [Singhal and Zyda 1999].
From distributed military simulations and networked virtual environments to
large-scale online multiplayer computer games, the widespread availability of
low-cost, high-performance computing power and networking technology have
enabled DIAs to become a reality for millions of people worldwide.

Conceptually, any real-time DIA can be assumed to consist of at least four
components, namely, a simulated virtual environment, a set of virtual entities
that interact within this environment, a physical collection of geographically
dispersed host machines that run local, synchronized instances of the simu-
lated virtual environment, and a physical computer network to facilitate com-
munication between them [Macedonia and Zyda 1997]. During the application’s
execution, the responsibility for managing and updating the changing state of a
virtual entity resides with a corresponding controlling (or source) host machine,
who acts as a human-user interface to the content of the virtual world by provid-
ing autonomous control over the virtual entity to a single human-user (in such
a scenario, the virtual entity is often referred to as the human-user’s avatar).
Remote (or receiver) host machines accept entity state updates (ESUs), trans-
mitted over the network from the controlling host on behalf of the virtual entity
to synchronize the display of that entity across each host machine, supplement-
ing the pretence of a single, seamless virtual environment to the human-users
[Roehle 1997]. The concept is illustrated graphically in Figure 1.

The fundamental goal for any real-time DIA is to provide for and maintain a
synchronized (or consistent) view of the simulated virtual environment across
all participating host machines that accurately reflects changes to that envi-
ronment (and any virtual entities interacting within it) in real time, whilst
also obscuring the distributed nature of the application from the perception of

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Multistep-Ahead Neural Networks for Network Traffic Reduction • Article 16 / 3

Fig. 1. Hosts must synchronize the display of local and remote entities by exchanging entity state

updates.

the human-users [Sun et al. 1998]. The problems faced in achieving this goal
stem from the inherent limitations associated with the transmission of data
over a physical communication channel [Mathy et al. 1999]. In particular, the
two primary factors inhibiting the large-scale deployment of a DIA are network
latency and network bandwidth. Network latency refers to the delay in data
transmission between two host machines. Network bandwidth refers to the rate
at which data can be transmitted per unit time between two host machines, and
is also referred to as channel capacity or throughput. The implications of vari-
able network latency and limited network bandwidth are summarized within
the consistency-throughput tradeoff, which states that one can have either a
highly dynamic world or a consistent world, but not both [Singhal and Zyda
1999].

In an ideal world, one in which network latency is nonexistent and network
bandwidth resources are infinite, host machines could transmit and receive
an unlimited quantity of ESUs instantaneously, thereby guaranteeing consis-
tency of the virtual environment. In reality, finite network (and computational)
resources preclude such a scenario. Thus, throughout the literature, numer-
ous techniques for reducing the perceivable effects of variable network latency,
and for improving the efficient use of network bandwidth, have been proposed
[Delaney et al. 2006a, 2006b]. Fundamentally, these techniques differ with re-
spect to the approach they take towards maintaining consistency of the virtual
environment [Fujimoto 2000; Greenberg and Marwood 1994]. Optimistic ap-
proaches seek to detect and subsequently resolve inconsistencies if and when
they occur during the course of an application’s execution. Conservative ap-
proaches, on the other hand, seek to take precautionary measures to prevent
the occurrence of inconsistencies outright. For human-in-the-loop applications
requiring real-time responsiveness, optimistic approaches are generally pre-
ferred [Bhola et al. 1998].

In this article, we focus on the use of one such optimistic approach, known
as predictive contract mechanisms [Mellon and West 1995], for reducing the

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 4 • A. McCoy et al.

quantity of ESUs exchanged among host machines during the course of an ap-
plication’s execution. Under a predictive contract mechanism, controlling hosts
are required to maintain two parallel models for each virtual entity under their
control, namely, a high-fidelity model that represents the true entity state as
computed in response to human-user input events, and a low-fidelity model
that represents an approximation to the true entity state. The algorithm used
to compute the approximation is known as the predictive contract, and is avail-
able at every remote host to extrapolate the time-dependent state of the virtual
entity from the most recently received ESU in the absence of complete, up-to-
date state information. By periodically comparing the deviation between the
two models against a suitably defined error threshold, the controlling host can
locally determine when to transmit ESUs to synchronize the presentation of the
virtual entity. Hence, by employing a form of controlled inconsistency, predictive
contract mechanisms sacrifice additional computational resources for reduced
consumption of network resources in order to support scalability in real-time
DIAs, in accordance with the information principle espoused by Singhal and
Zyda [1999].

The most widely employed predictive contract mechanism in current use is
known as dead reckoning. It was introduced during the development of SIMNET
[Miller and Thorpe 1995] and subsequently formally defined within the IEEE
Standard for Distributed Interactive Simulation (DIS) [IEEE 1995]. Dead reck-
oning makes use of instantaneous derivative information (such as velocity and
acceleration) contained within the most recently received ESU(s) to extrapolate
the time-dependent state (such as location) of a virtual entity using a polyno-
mial predictor [Lin and Schab 1994a, 1994b]. At first glance, one might assume,
then, that increasing the computational complexity of the polynomial predictor
and adding higher-order derivative information (e.g., change in acceleration or
jerk) would consequently improve the remote extrapolation accuracy, leading to
an even further reduction in the consumption of network resources. In practice,
however, increasing the computational complexity of the polynomial by adding
higher-order derivative information increases the sensitivity of the predictor to
rapidly changing entity state information, producing diminishing returns and
increasing the likelihood of inaccurate extrapolation over time [Singhal and
Zyda 1999]. Hence, in order to improve the extrapolation procedure, one can
either replace the polynomial predictor with an alternative solution, or improve
the accuracy of the derivative state information used by them.

The work presented in this article takes the latter approach. In particular,
we propose a novel extension of dead reckoning, termed neuro-reckoning, that
seeks to replace the use of instantaneous derivative information with predic-
tive derivative information in order to improve the accuracy of entity state ex-
trapolation at remote hosts. The concept is illustrated graphically in Figure 2.
When the deviation between the high-fidelity model (representing the true en-
tity state) and low-fidelity model (representing the approximated entity state)
exceeds the error threshold, the controlling host must transmit an ESU for that
entity over the network in order to synchronize the presentation of the entity at
each remote host. Under dead reckoning, the controlling host would transmit
the instantaneous velocity vector. Under neuro-reckoning, the controlling host

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Multistep-Ahead Neural Networks for Network Traffic Reduction • Article 16 / 5

Fig. 2. An illustration of the fundamental concept underlying our proposed neuro-reckoning

approach.

employs a bank of neural network predictors to estimate the likely position of
the entity over some short time-span, given its current motion, and transmits
a velocity vector that extrapolates through that point instead. By distributing
predictive derivative information that implicitly encodes expected entity mo-
tion, neuro-reckoning aims to reduce the spatial error associated with remote
extrapolation of entity state. Consequently, the ultimate goal of our approach is
to further reduce the number of ESUs exchanged among host machines due to
error threshold violation when compared with dead reckoning. Although the pri-
mary focus of our work is directed towards real-time, human-in-the-loop DIAs
such as distributed military simulations and networked multiplayer computer
games, the concept can be applied to any domain in which predictive contract
mechanisms are used for network traffic reduction, including multiuser collab-
orative virtual environments, 3D cyberspaces and networked virtual commu-
nities, distributed visualization and interactive walkthrough applications, and
3D chatting systems.

The remainder of this article is organized as follows. In Section 2, we
present a brief overview of the standard dead reckoning procedure. In Sec-
tion 3, we present an overview of our proposed neuro-reckoning framework
that includes a detailed description of the procedure used to generate pre-
dictive derivative information. In Section 4, we present simulation results
comparing our approach with the use of IEEE DIS standard dead reck-
oning. Finally, in Section 5, we offer conclusions and directions for future
research.

2. DEAD RECKONING

The polynomial predictors used in dead reckoning can be derived using the
Taylor series expansion for some scalar, real-valued function f (t) = x (where
x represents some time-dependent entity state variable) expanded about the

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 6 • A. McCoy et al.

point t0 in order to extrapolate the value of xi at time ti = t0 + ih. This is as
follows [Lin and Schab 1994a, 1994b].

xi =
∞∑

n=0

f (n)(t0)

n!
(ih)n = x0 + ẋ0ih + ẍ0

2
(ih)2 + ẍ̇0

6
(ih)3 + . . . , (1)

where h is the simulation (dead reckoning) step-time, n! denotes the factorial of
n, and f (n)(t0) denotes the nth derivative of f (t) at the point t0. If unavailable,
the value of f (n)(t0) can be approximated by numerical differentiation. The order
of each dead reckoning equation is defined as the order of its truncation error
(i.e., the cut-off point for derivatives in the Taylor series expansion) minus one
[Lin and Schab 1994a, 1994b]. In general, the inclusion of higher-order terms
produces diminishing results from a dead reckoning perspective, and for this
reason first, and second-order equations are almost always preferred [Singhal
and Zyda 1999]. The neuro-reckoning approach presented in this article extrap-
olates entity state using a first-order equation. In comparing the performance
of our approach to that of standard dead reckoning, however, we consider both
first- and second-order equations for the latter [Lee et al. 2000].

first-order: xi = x0 + ẋ0ih (2)

second-order: xi = x0 + ẋ0ih + ẍ0

2
(ih)2 (3)

Dead reckoning mechanisms rely on the use of an error threshold and a timeout
to regulate the transmission of entity state updates (ESUs) [Ryan and Oliver
2006]. The use of an error threshold is designed to bound the remote extrap-
olation error of the polynomial predictor by imposing an upper bound on the
tolerable deviation between the high-fidelity and low-fidelity models needed
to trigger an update. The use of a timeout is designed to guarantee a mini-
mum frequency of entity state update (ESU) transmission at the cost of po-
tentially redundant network bandwidth usage by imposing an upper bound on
the elapsed time between consecutive updates. The selection of an appropriate
error threshold and an appropriate timeout defines the tradeoff between re-
source usage and consistency in a dead reckoning mechanism. Consequently,
a number of adaptive error threshold selection schemes have been proposed
throughout the literature [Cai et al. 1999; Chen and Chen 2005; Shim and
Kim 2001; Yu and Choy 2001; Zhang and Georganas 2004], alongside several
techniques for reducing the reliance of a dead reckoning mechanism on the
use of a timeout [Srinivasan 1996; Van Hook et al. 1995]. In comparing the
performance of our proposed neuro-reckoning approach to that of standard
dead reckoning, however, we consider only fixed error thresholds and fixed
timeouts.

Finally, it should be noted that dead reckoning mechanisms rely on the use
of convergence algorithms to smoothly correct the display of inconsistencies
arising due to inaccurate extrapolation [Lin et al. 1995]. The application of
a convergence algorithm is usually left to the discretion of each remote host,
however, and thus the effect of applying the convergence is not considered by
the controlling host in determining when to transmit those entity state updates
(ESUs) due to error threshold violation. Hence, in comparing the performance

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Multistep-Ahead Neural Networks for Network Traffic Reduction • Article 16 / 7

of our proposed neuro-reckoning approach to that of standard dead reckoning,
we do not consider the direct application of convergence algorithms.

3. NEURO-RECKONING FRAMEWORK

3.1 Overview

As outlined in the Introduction, our proposed neuro-reckoning approach seeks
to replace the use of instantaneous derivative information with predictive
derivative information in order to improve the accuracy of entity state extrap-
olation at remote hosts. It does this by transmitting predictive velocity vectors
in place of instantaneous velocity vectors, as shown in Figure 2. The procedure
used to generate predictive velocity vectors shall be described in detail in the
next section. For now, we abstract the concept of our neuro-reckoning approach
into a self-contained component module that can be interfaced into the stan-
dard dead reckoning procedure with relative ease. The advantage of such an
abstraction is twofold. Firstly, it allows us to graphically illustrate how our ap-
proach modifies the standard dead reckoning procedure in an intuitive manner.
Secondly, it allows us to analyze the additional resource requirements that are
introduced by our approach in isolation from those introduced by standard dead
reckoning (see Section 3.4).

As an extension of dead reckoning, our proposed neuro-reckoning approach
modifies the procedure for transmitting ESUs from the perspective of the con-
trolling host only (i.e., the sender-side of the network connection, as opposed
to the receiver-side). As far as remote hosts are concerned, the dead reckoning
procedure remains unchanged; they receive ESUs containing position and ve-
locity information (along with any other state variables that require replication)
and extrapolate using a first-order polynomial predictor as described in Eq. (2).
Figure 3 presents a flow-chart describing the high-level operation of our pro-
posed neuro-reckoning approach from the perspective of the controlling host.
The neuro-reckoning module interfaces directly to the high-fidelity model that
represents the true entity state, as computed in response to human-user input
events, and also to the network module responsible for transmitting ESUs once
an error threshold violation or timeout is detected. The format of the data sent
across the network remains unchanged from that sent by the standard dead
reckoning procedure. In this respect, our proposed neuro-reckoning framework
can be implemented without altering the underlying network software archi-
tecture of an application’s existing dead reckoning mechanism(s).

3.2 Neuro-Reckoning Module

Figure 4 presents a block diagram describing the inner workings of the neuro-
reckoning module introduced in the previous section. The notation used in the
description (as well as in the rest of the article) is defined in Table I. The module
interfaces to the high-fidelity model through the use of a tapped delay-line that
accepts the current entity state vector at each simulation step. Once the module
is executed, it outputs a predictive velocity vector for subsequent transmission
to remote hosts, in the form of a standard ESU.

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 8 • A. McCoy et al.

Fig. 3. Flow-chart describing the high-level operation of our proposed neuro-reckoning approach.

At its core, the module employs a bank of neural network predictors trained
to estimate future changes (or difference vectors) in entity velocity (i.e., accel-
eration) up to and including some maximum prediction horizon q. The module
maintains a sliding window that stores the k+1 most recent entity state vectors
from the tapped delay-line up to and including the current time t. A process of
feature extraction is performed over the window of entity state vectors to con-
struct a suitable input to the bank of neural network predictors for the current
time-step. Once each neural network predictor has been simulated and a cor-
responding estimate for the future change in entity velocity for that prediction
horizon generated, the module simulates the effect of each velocity estimate on
the entity position vector in a cumulative manner using a series of first-order
polynomial predictors. This culminates in a final estimate for the likely position
of the entity over a future time-span of (q + 1)h seconds. This procedure can
be described as a process of forward dead reckoning simulation through time.
By normalizing the difference vector between the current and estimated en-
tity position (thereby generating a unit direction vector) and scaling the result

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Multistep-Ahead Neural Networks for Network Traffic Reduction • Article 16 / 9

Fig. 4. Block diagram describing the inner workings of the neuro-reckoning module introduced

previously.

by the current entity speed (i.e., magnitude of the current entity velocity vec-
tor), the neuro-reckoning module can construct a predictive velocity vector that
extrapolates through the estimated position. The predictive velocity vector is
then transmitted over the network as a standard ESU to remote hosts, instead
of the current instantaneous velocity vector.

Eqs. (4)–(8) define the relationships between the variables listed in Table I,
and therefore the system dynamics implemented by the block diagram given in
Figure 4. The implementation of neural network predictors is discussed in the
following section, so for now we simply denote the feature extraction process as
f (.) and the input-output functional mapping implemented by the ith neural

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 10 • A. McCoy et al.

Table I. Summary of Notation

Symbol State-Space Description

h �+ simulation (dead reckoning) time-step

k �+ maximum time-delay

q �+ maximum prediction horizon

D �+ dimension of complete entity state vector

d �+ dimension of entity attribute vectors (e.g., position, velocity, etc.)

st �D complete entity state vector at time t where st = (xt , vt , θt)

xt ⊆ st �d entity position vector at time t
vt ⊆ st �d entity velocity vector at time t
θt ⊆ st �d entity orientation vector at time t
x̂t+i �d estimated entity position vector at time t + i
v̂t+i �d estimated entity velocity vector at time t + i
�v̂t+i �d estimated change in entity velocity vector from time t to time t + i

n �+ no. of input neurons (input-layer dimension) per neural network

m �+ no. of hidden neurons (hidden-layer dimension) per neural network

Pi n/a ith neural-network predictor

P n/a set of all neural-network predictors P = {Pi}, ∀ i ∈ {1, . . . , q}
s̃ t �n ×1 input column vector to the set of neural-network predictors at time t
Wi �m ×n input/hidden-layer interconnection weight matrix of ith neural-net

Ui �d × m hidden/output-layer interconnection weight matrix of ith neural-net

bi �m × 1 hidden-layer bias column vector of ith neural-network predictor

ci �d × 1 output-layer bias column vector of ith neural-network predictor

Symbols defined with a ∧ denote an estimated or predicted quantity, variable, or matrix. �+ = [0, ∞) denotes

the set of nonnegative real numbers. �+ = { 0, 1, 2, . . . } denotes the set of nonnegative integers.

network predictor as gi(.). The operator |.| denotes the magnitude or length of
a vector.

feature extraction: s̃ t = f (st , . . . , st−k) (4)

neural-network simulation: �v̂t+i = gi(s̃ t) ∀ i ∈ { 1 , . . . , q } (5)

entity velocity vector estimation: v̂t+i = vt + �v̂t+i ∀ i ∈ { 1 , . . . , q }(6)

entity position vector extrapolation: x̂t+1 = xt + vth

x̂t+i+1 = x̂t+i + v̂t+ih ∀ i ∈ { 1 , . . . , q } (7)

predictive velocity vector computation: v̂t = x̂t+q+1 − xt∣∣ x̂t+q+1 − xt
∣∣ | vt | (8)

3.3 Neural-Network Predictors

The role of the feature extraction process is to construct a suitable column vector
for use as input to the bank of neural network predictors during the current
simulation step that is based on some combination of the entity state vectors
currently stored in the sliding window. The approach adopted in this article is to
extract both the d -dimensional entity velocity vector vt and the d -dimensional
entity orientation vector θ t from each entity state vector { st , . . . , st−k } stored
in the sliding window and to combine them into a single column vector for use
as input to the bank of neural network predictors. Such an approach removes

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Multistep-Ahead Neural Networks for Network Traffic Reduction • Article 16 / 11

Fig. 5. Topology of the neural-network predictors that form the core of the neuro-reckoning module.

the dependence of neural network predictors on the (potentially large) spatial
state-space of the virtual environment (i.e., the d -dimensional entity position
vector xt). In particular, we wish to avoid localizing the neural networks to
regions of the spatial state-space that would complicate training, and instead
we rely purely on the characteristics of the entity motion itself. Hence, our
neural network predictors can be used across multiple virtual environments,
irrespective of different spatial layouts (e.g., different levels or new maps in a
networked multiplayer computer game).

s̃ t = f (st , . . . , st−k) = (vt , θt , . . . , vt−k , θt−k)T (9)

In order to implement the bank of neural network predictors that forms the core
of the neuro-reckoning module described in the previous section, we employ a
collection of static multilayer perceptrons (MLPs) [Principe et al. 2000]. MLPs
have been shown to have good mapping capabilities for modeling both real and
virtual entities in a number of application domains, including distributed mili-
tary simulations [Henninger et al. 2001], networked virtual environments [Sas
et al. 2003], networked multiplayer computer games [Thurau et al. 2003], and
autonomous robot soccer [Behnke et al. 2003]. In our approach, each successive
MLP accepts the same input column vector as its predecessors, but is trained to
predict over a longer prediction horizon independently of the outputs from other
networks. Such a scheme can best be described as a form of direct multistep-
ahead prediction and is used primarily in contrast to the choice of a recursive
single-step-ahead prediction scheme that may exhibit unstable behavior [Boné
and Crucianu 2002].

The topology of the neural network predictors is shown in Figure 5. Each
MLP contains a single input-layer, a single hidden-layer, and a single output-
layer arranged in a (fully connected) feed-forward architecture. The number of

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 12 • A. McCoy et al.

input neurons is given by n = 2d (k + 1), the number of hidden neurons de-
noted by m, and the number of output neurons given by d (see Table I). Such
a feed-forward architecture is denoted as (n-m-d). Each MLP is batch-trained
using the standard Levenberg-Marquardt backpropagation (LM-BP) algorithm
for updating the network parameters based on the mean squared error (MSE)
over some training dataset [Hagan and Menhaj 1994]. Nonlinear sigmoidal
“hyperbolic tangent (tanh)” transfer functions are used by neurons contained
within the hidden layer, while linear transfer functions are used by neurons
contained within the output layer. Such an architecture is known to have uni-
versal mapping capabilities under certain conditions [Principe et al. 2000]. The
topology shown in Figure 5 is represented in vector space. As per Table I, en-
tity attribute vectors (e.g., velocity and orientation) are each of dimension d .
Consequently, neurons pictured as residing in either the input- or output-layer
each represent d components of entity state, and hence must be physically
implemented as d separate neurons (for practical purposes).

Based on the aforementioned MLP architecture, the input-output functional
mapping implemented by the ith neural-network predictor is given by the
equation

�v̂t+i = gi(s̃t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ui

⎛
⎜⎝σ (Wi s̃t + bi)︸ ︷︷ ︸

hidden layer

⎞
⎟⎠ + ci

︸ ︷︷ ︸
output layer

⎞
⎟⎟⎟⎟⎟⎟⎠

T

∀i ∈ {1, . . . , q}, (10)

where Wi, Ui, bi, and ci are the parameters for the ith neural network as de-
fined in Table I, and σ (.) is the nonlinear sigmoidal “hyperbolic tangent (tanh)”
transfer function used by neurons contained within the hidden layer of the net-
work. Assuming an arbitrary, real-valued scalar variable x, then σ (x) is defined
by the following equation [Harrington 1993].

σ (x) = tanh(x) = 2

1 + e−2x
− 1, (11)

where ex is the transcendental exponential function [Mizutani and Dreyfus
2001]. As can be seen from examination of Eq. (10), σ (.) is computed on an
element-by-element basis over the net output vector from the m hidden neurons
for the ith neural network that is given by the expression

Wi s̃ t + bi (12)

and produces an �m×1 column vector.
Both the inputs to and outputs from the neural network predictors can be

standardized and destandardized, respectively, using Eq. (13), shown next that
scales the value of any arbitrary real-valued, scalar variable x from the range
[xmin, xmax] to the range [ymin, ymax] (values of ranges are purely application
dependent)

y = (x − xmin)
(ymax − ymin)

(xmax − xmin)
+ ymin (13)

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Multistep-Ahead Neural Networks for Network Traffic Reduction • Article 16 / 13

Table II. Theoretical Computational Analysis

Neuro-Reckoning (NR) Algorithm (Approximate) Flops

Process 1: Input column vector standardization 12d (k + 1)

Process 2: Neural-network simulation mq(4 + 6d + 4dk + Te)

Process 3: Output vector destandardization 6qd
Process 4: Entity velocity vector estimation qd
Process 5: Entity position vector extrapolation 2d (q + 1)

Process 6: Predictive velocity vector computation 6d + 2Ts − 1

Process 1 and Process 3 are not shown in Figure 4, but are implicitly assumed to be required.

Flop counts and execution times for our particular implementation are reported in Section 4.4.

Standardizing the inputs and outputs in this manner was observed to improve
the training performance of neural network predictors [Shanker et al. 1996].

3.4 Theoretical Computational Analysis

Our proposed neuro-reckoning approach sacrifices additional computational re-
sources for a further reduction in the consumption of network resources over
that provided for by the standard dead reckoning procedure. Hence, we now
perform a theoretical computational analysis of the (approximate) number of
additional floating-point operations (or flops) required by our approach. In the
following analysis, we assume that the differences in execution time (or cost)
of performing arithmetic flops (i.e., addition, subtraction, multiplication, and
division) are negligible. Furthermore, for some arbitrary real-valued, scalar
variable x, we denote the number of flops required to execute the transcen-
dental exponential function ex by Te and that required to execute the square
root function x1/2 by Ts. Evaluating a transcendental exponential function ex

can take considerably more processing cycles than a standard arithmetic oper-
ation and can account for a significantly large proportion of the total estimated
execution time [Mizutani and Dreyfus 2001]. Fast approximations to the expo-
nential function, such as that proposed by Cawley [2000], can thus be employed
to reduce the execution time, if required.

The algorithmic operation of the neuro-reckoning (NR) procedure can be
subdivided into 6 processes. As such, we perform a theoretical computational
analysis for each process in turn with respect to the various parameters that
define the process and the number of approximate flops needed to execute it.
The results are summarized in Table II. For brevity, we have omitted the actual
derivation of the number of flops per process. The interested reader can trivially
verify the results by direct application of Eqs. (4)–(13) and by substitution of the
equality n = 2d (k +1) as described in Section 3.3. As can be seen, lowering any
of the 6 parameters (k, q, d , m, Te, or Ts) reduces the additional computational
resources that are required by our proposed neuro-reckoning approach in
return for a probable decrease in accuracy of the resulting predictive velocity
vectors transmitted to and used by remote hosts for extrapolating entity state.
Quantifying the exact analytical tradeoff between computational and network
resources is impossible, as one can never be truly certain of how accurate
an extrapolation will be (in general) when attempting to predict human-user

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 14 • A. McCoy et al.

behavior in advance. The number of approximate flops shown in Table II serves
as a general estimate for the architecturally independent cost of implementing
our proposed approach. Once an estimate for the execution time of a single flop
on a given architecture is known, the cost of our algorithm can be estimated a
priori.

4. RESULTS AND ANALYSIS

4.1 Overview

To demonstrate and validate our proposed neuro-reckoning approach within
an application domain exhibiting a realistic scope, experiments are conducted
under the guise of a simple first-person shooter (FPS)-style game scenario. This
strategy was developed using the commercially available torque game engine
(TGE) [Lloyd 2004]. The rules that govern the game are fairly typical of the
type of “deathmatch” scenarios used within online FPS games, and yield data
that can be considered a fair representation for the type of data that one would
expect to observe in commercial networked multiplayer computer games and
other similar real-time applications [McCoy et al. 2004]:

(1) Experiments consist of an open environment containing a collection of
spawn points that designate randomly assigned starting locations for each
entity.

(2) At the beginning of the game, entities are placed randomly into the game
world at one of these spawn points.

(3) Entities possess projectile-based weaponry, along with a limitless supply
of ammunition that is used for disabling an opponent in order to score a
“hit-point”.

(4) Projectiles are subject to simulated gravitational forces when in motion and
inflict an amount of damage inversely proportional to their blast radius
upon impact.

(5) Entities possess a health meter that quantifies the amount of damage
needed to disable them.

(6) Disabled entities are randomly respawned at one of the spawn points fol-
lowing a time-period of no greater than 2 seconds.

(7) The goal is to be the first player to reach a prespecified “hit-point” score-
limit, at which point the experiment may be repeated or considered com-
pleted.

Figure 6 shows a screenshot of the game in action, along with a graphical
representation of the state-space in which the entities interact with one an-
other with respect to implementing our proposed neuro-reckoning approach.
Although the game world is modeled in true arbitrary 3-dimensional space,
the vertical component of entity velocity is negligible and has little impact
on the resulting motion trajectories generated by the interacting entities. Thus,
for the purposes of training the set of neural network predictors, entity veloc-
ity and orientation are modeled as 2-dimensional state vectors (i.e., d = 2). As

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Multistep-Ahead Neural Networks for Network Traffic Reduction • Article 16 / 15

Fig. 6. Left: the game in action; right: the state-space for training the set of neural-network

predictors.

noted by Behnke et al. [2003], we encode the entity orientation vector as a point
(i.e., a sine and cosine coordinate pair) on a unit circle centered at the entity’s
current position to avoid the training complications associated with the discon-
tinuity between π and -π when encoding a single angle. All measurements are
defined in terms of torque world units (TWUs).

velocity: vt = (vx , vy) where vx , vy ∈ [−15 , +15] (14)

orientation: θt = (θx , θ y) where θx , θ y ∈ [−1 , +1] (15)

4.2 Neural-Network Implementation

Our implementation consisted of 4 human-users (each possessing a varying de-
gree of expertise with respect to networked multiplayer computer games: users
1 and 4 being the most experienced, user 3 the least) that were required to in-
dividually compete in a series of 12 consecutive experiments (each consisting of
a prespecified “hit-point” score limit of 10). Specifically, they competed against
a scripted computer-controlled opponent (bot) operating under the influence
of a dynamic shortest-path behavioral model [McCoy et al. 2005]. Data is col-
lected at a rate of 20 samples per second (i.e., a constant simulation time-step
of h = 50ms). Of the 12 experimental datasets collected for each user, the first
2 were discarded due to the probable appearance of transient behavior related
to the initial learning strategies adopted by each human-user, leaving a total of
10 datasets per human-user. Of these 10 datasets, the final 2 were kept isolated
from the data pertaining to training the neural networks for the purposes of pro-
viding an unbiased means of performance evaluation. The remaining 8 datasets
were then combined, at which point a series of exemplars were extracted, and
subsequently divided randomly into suitable training (70%), validation (15%),
and testing (15%) sets. The exemplars (consisting of the inputs and correspond-
ing target values required for supervised learning) were standardized to the
interval [−1, 1]. Based on early evaluations performed using various network
topologies, the maximum time-delay k was set at 3 (longer time-delays were
seen to produce negligible improvement in training performance relative to the
additional network complexity), the maximum prediction horizon q was set at
10, and the number of hidden neurons per network m was set at 8. Hence, the

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 16 • A. McCoy et al.

Table III. Coefficient of Determination (r2) Over the Training Set for Each User

User 1 (7680) User 2 (8320) User 3 (7475) User 4 (8704)
Prediction

Horizon �vx �vy �vx �vy �vx �vy �vx �vy

1 0.45 0.47 0.52 0.52 0.54 0.58 0.53 0.53

2 0.46 0.43 0.47 0.44 0.59 0.61 0.50 0.47

3 0.34 0.33 0.37 0.33 0.55 0.58 0.32 0.32

4 0.28 0.27 0.41 0.39 0.50 0.53 0.31 0.30

5 0.24 0.22 0.32 0.29 0.45 0.51 0.26 0.27

6 0.22 0.23 0.32 0.27 0.42 0.45 0.25 0.26

7 0.21 0.22 0.30 0.25 0.44 0.48 0.23 0.23

8 0.23 0.21 0.31 0.28 0.39 0.44 0.22 0.21

9 0.24 0.21 0.30 0.28 0.40 0.46 0.22 0.21

10 0.23 0.19 0.29 0.28 0.39 0.41 0.23 0.23

architecture of each neural network can be denoted as (16-8-2) (see Section 3.3).
A separate set of neural network predictors was trained for each user.

4.3 Neural-Network Training Results

Each neural network predictor is trained to predict changes in entity veloc-
ity over a specific prediction horizon, where training continues until the vali-
dation set determines the “early-stopping” point for maximum generalization
[Principe et al. 2000] (or, alternatively, until the training period reaches 100
epochs). The performance criterion used in the training procedure is the mean
squared error (MSE) between predicted and actual changes in entity velocity
over some target dataset. Unfortunately, the numerical value of the MSE de-
pends upon the magnitude of the target data samples, limiting its effectiveness
in comparing the performance of predictors trained over different prediction
horizons [Battaglia 1996]. Hence, in order to compare the performance of each
neural network predictor over the increasing prediction horizon in a meaning-
ful fashion, we quantify the accuracy of each predictor using the coefficient of
determination. The coefficient of determination measures the proportion (or
percentage, if multiplied by 100) of the variance (or fluctuation) of one vari-
able that is predictable by knowledge of another—in other words, the ratio of
explained variation to total variation—and is defined as follows [Rodgers and
Nicewander 1988].

r2 = 1 −

n∑
i=1

(xi − x̂i)
2

n∑
i=1

(xi − x̄)2

, 0 ≤ r2 ≤ 1, (16)

where: xi is the ith target data sample;
x̂i is the ith predicted data sample;
x̄ is the mean (or average) of the set of target data samples; and
n is the total number of target (and of predicted) data samples.

Tables III to V present the coefficient of determination (r2) as computed
over the training, validation, and test sets, respectively, for each user. The

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Multistep-Ahead Neural Networks for Network Traffic Reduction • Article 16 / 17

Table IV. Coefficient of Determination (r2) over the Validation Set for Each User

User 1 (1656) User 2 (1761) User 3 (1623) User 4 (1904)
Prediction

Horizon �vx �vy �vx �vy �vx �vy �vx �vy

1 0.42 0.41 0.56 0.53 0.52 0.56 0.50 0.52

2 0.40 0.34 0.50 0.46 0.56 0.60 0.46 0.46

3 0.30 0.25 0.38 0.37 0.54 0.56 0.30 0.33

4 0.24 0.19 0.40 0.41 0.47 0.50 0.28 0.30

5 0.21 0.16 0.32 0.31 0.45 0.51 0.24 0.27

6 0.19 0.17 0.33 0.27 0.41 0.44 0.21 0.25

7 0.19 0.14 0.31 0.26 0.39 0.47 0.21 0.21

8 0.22 0.18 0.32 0.26 0.38 0.44 0.20 0.21

9 0.22 0.16 0.28 0.27 0.39 0.42 0.18 0.21

10 0.23 0.15 0.27 0.26 0.36 0.40 0.22 0.21

Table V. Coefficient of Determination (r2) Over the Test Set for Each User

User 1 (1656) User 2 (1761) User 3 (1623) User 4 (1904)
Prediction

Horizon �vx �vy �vx �vy �vx �vy �vx �vy

1 0.46 0.44 0.52 0.50 0.50 0.60 0.52 0.54

2 0.47 0.40 0.45 0.40 0.55 0.59 0.45 0.49

3 0.34 0.31 0.34 0.32 0.47 0.53 0.28 0.36

4 0.27 0.26 0.36 0.34 0.43 0.50 0.25 0.34

5 0.24 0.22 0.27 0.29 0.38 0.48 0.20 0.30

6 0.22 0.21 0.27 0.27 0.35 0.42 0.18 0.26

7 0.22 0.20 0.25 0.24 0.36 0.41 0.17 0.23

8 0.23 0.20 0.24 0.28 0.35 0.44 0.18 0.21

9 0.24 0.19 0.24 0.28 0.33 0.44 0.18 0.21

10 0.24 0.19 0.24 0.27 0.34 0.40 0.18 0.22

computation is performed separately for each orthogonal component of the neu-
ral network output vector (i.e., �vx and �vy in this particular case) due to the
fact that it measures the strength of the linear relationship between two sam-
pled real-valued, scalar variables. The numbers in brackets denote the total
number of target data samples for that particular user and dataset (i.e., train-
ing, validation, or test). From inspection of the tables, we can observe the high
correlations that are evident at the lower prediction horizons for each user,
coupled with the fact that as the prediction horizon increases, the capability
of neural-network predictors to approximate the functional mapping (i.e., ac-
curacy of the mapping between input to networks and the expected changes in
entity velocity) decreases (in general). This is because they become unable to
compensate for the increasing gap in available information that exists between
the current time-step and the prediction horizon. Overall, neural-network pre-
dictors appear to exhibit good generalization on both the validation and test
sets (with the test set being the most important) for each user relative to their
performance on the respective training set for each user.

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 18 • A. McCoy et al.

Table VI. Seconds Required to Compute 106 Iterations

Components Workstation 1 Workstation 2 Laptop

Manufacturer Intel AMD Intel

Processor Pentium Athlon Pentium

Model / Speed 4 / 2.66 GHz Barton (10) / 1 GHz M 750 / 1.86 GHz

System Bus Clock 533 MHz 200 MHz 533 MHz

RAM / Bus Speed 1024 MB / 333 MHz 512 MB / 333 MHz 1024 MB / 400 MHz

Operating System Win 2000 Pro Win XP Pro Win XP Pro

Compiler MS Visual C++ 6.0 MS Visual C++ 6.0 MS Visual C++ 6.0

Execution Time 9.95 11.025 10.2

4.4 Resource Usage Results

Based upon the theoretical computational analysis in Section 3.4, we can now
derive the total number of (approximate) floating-point operations (or flops)
needed to execute our particular implementation. By substituting the param-
eter values defined in Section 4.2 (i.e., d = 2, m = 8, k = 3, and q = 10) into the
counts defined in Table II and summing the results, we arrive at a total num-
ber of (approximate) flops needed to execute a single iteration of our neuro-
reckoning procedure that is given by T = 3491 + 80Te + 2Ts. It should be noted,
of course, that such an approximation is a conservative estimate that ignores
the processing overhead associated with implementation details such as func-
tion calling and memory allocation (among others). The results of sequentially
executing our neuro-reckoning procedure over 1 million iterations (106) in na-
tive compiled C++ source-code are summarized in Table VI. All computations
were performed in double (64-bit) precision. As can be seen, a single iteration of
our neuro-reckoning procedure takes approximately 10μs–11μs to execute on
modern hardware (obtained by dividing the reported execution times by 106).
Assuming a conservative estimate of anywhere between 10ms and 500ms for
the mean network latency or round-trip time (RTT) delay in a modern DIA, a
solitary execution of our proposed neuro-reckoning procedure results in only a
0.002% to 0.1% increase in delay times (for 500ms and 10ms, respectively).

In terms of additional memory requirements, each neural network predic-
tor requires the storage of two interconnection weight matrices (i.e., Wi ∈ �m×n

and Ui ∈ �d×m) and two bias column vectors (i.e., bi ∈ �m×1 and ci ∈ �d×1) for
a total of 154 parameters per network or 1540 parameters per set of networks
(assuming q = 10). Assuming a single double (64-bit) storage requirement per
parameter gives a combined total of approximately 12KB of storage required
per set of neural network predictors. Given a networked multiplayer computer
game such as Unreal Tournament [McCoy et al. 2003], where each host machine
connected to the network is responsible for managing and posting updates for a
single virtual entity only, the additional computational requirements and mem-
ory overhead introduced by the use of our proposed neuro-reckoning approach
are more than suitable for real-time use. Given a large-scale distributed virtual
environment or military simulation such as DIS [IEEE 1995] or the DMTITE
architecture [Stytz and Banks 2001], where each host machine connected to
the network may be responsible for managing and posting updates for large

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Multistep-Ahead Neural Networks for Network Traffic Reduction • Article 16 / 19

Table VII. ESU Packet Generation Results for User 1 Over the Two Unbiased Datasets

Trajectory A1 Trajectory B1

DR DR
Threshold

(TWUs) 1st 2nd NR % Red 1st 2nd NR % Red

0.5 240 240 215 −10.4 191 180 162 −10
1 157 175 141 −10.2 123 128 114 −7.3
1.5 120 127 107 −10.8 95 104 83 −12.6
2 101 114 94 −6.9 86 100 77 −10.5
2.5 92 110 83 −9.8 72 81 73 1.4

3 81 99 72 −11.1 74 80 69 −6.8
3.5 78 94 72 −7.7 69 68 65 −4.4
4 69 87 68 −1.4 63 65 59 −6.3
4.5 66 79 58 −12.1 58 63 52 −10.3
5 59 75 54 −8.5 49 55 43 −12.2

Total 1063 1200 964 −9.3 880 924 797 −9.4

Table VIII. ESU Packet Generation Results for User 2 Over the Two Unbiased Datasets

Trajectory A2 Trajectory B2

DR DR
Threshold

(TWUs) 1st 2nd NR % Red 1st 2nd NR % Red

0.5 372 385 328 −11.8 356 356 307 −17.5
1 259 286 218 −15.8 240 266 206 −20.5
1.5 209 229 184 −12 196 222 173 −17.2
2 174 205 163 −6.3 170 188 145 −16.7
2.5 158 175 141 −10.8 145 169 128 −19
3 139 167 130 −6.5 139 155 118 −15.1
3.5 129 152 113 −12.4 123 144 108 −16.3
4 120 145 112 −6.7 115 125 103 −14.2
4.5 114 136 108 −5.3 106 124 94 −17.5
5 103 123 102 −1 93 116 84 −18.4

Total 1777 2003 1599 −10 1683 1865 1466 −17.5

numbers of simultaneous virtual entities or computer-generated forces (CGFs),
up to 100 entities could theoretically execute our neuro-reckoning procedure
(assuming a worst-case sequential execution scenario) in return for as little as
1ms of additional latency (i.e., 100 times 10μs).

4.5 Entity State Update Packet Generation Results

Shown in Tables VII to X are simulation results conducted over a series of
increasing error thresholds for users 1 to 4, respectively. In each case, the sim-
ulations were performed over the 2 unbiased datasets (denoted as Trajectory A
and Trajectory B) for that particular user, which were purposely kept isolated
from the datasets used to train the neural network predictors, as described
in Section 4.2. All presented error threshold values are measured in terms of

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 20 • A. McCoy et al.

Table IX. ESU Packet Generation Results for User 3 Over the two Unbiased Datasets

Trajectory A3 Trajectory B3

DR DR
Threshold

(TWUs) 1st 2nd NR % Red 1st 2nd NR % Red

0.5 396 376 340 −9.6 220 210 179 −14.8
1 274 272 225 −17.3 150 141 109 −22.7
1.5 217 217 177 −18.4 122 119 89 −25.2
2 187 191 152 −18.7 102 100 85 −15
2.5 163 170 139 −14.7 88 85 79 −7.1
3 147 160 133 −9.5 76 77 68 −10.5
3.5 134 142 121 −9.7 74 74 61 −17.6
4 126 134 115 −8.7 68 68 58 −14.7
4.5 121 125 104 −14 64 65 55 −14.1
5 107 116 98 −8.4 56 68 53 −5.4

Total 1872 1903 1604 −14.3 1020 1007 836 −17

Table X. ESU Packet Generation Results for User 4 Over the Two Unbiased

Datasets

Trajectory A4 Trajectory B4

DR DR
Threshold

(TWUs) 1st 2nd NR % Red 1st 2nd NR % Red

0.5 173 167 151 −9.6 187 181 150 −17.1
1 110 130 102 −7.3 119 121 107 −10.1
1.5 83 103 82 −1.2 101 98 86 −12.2
2 74 83 63 −14.9 86 88 72 −16.3
2.5 60 73 56 −6.7 70 75 63 −10
3 57 70 52 −8.8 65 66 57 −12.3
3.5 50 64 48 −4 54 62 50 −7.4
4 50 58 50 0 50 51 43 −14
4.5 46 56 50 8.7 43 52 45 4.7

5 46 53 42 −8.7 45 49 41 −8.9

Total 749 857 696 −7.1 820 843 714 −12.9

torque world units (TWUs). To put the error thresholds into perspective, the
height of an entity within our virtual test environment is approximately 2.3
TWUs. A transmission timeout (or heartbeat) value of 5 seconds was used.
Ideal network conditions were assumed so as to compare the performance of
the following scenarios:

(1) ESU packet generation using a first-order dead reckoning (DR) model, as
defined by the IEEE DIS standard [IEEE 1995] and given by Eq. (2).

(2) ESU packet generation using a second-order dead reckoning (DR) model,
as defined by the IEEE DIS standard [IEEE 1995] and given by Eq. (3).

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Multistep-Ahead Neural Networks for Network Traffic Reduction • Article 16 / 21

Table XI. Total ESU Packet Generation Results for Users 1 and 2 Over All Datasets

User 1 User 2

DR DR
Threshold

(TWUs) 1st 2nd NR % Red 1st 2nd NR % Red

0.5 2216 2222 1945 −12.2 3551 3654 3183 −10.4
1 1504 1618 1355 −9.9 2405 2643 2120 −11.9
1.5 1179 1306 1054 −10.6 1918 2167 1710 −10.8
2 1001 1136 895 −10.6 1621 1887 1462 −9.8
2.5 878 976 814 −7.3 1430 1660 1284 −10.2
3 805 877 733 −8.9 1293 1513 1165 −9.9
3.5 724 807 662 −8.6 1182 1396 1057 −10.6
4 657 751 617 −6.1 1082 1295 994 −8.1
4.5 611 709 580 −5.1 1005 1238 919 −8.6
5 569 659 530 −6.9 953 1158 876 −8.1

Total 10144 11061 9185 −9.5 16440 18611 14770 −10.2

(3) ESU packet generation using our proposed first-order neuro-reckoning (NR)
model, as previously described throughout Section 3.

In each table, the heading “% Red” refers to the percentage of reduction (or
increase) in the number of ESU packets generated, where negative values (as
highlighted in bold) are indicative of superior performance by our proposed
neuro-reckoning approach against the best-performing standard dead reckon-
ing model (i.e., either the first- or second-order model, whichever generates
fewer packets) for that particular error threshold. All simulations were per-
formed at a rate of 20Hz (i.e., the original sampling rate of the data) using a
maximum prediction horizon of q = 10 for each set of neural network predictors.

From inspection of the results, we can observe the fact that the first-order DR
model consistently outperforms the second-order DR model over many of the
larger simulated error thresholds. This is as a direct consequence of the rapidly
changing entity velocity (or acceleration) that is present in our first-person
shooter (FPS) application domain [Palant et al. 2006; Pantel and Wolf 2002].
Further, it is noted that for the vast majority of simulated error thresholds (and
particularly for tight ones), our proposed neuro-reckoning approach offers a re-
duction in the number of ESUs generated over the best-performing DR model
that ranges from small (in the region of 2% or lower packet reductions) to very
large relative bandwidth savings (in the region of 20% or even higher packet
reductions). From inspection of the results, it is obvious that (as with any pre-
dictive contract mechanism) the reported percentage reductions are dependent
on both the error threshold and the specific dynamics of the entity trajectory in
a highly nonlinear fashion. Thus, quantifying the exact relationship between
error threshold and reported packet reduction rates is a difficult (if not impossi-
ble) task. For this reason, Tables XI and XII present the ESU packet generation
results totalled over all recorded datasets for users 1 and 2 and users 3 and 4,
respectively, in order to better gauge the expected performance benefits of our
approach over an extended period. From inspection of these results, we can

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 22 • A. McCoy et al.

Table XII. Total ESU Packet Generation Results for Users 3 and 4 Over All Datasets

User 3 User 4

DR DR
Threshold

(TWUs) 1st 2nd NR % Red 1st 2nd NR % Red

0.5 3665 3462 3178 −8.2 2100 2031 1751 −13.8
1 2552 2502 2033 −18.7 1385 1479 1233 −11
1.5 2041 2017 1637 −18.8 1104 1181 973 −11.9
2 1724 1772 1424 −17.4 927 1026 826 −10.9
2.5 1526 1583 1280 −16.1 802 896 737 −8.1
3 1376 1456 1178 −14.4 733 817 673 −8.2
3.5 1261 1336 1077 −14.6 655 747 612 −6.6
4 1160 1254 1008 −13.1 600 682 567 −5.5
4.5 1094 1171 939 −14.2 565 643 541 −4.2
5 1016 1118 904 −11 539 596 490 −9.1

Total 17415 17671 14658 −15.8 9410 10098 8403 −10.7

immediately note the larger packet reductions typically observed at lower er-
ror thresholds, implying an excellent potential for use in applications requiring
a relatively high degree of tight synchronization between locally and remotely
modeled entity state. In general, we can observe a noticeable trend between
both decreasing percentage reductions and increasing error threshold, which
suggests a relatively stable predictive accuracy with respect to gross perfor-
mance gain (i.e., expected overall packet reduction) resulting from the use of
our proposed neuro-reckoning approach in contrast to standard dead reckon-
ing algorithms. It should be noted that although the number of users limits our
ability to generalize the results, it is sufficient for demonstrating the efficacy
of the neuro-reckoning process for cases where good neural network predictors
are available.

Figure 7 presents a sample dataset recorded during the trials performed
by user 2, illustrating the same entity trajectory reconstructed using both the
standard second-order dead reckoning (DR) model (the second-order which per-
formed slightly better than the first-order one for this particular case) (shown
in the top of the figure), and our proposed first-order neuro-reckoning (NR)
model (shown bottom). From inspection of the two plots, we can observe how
the neuro-reckoning model accurately compensates for expected changes in the
future entity trajectory, significantly reducing both the number of ESUs and the
mean squared spatial error (shown above each plot) of the reconstructed entity
trajectory in comparison with the IEEE DIS standard dead reckoning model.

4.6 Performance Comparison Between Sets of Neural-Network Predictors

Shown in Tables XIII to XVI are simulation results comparing the performance
of each set of neural network predictors over a series of increasing error thresh-
olds for users 1 to 4, respectively (as outlined in the previous section). In each
case (and with respect to each particular user), the simulations were performed
using each of the three alternate sets of neural networks that were trained using

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Multistep-Ahead Neural Networks for Network Traffic Reduction • Article 16 / 23

Fig. 7. Top: second-order dead reckoning (DR) model; bottom: first-order neuro-reckoning (NR)

model.

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 24 • A. McCoy et al.

Table XIII. Total ESU Packet Generation Results for User 1 Over All Datasets

User 1

DR User 2 NNs User 3 NNs User 4 NNs
Threshold

(TWUs) 1st 2nd NR % Red NR % Red NR % Red

0.5 2216 2222 1991 −10.2 2063 −6.9 1926 −13.1
1 1504 1618 1352 −10.1 1374 −8.6 1334 −11.3
1.5 1179 1306 1030 −12.6 1084 −8.1 1049 −11
2 1001 1136 879 −12.2 930 −7.1 883 −11.8
2.5 878 976 794 −9.6 814 −7.3 818 −6.8
3 805 877 720 −10.6 739 −8.2 735 −8.7
3.5 724 807 638 −11.9 660 −8.8 663 −8.4
4 657 751 592 −9.9 608 −7.5 614 −6.5
4.5 611 709 563 −7.9 559 −8.5 574 −6.1
5 569 659 524 −7.9 523 −8.1 527 −7.4

Total 10144 11061 9083 −10.5 9354 −7.8 9123 −10.1

Table XIV. Total ESU Packet Generation Results for User 2 Over All Datasets

User 2

DR User 1 NNs User 3 NNs User 4 NNs
Threshold

(TWUs) 1st 2nd NR % Red NR % Red NR % Red

0.5 3551 3654 3226 −9.2 3347 −5.7 3189 −10.2
1 2405 2643 2169 −9.8 2172 −9.7 2135 −11.2
1.5 1918 2167 1764 −8 1725 −10.1 1740 −9.3
2 1621 1887 1502 −7.3 1478 −8.8 1465 −9.6
2.5 1430 1660 1342 −6.2 1304 −8.8 1315 −8
3 1293 1513 1195 −7.6 1166 −9.8 1183 −8.5
3.5 1182 1396 1096 −7.3 1087 −8 1097 −7.2
4 1082 1295 1020 −5.7 1004 −7.2 992 −8.3
4.5 1005 1238 958 −4.7 934 −7.1 949 −5.6
5 953 1158 901 −5.5 891 −6.5 886 −7

Total 16440 18611 15173 −7.7 15108 −8.1 14951 −9.1

the data collected for each of the other three human-users. Thus, the generality
of the neural networks can be properly ascertained. Once again, the term “%
Red” refers to the percentage of reduction (or increase) in the number of ESUs
generated with respect to our proposed neuro-reckoning approach in compar-
ison with the best-performing dead reckoning model for that particular error
threshold. The packet counts are generated and totalled over all recorded tra-
jectories for that particular user, and the results can be compared with those
generated using the original sets of neural networks, as presented previously
in Tables XI and XII.

From inspection of the results, it is immediately noted that all three alter-
nate sets of neural networks offer a reduction in the number of ESU packets
generated for each individual human-user in comparison with those generated

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Multistep-Ahead Neural Networks for Network Traffic Reduction • Article 16 / 25

Table XV. Total ESU Packet Generation Results for User 3 Over All Datasets

User 3

DR User 1 NNs User 2 NNs User 4 NNs
Threshold

(TWUs) 1st 2nd NR % Red NR % Red NR % Red

0.5 3665 3462 3083 −10.9 2994 −13.5 2974 −14.1
1 2552 2502 2153 −13.9 2038 −18.5 2085 −16.7
1.5 2041 2017 1794 −11.1 1678 −16.8 1730 −14.2
2 1724 1772 1543 −10.5 1449 −16 1496 −13.2
2.5 1526 1583 1379 −9.6 1288 −15.6 1347 −11.7
3 1376 1456 1259 −8.5 1195 −13.2 1230 −10.6
3.5 1261 1336 1166 −7.5 1105 −12.4 1138 −9.8
4 1160 1254 1072 −7.6 1038 −10.5 1062 −8.4
4.5 1094 1171 1013 −7.4 952 −13 987 −9.8
5 1016 1118 958 −5.7 914 −10 929 −8.6

Total 17415 17671 15420 −11.5 14651 −15.9 14978 −14

Table XVI. Total ESU Packet Generation Results for User 4 Over All Datasets

User 4

DR User 1 NNs User 2 NNs User 3 NNs
Threshold

(TWUs) 1st 2nd NR % Red NR % Red NR % Red

0.5 2100 2031 1864 −8.2 1775 −12.6 1918 −5.6
1 1385 1479 1256 −9.3 1193 −13.9 1264 −8.7
1.5 1104 1181 1009 −8.6 957 −13.3 979 −11.3
2 927 1026 865 −6.7 816 −12 844 −9
2.5 802 896 758 −5.5 723 −9.9 727 −9.4
3 733 817 673 −8.2 670 −8.6 661 −9.8
3.5 655 747 633 −3.4 615 −6.1 613 −6.4
4 600 682 593 −1.2 566 −5.7 569 −5.2
4.5 565 643 557 −1.4 524 −7.3 541 −4.2
5 539 596 505 −6.3 498 −7.6 500 −7.2

Total 9410 10098 8713 −7.4 8337 −11.4 8616 −8.4

using the best-performing dead reckoning model, at each particular error
threshold. These reductions are observed over the entire range of simulated
error thresholds, and would seem to suggest good general predictive capabil-
ity on the part of each set of neural networks resulting from similar behav-
ioral patterns emerging for each user. Such a result can likely be explained
as follows: After an initial period spent exploring various transient strategies,
users typically converge towards similar steady-state strategies associated with
achieving their goal [Delaney et al. 2003]. In other words, users tend to adopt
strategies that yield a high probability of success in return for a low investment
of personal effort. Such an observation can be interpreted as a clear example of
the minimum energy principle and can be seen in many virtual environments
where users are presented with repetitive tasks [Sas et al. 2004]. Interestingly,
the results seem largely independent of prior user experience.

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 26 • A. McCoy et al.

Table XVII. Best Performing Maximum Prediction Horizon at Each Error

Threshold

User 1 User 2 User 3 User 4
Threshold

(TWUs) NR q NR q NR q NR q

0.5 1936 8 3100 6 2922 6 1751 10

1 1354 9 2109 8 2018 8 1227 9

1.5 1054 10 1692 9 1637 10 973 10

2 895 10 1460 9 1424 10 826 10

2.5 813 9 1284 10 1280 10 737 10

3 733 10 1165 10 1178 10 667 8

3.5 662 10 1057 10 1077 10 612 10

4 610 9 993 9 1008 10 567 10

4.5 580 10 919 10 939 10 541 10

5 530 10 876 10 904 10 490 10

Total 9185 10 14770 10 14613 8 8403 10

From further inspection of Tables XIII to XVI, it can also be observed that
for several of the human-users, superior performance results (in terms of over-
all packet reduction totalled over all simulated error thresholds) are actually
achieved using at least one of the alternate sets of neural networks (that were
trained on the data collected from each of the other three users) over those
achieved using the original sets (as presented previously in Tables XI and
XII). Such a result implies that while similar behavioral patterns were ob-
served for each user, larger quantities of the associated dynamics were cap-
tured by certain neural networks over others. These results would appear to
validate the plausibility of training general sets of neural network predictors
for scenarios involving multiple user-convergence to a collection of steady-state
strategies.

4.7 Analyzing the Choice of Maximum Prediction Horizon

Presented in Table XVII are simulation results conducted over a series of in-
creasing error thresholds for users 1 to 4. The packet counts are generated
and totalled over all recorded trajectories for each particular user, using the
best-performing prediction horizon q at each error threshold (up to a maximum
of q = 10). In each case, the best-performing prediction horizons are listed
under the column entitled “q”. Once again, these results can be compared to
the original results (generated using a uniform maximum prediction horizon of
q = 10), as presented in Tables XI and XII for users 1 and 2 and users 3 and 4,
respectively.

From inspection of the results, it is noted that the best performance gains
(i.e., in terms of greatest reduction in total number of packets generated) are
typically observed at higher maximum prediction horizons (i.e., q = 8 to q = 10)
for the majority of simulated error thresholds. The exceptions appear to occur
for the lower simulated error thresholds, implying that for a tight error thresh-
old, superior performance results may be achieved by lowering the maximum
prediction horizon from the default setting of q = 10 (as used in our particular

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Multistep-Ahead Neural Networks for Network Traffic Reduction • Article 16 / 27

implementation) to something smaller (e.g., a setting of q = 6 gives the best
performance gains for users 2 and 3).

A suitable choice of maximum prediction horizon q bears consequence for
the local resource requirements (i.e., number of neural network predictors) and
thus the remote predictive accuracy of our proposed neuro-reckoning approach.
Unfortunately, there does not appear to be any way of quantitatively prede-
termining the choice of maximum prediction horizon to use for a given error
threshold in advance, as results can vary considerably. From initial inspection,
it would appear a reasonable choice to assume the use of a longer maximum pre-
diction horizon (e.g., q ≥ 8), as these would appear to provide a more constant
performance gain over both tight and relaxed error thresholds.

5. CONCLUSIONS AND FUTURE WORK

We have presented an extension of dead reckoning, termed neuro-reckoning,
that seeks to replace the traditional use of instantaneous derivative information
with predictive derivative information for network traffic reduction in DIAs. By
estimating expected future entity dynamics in advance using a series of trained
neural network predictors, and distributing this information to remote hosts in
the form of a predictive velocity vector, our proposed neuro-reckoning approach
succeeds in reducing the spatial error associated with remote extrapolation
of entity position. Consequently, a further reduction in the number of ESUs
needed to maintain consistency of shared state can be achieved.

Presented simulation results validate the potential of our proposed frame-
work for improving the accuracy of remote extrapolation and for further re-
ducing network traffic over the use of the IEEE DIS standard dead reckoning
procedure throughout a large majority of our experimental setups. A reduc-
tion in network bandwidth requirements over a wide range of error thresh-
olds indicates viable potential for satisfying many spectrums of consistency
requirements throughout a broad range of real-time distributed applications.
Furthermore, presented computational analysis results indicate the potential
of our proposed framework for real-time use in a variety of distributed appli-
cations, requiring only a relatively modest amount of additional computational
resources [Chui and Heng 2004].

Our proposed neuro-reckoning approach is based upon the reasonable as-
sumption that previously observed patterns of human-user behavior provide
an accurate indication of future human-user behavior, and that these pat-
terns may be learnable by employing statistical machine-learning techniques
[Zukerman and Albrecht 2001]. In situations where the previous assumption
does not hold true, neuro-reckoning may exhibit poor predictive performance,
consequently leading to a possible increase (rather than reduction) in the num-
ber of ESUs generated due to error threshold violation.

Future work shall include the investigation of confidence-interval estimation
methods in order to quantify the reliability of the predictions made by each set of
neural network predictors [Papadopoulos et al. 2001], providing for a more gen-
eral framework capable of gracefully resorting to use of the standard dead reck-
oning protocol in situations where the accuracy of neural-network predictors

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 28 • A. McCoy et al.

is questionable. For scenarios in which discrete classes of entity dynamics may
be identified, the investigation of automatic context-switching schemes [Hen-
ninger et al. 2001] based on input state-space clustering [Thurau et al. 2003]
may prove beneficial in providing an improvement in the prediction accuracy
and learning capability of neural networks. Finally, future work shall also in-
volve the investigation of alternative neural network topologies and machine-
learning techniques, alongside a further analysis on the complex relationships
between stability and expected performance gain versus the tightness of the
error threshold.

REFERENCES

BATTAGLIA, G. J. 1996. Mean square error. AMP J. Technol. 5, 31–36.

BEHNKE, S., EGOROVA, A., GLOYE, A., ROJAS, R., AND SIMON, M. 2003. Predicting away robot control

latency. In Proceedings of the 7th Robocup International Symposium (Padua, Italy, Jul.). 712–719.

BHOLA, S., BANAVAR, G., AND AHAMAD, M. 1998. Responsiveness and consistency tradeoffs in inter-

active groupware. In Proceedings of the 7th ACM Conference on Computer Supported Cooperative
Work (CSCW 9) (Seattle, WA, Nov.). 79–88.

BONÉ, R. AND CRUCIANU, M. 2002. Multistep-Ahead prediction with neural networks: A review.

Approches Connexionnistes en Sciences Économiques et en Gestion 2, 97–106.

CAI, W., LEE, F. B. S., AND CHEN, L. 1999. An auto-adaptive dead reckoning algorithm for dis-

tributed interactive simulation. In Proceedings of the 13th Workshop on Parallel and Distributed
Simulation (PADS) (Atlanta, GA, May). 82–89.

CAWLEY, G. C. 2000. On a fast, compact approximation of the exponential function. Neural Com-
put. 12, 9, 2009–2012.

CHEN, L. AND CHEN, G. 2005. A fuzzy dead reckoning algorithm for distributed interactive ap-

plications. In Proceedings of the 2nd International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD) (Changsha, China, Aug.). 961–971.

CHUI, Y.-P. AND HENG, P.-A. 2004. Attitude dead reckoning in a collaborative virtual environment

using cumulative polynomial extrapolation of quaternions. Concur. Comput. Practice Exper. 16,

5, 1575–1599.

CHURCHILL, E. F., SNOWDON, D. N., AND MUNRO, A. J. 2001. Collaborative Virtual Environments:
Digital Places and Spaces for Interaction. Springer, London.

DELANEY, D., WARD, T., AND MCLOONE, S. 2006a. On consistency and network latency in distributed

interactive applications: A survey—Part I. Presence: Teleoper. Virtual Environ. 15, 2, 218–234.

DELANEY, D., WARD, T., AND MCLOONE, S. 2006b. On consistency and network latency in distributed

interactive applications: A survey—Part II. Presence: Teleoper. Virtual Environ. 15, 4, 465–

482.

DELANEY, D., WARD, T., AND MCLOONE, S. 2003. Reducing update packets in distributed interactive

applications using a hybrid model. In Proceedings of the 16th ISCA International Conference on
Parallel and Distributed Computing Systems (PDCS) (Reno, NV, Aug.). 417–422.

FUJIMOTO, R. M. 2000. Parallel and Distributed Simulation Systems. Wiley Interscience, New

York.

GREENBERG, S. AND MARWOOD, D. 1994. Real time groupware as a distributed system: Concurrency

control and its effect on the interface. In Proceedings of the 5th ACM Conference on Computer
Supported Cooperative Work (CSCW) (Chapel Hill, NC, Oct.). 207–217.

HAGAN, M. T. AND MENHAJ, M. B. 1994. Training feedforward networks with the marquardt algo-

rithm. IEEE Trans. Neural Netw. 5, 6, 989–993.

HARRINGTON, P. B. 1993. Sigmoid transfer functions in backpropagation neural networks. Analyt.
Chem. 65, 15, 2167–2168.

HENNINGER, A. E., GONZALEZ, A. J., GEORGIOPOULOS, M., AND DEMARA, R. F. 2001. A connectionist-

symbolic approach to modeling agent behavior: Neural networks grouped by contexts. In Proceed-
ings of the 3rd International and Interdisciplinary Conference on Modeling and Using Context
(CONTEXT) (Dundee, Scotland, Jul.). 198–209.

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Multistep-Ahead Neural Networks for Network Traffic Reduction • Article 16 / 29

IEEE 1995. Standard for Distributed Interactive Simulation—Application Protocols. IEEE Stan-
dard 1278.1–1995. Institute of Electrical and Electronics Engineers, Piscataway, NJ.

LEE, B.-S., CAI, W., TURNER, S. J., AND CHEN, L. 2000. Adaptive dead reckoning algorithms for

distributed interactive simulation. Int. J. Simul. Syst. Sci. Technol. 1, 1-2, 21–34.

LIN, K.-C., WANG, M., WANG, J., AND SCHAB, D. E. 1995. The smoothing of dead reckoning image

in distributed interactive simulation. In Proceedings of the AIAA Flight Simulation Technologies
Conference (Baltimore, MD, Aug.). 83–87.

LIN, K.-C. AND SCHAB, D. E. 1994a. Study on the network load in distributed interactive simu-

lation. In Proceedings of the AIAA Flight Simulation Technologies Conference (Scottsdale, AZ,

Aug.). 202–209.

LIN, K.-C. AND SCHAB, D. E. 1994b. The performance assessment of the dead reckoning algorithms

in DIS. Simul. 63, 5, 318–325.

LLOYD, J. 2004. The torque game engine. Game Devel. Mag. 11, 8, 8–9.

MACEDONIA, M. R. AND ZYDA, M. J. 1997. A taxonomy for networked virtual environments. IEEE
Multimedia 4, 1, 48–56.

MATHY, L., EDWARDS, C., AND HUTCHINSON, D. 1999. Principles of QoS in group communications.

Telecommun. Syst. 11, 1-2, 59–84.

MCCOY, A., DELANEY, D., MCLOONE, S., AND WARD, T. 2005. Dynamic hybrid strategy models for

networked multiplayer games. In Proceedings of the 19th European Conference on Modelling and
Simulation (ECMS) (Riga, Latvia, Jun.). 727–732.

MCCOY, A., DELANEY, D., MCLOONE, S., AND WARD, T. 2004. Investigating behavioural state data-

partitioning for user-modelling in distributed interactive applications. In Proceedings of the 8th
IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT)
(Budapest, Hungary, Oct.). 74–82.

MCCOY, A., DELANEY, D., AND WARD, T. 2003. Game-State fidelity across distributed interactive

games. ACM Crossroads 9, 4, 4–9.

MELLON, L. AND WEST, D. 1995. Architectural optimizations to advanced distributed simulation.

In Proceedings of the 27th Winter Simulation Conference (WSC) (Arlington, VA, Dec.). 634–641.

MILLER, D. C. AND THORPE, J. A. 1995. SIMNET: The advent of simulator networking. Proc. IEEE
83, 8, 1114–1123.

MIZUTANI, E. AND DREYFUS, S. E. 2001. On complexity analysis of supervised MLP-learning for

algorithmic comparisons. In Proceedings of the 14th INNS-IEEE International Joint Conference
on Neural Networks (IJCNN) (Washington, DC, Jul.). 347–352.

PALANT, W., GRIWODZ, C., AND HALVORSEN, P. 2006. Evaluating dead reckoning variations with a

multi-player game simulator. In Proceedings of the 16th ACM International Workshop on Network
and Operating Systems Support for Digital Audio and Video (NOSSDAV) (Newport, RI, May).

20–25.

PANTEL, L. AND WOLF, L. C. 2002. On the suitability of dead reckoning schemes for games. In

Proceedings of the 1st ACM Workshop on Network and System Support for Games (NetGames)
(Braunschweig, Germany, Apr.). 79–84.

PAPADOPOULOS, G., EDWARDS, P. J., AND MURRAY, A. F. 2001. Confidence estimation methods for

neural networks: A practical comparison. IEEE Trans. Neural Netw. 12, 6, 1278–1287.

PRINCIPE, J. C., EULIANO, N. R., AND LEFEBVRE, W. C. 2000. Neural and Adaptive Systems: Funda-
mentals Through Simulations. John Wiley, New York.

RODGERS, J. L. AND NICEWANDER, W. A. 1988. Thirteen ways to look at the correlation coefficient.

Ameri. Statis. 42, 1, 59–66.

ROEHLE, B. 1997. Channeling the data flood. IEEE Spectrum 34, 3, 32–38.

RYAN, P. AND OLIVER, W. 2006. Modelling of dead reckoning and heartbeat update mechanisms in

distributed interactive simulation. In Proceedings of the European Simulation Interoperability
Workshop (Stockholm, Sweden, Jun.). 06E-SIW-025.

SAS, C., O’HARE, G., AND REILLY, R. 2004. A performance analysis of movement patterns. In Pro-
ceedings of the 4th International Conference on Computational Science (ICCS) (Krakow, Poland,

Jun.). 954–961.

SAS, C., REILLY, R., AND O’HARE, G. 2003. A connectionist model of spatial knowledge acquisition

in a virtual environment. In Proceedings of the 2nd Workshop on Machine Learning, Information
Retrieval and User Modelling (MLIRUM) (Johnstown, PA, Jun.). 40–48.

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

Article 16 / 30 • A. McCoy et al.

SHANKER, M., HU, M. Y., HUNG, M. S. 1996. Effect of data standardization on neural network

training. OMEGA (Int. J. Manage. Sci.) 24, 4, 385–397.

SHIM, K.-H. AND KIM, J.-S. 2001. A dead reckoning algorithm with variable threshold scheme in

networked virtual environment. In Proceedings of the IEEE International Conference on Systems,
Management and Cybernetics (SMC) (Tucson, AZ, Oct.). 1113–1118.

SINGHAL, S. K. AND ZYDA, M. J. 1999. Networked Virtual Environments: Design and Implementa-
tion. Addison-Wesley, Reading, MA.

SRINIVASAN, S. 1996. Efficient data consistency in HLA/DIS++. In Proceedings of the 28th Winter
Simulation Conference (WSC) (Coronado, CA, Dec.). 946–951.

STYTZ, M. R. AND BANKS, S. B. 2001. The distributed mission training integrated threat environ-

ment system architecture and design. ACM Trans. Model. Comput. Simul. 11, 1, 106–133.

SUN, C., JIA, X., ZHANG, Y., YANG, Y., AND CHEN, D. 1998. Achieving convergence, causality preserva-

tion, and intention preservation in real-time cooperative editing systems. ACM Trans. Comput.-
Hum. Interact. 5, 1, 63–108.

THURAU, C., BAUCKHAGE, C., AND SAGERER, G. 2003. Combining self organizing maps and multilayer

perceptrons to learn bot-behavior for a commercial game. In Proceedings of the 4th International
Conference on Intelligent Games and Simulation (GAME-ON) (London, Nov.). 119–123.

VAN HOOK, D. J., CALVIN, J. O., AND SMITH, J. E. 1995. Data consistency mechanisms to support

distributed simulation. In Proceedings of the 12th Workshop on Standards for the Interoperability
of Distributed simulations (Orlando, FL, Mar.). 797–806.

YU, S.-J. AND CHOY, Y.-C. 2001. A dynamic message filtering technique for 3D cyberspaces. Com-
put. Commun. 24, 18, 1745–1758.

ZHANG, M.-J. AND GEORGANAS, N. D. 2004. An orientation update message filtering algorithm in

collaborative virtual environments. J. Comput. Sci. Technol. 19, 3, 423–429.

ZUKERMAN, I. AND ALBRECHT, D. W. 2001. Predictive statistical models for user modeling. User
Model. User-Adapt. Interact. 11, 1-2, 5–18.

Received January 2006; revised March 2007; accepted March 2007

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 16, Pub. date: Sept. 2007.

