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The particular statistical properties found in network measurements, namely self-similarity and

long-range dependence, cannot be ignored in modelling network and Internet traffic. Thus, despite
their mathematical tractability, traditional Markov models are not appropriate for this purpose,
since their memoryless nature contradicts the burstiness of transmitted packets. However, it is

desirable to find a similarly tractable model which is, at the same time, rigorous at capturing the
features of network traffic.

This work presents the discrete-time heavy-tailed chains, a tractable approach to characterise
network traffic as a superposition of discrete-time “on/off” sources. This is a particular case of

the generic “on/off” heavy-tailed model, thus showing the same statistical features as the former;
particularly, self-similarity and long-range dependence, when the number of aggregated sources
approaches infinity.

The model is then applicable to characterise a number of discrete-time communication systems,
for instance ATM and Optical Packet Switching, and further derive meaningful performance met-
rics, such as the average burst duration and the number of active sources in a random instant.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Statis-
tics; I.6.m [Simulation and Modeling]: Miscellaneous; C.2.m [Computer-Communication

Networks]: Miscellaneous

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Discrete-time heavy-tailed chains, heavy-tailed distributions,
long-range dependence, self-similar processes, fractional Brownian motion

1. INTRODUCTION

The analysis of network measurements is crucial in understanding network be-
haviour and evaluating the actual performance levels of networks [Frost and Melamed
1994]. In the first instance, such analysis must be followed by an attempt to extract
the properties and features of measurements, and secondly must set the grounds
for proposing models based on such empirical evidence, which are at the same time
capable of generalisation to other scenarios [Floyd and Kohler 2003].

In the past years, network modellers have undertaken research attempting to find
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the particular statistical characteristics of network traffic, and have reported their
highly-variable nature, and the difficulties in capturing their properties [Feldmann
et al. 1998; Karagiannis et al. 2002]. However, this challenge has been partially
solved with the identification of long-range dependence, which persists in the net-
work traces at different scenarios [Leland et al. 1994; Beran et al. 1995; Paxson and
Floyd 1995; Crovella and Bestavros 1997].

Several monofractal models have been proposed to characterise network traffic,
see the so-called “black-box” models like the Fractional Gaussian Noise [Norros
1995] and fractional ARIMA time-series [López-Ardao et al. 2000], and the struc-
tural “on/off” source model [Willinger et al. 1997]. The latter stands out since it
also gives an explanation of the causes inducing self-similarity and long-range de-
pendence in the traces, rather than just fitting the statistical properties without a
justification. Finally, Feldmann et al. [1998] propose a cascade model, motivated by
the layered structure of the TCP/IP protocol stack, which explains the multifractal
behaviour of network traffic.

Essentially, the traffic volume traversing a certain monitored point in the net-
work can be considered as a combination of multiple two-state flows, each of them
switching from active periods of packet transmission (the “on” state) to idle or
silent periods (the “off” state). This approach has motivated a large number of
studies on Markov processes, see [Adas 1997] for a summary of them. However,
Markov chains are short-memory processes, thus failing to capture the burstiness of
packet streams, hence unsuitable in modelling long-range dependent processes such
as network traffic [Paxson and Floyd 1995; Willinger and Paxson 1998]. Instead,
according to Willinger et al. [1997], long-range dependence can be induced if either
the active or both the active and the idle periods of transmission are heavy-tailed
distributed. Furthermore, when the number of sources and the time-scale are large,
the aggregated traffic approximates the Fractional Gaussian Noise [Taqqu et al.
1997].

This work introduces the discrete-time heavy-tail chains, a discrete-time model
in the light of the “on/off” heavy-tailed source model defined by Willinger et al.
[1997], with a tractable methodology such as that of classical Markov chains. Its
main characteristics and properties are also studied, along with a brief discussion of
its relationship with long-range dependent processes and, particularly, Fractional
Brownian Motion.

This discrete-time nature of this model makes it applicable to a number of
synchronous TDM (aka, Time-Division Multiplexed) communication systems, for
example, slotted wireless communications channels (GSM/UMTS), Asynchronous
Transfer Mode (ATM) and possibly synchronous Optical Packet Switching [O’Mahony
M., Simeonidou D., Hunter D. and Tzanakaki A. 2001; Guillemot C. et al 1998].
In the light of this, the discrete-time version of the classical “on/off” heavy-tailed
source model, proposed in the following, is of interest in the simulation, modelling
and performance evaluation of such discrete-time communication scenarios.

After the preliminaries outlined in section 2, the remainder of this work is or-
ganised as follows: sections 3 and 4 introduce the discrete-time heavy-tailed chains

model, and analyze its main properties and features. Section 5 provides the link
from the discrete-time heavy-tailed chains to long-range dependence. Section 6
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shows how to estimate the model parameters following the Hill’s estimator. Fi-
nally, section 7 shows how to infer the average number of active sources in a given
link, and section 8 summarises the main contributions of this work.

2. PRELIMINARIES

Let Y = {Yn, n = 1, 2, . . .} be a stationary random process which takes values 0
(idle or “off” state) or 1 (active or “on” state). Then, such sequence Y is said to
be a Markov chain if it satisfies the Markov or memoriless property given by:

P(Yn+1 = yn+1|Yn = yn, Yn−1 = yn−1, . . . , Yn−k = yn−k) (1)

= P(Yn+1 = yn+1|Yn = yn), yj ∈ {0, 1}, j ∈ Z
+, k = 1, . . . , n − 1

Under such “memoriless” property and starting from an “on” state, the proba-
bility to have a sequence of d consecutive “on” states, starting in an “on” state, is
given by a geometric distribution, i.e:

p(d) = (1 − p11)p
d−1
11 , d ∈ Z

+ (2)

where p11 refers to the probability of jumping from an “on” state to an “on” state
in one step, that is, of remaining in the same “on” state: p11 = P(Y2 = 1|Y1 =
1). According to this, traditional Markov chains exhibit the following drawbacks
concerning the modelling of network traffic:

(1) The probability of remaining in an “on” state is a constant. This contradicts
the empirically observed burstiness phenomenon. Namely, in real networks,
when a packet arrives, it is very likely that more packets follow its arrival [Jain
and Routhier 1986; Paxson and Floyd 1995]. The conditional probability of
remaining in an “on” state should then increase.

(2) The probability of d consecutive “on” states decays exponentially following
a geometric distribution (eq. 2), instead of hyperbolically or Pareto-like as a
condition to induce long-range dependence [Willinger et al. 1997].

The following section proposes a modification of the memoriless nature of the
Markov condition to encourage the creation of bursts with Pareto-like duration.

3. MODEL DEFINITION

Definition 3.1 Discrete-time heavy-tailed chain. The random process X = {Xn, n =
1, 2, . . .}, which takes values 0 (idle or “off” state) or 1 (active or “on” state), is a
discrete-time heavy-tailed chain if it satisfies:

P(Xn+1 = 1|Xn = 1, . . . ,Xn−k+1 = 1,Xn−k = 0) =

= P(Xn+1 = 1|Xn = 1, . . . ,Xn−k+1 = 1,Xn−k = 0,Xn−k−1 = i1 . . . ,Xn−k−m = im) =

=

(

k

k + 1

)αon

, k ≥ 1 (3)
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and

P(Xn+1 = 0|Xn = 1, . . . ,Xn−k+1 = 1,Xn−k = 0) =

= P(Xn+1 = 0|Xn = 1, . . . ,Xn−k+1 = 1,Xn−k = 0,Xn−k−1 = i1 . . . ,Xn−k−m = im) =

= 1 −

(

k

k + 1

)αon

, k ≥ 1 (4)

for any m and any (i1, . . . , im), il ∈ {0, 1}, l = 1, . . . ,m and for n ≥ 1. Similarly:

P(Xn+1 = 0|Xn = 0, . . . ,Xn−k+1 = 0,Xn−k = 1) =

= P(Xn+1 = 0|Xn = 0, . . . ,Xn−k+1 = 0,Xn−k = 1,Xn−k−1 = i1 . . . ,Xn−k−m = im) =

=

(

k

k + 1

)αoff

, k ≥ 1 (5)

and

P(Xn+1 = 1|Xn = 0, . . . ,Xn−k+1 = 0,Xn−k = 1) =

= P(Xn+1 = 1|Xn = 0, . . . ,Xn−k+1 = 0,Xn−k = 1,Xn−k−1 = i1 . . . ,Xn−k−m = im) =

= 1 −

(

k

k + 1

)αoff

, k ≥ 1 (6)

for any m and any (i1, . . . , im), il ∈ {0, 1}, l = 1, . . . m and for n ≥ 1. Here, the
αon and αoff parameters take positive values in the range 1 < αon, αoff < 2. On the
other hand, P(X1 = 0) = 1/2.

In the light of the previous equations, one can easily see that the two consistency
conditions stated by the Kolmogorov Consistency Theorem [Billingsley 1995, Page
482] are met. Accordingly, there is a stochastic process {Xn, n ∈ Z

+} on some
probability space (Ω,F , P) with the conditional distributions defined by eq. 3, eq. 4,
eq. 5 and eq. 6.

For clarity, let us consider the following example: Let us assume that the chain
is initially in the “on” state, i.e. X1 = 1. Thus, according to eq. 3, the conditional
probability of remaining in the “on” state in the following time-slot is given by

P(X2 = 1|X1 = 1) =
(

1
2

)αon

. Obviously, the conditional probability of jumping to

state “off” would be: 1 −
(

1
2

)αon

(see eq. 4).

Following this, let us assume the chain remains in state “on” at time n = 2. In
this case, the conditional probability of remaining in state “on” for a further time is

increased to P(X3 = 1|X2 = 1,X1 = 1) =
(

2
3

)αon

. Clearly, the size of this change

depends on the “on”-state tail index αon. Hence, the conditional probability of

jumping to the “off” state has decreased to P(X3 = 0|X2 = 1,X1 = 1) = 1−
(

2
3

)αon

(see eq. 4), and so forth.
On the other hand, let us assume the chain eventually jumps to the “off” state

at time n = k. In this case, the conditional probability of remaining in the “off”
state at time n = k + 1 would be P(Xk+1 = 0|Xk = 0,Xk−1 = 1, . . .) = P(Xk+1 =

0|Xk = 0) =
(

1
2

)αoff

. Again, this conditional probability would increase to
(

2
3

)αoff
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if the system jumps again to the “off” state, and so forth.
As shown in this example, the conditional probability of the process remaining

in the same state increases the longer the chain has already stayed in it, since:

( k

k + 1

)α

>
(k − 1

k

)α

, α > 0

Such state persistence effect is stronger the smaller the value of the tail index
α, which controls the speed at which the conditional probability approaches one.
Figure 1 shows how the conditional probability of remaining in the same state
increases with history, for several values of α, with 1 < α < 2.

0 10 20 30 40
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0.4

0.6

0.8

1

α=2

α=1

Increasing probability with index α

P
ro

ba
bi

lit
y

n

Fig. 1. Conditional probability of remaining in the same state (”on” or ”off”) during n timeslots
for various tail-indices α.

Clearly, this property encourages the creation of bursts, and agrees with the em-
pirical fact that packets are typically transmitted back-to-back [Jain and Routhier
1986].

The following sections discusses the probability distribution of such bursts and
other related properties of this model.

4. MODEL PROPERTIES

Let us assume that X1 = 1, that is, the chain is originaly in the active state,
and let U1,on denote the number of time-slots spent in the “on” state until the first
jump to the “off” state occurs. Similarly, let U1,off denote the number of time-slots
spent in the “off” state. In other words, Ui,on and Ui,off denote the durations in
time-slots of the i-th sequence (i = 1, 2, . . .) of “on” and “off” periods respectively.

Remark 4.1 Mutual independence of “on” and “off” durations. The random vari-
ables Ui,on and Ui,off are mutually independent for i = 1, 2, . . .. In fact, let d, k ∈ Z

+,
then:
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Table I. A few values of ζ(α)

ζ(1.00) = ∞

ζ(1.10) ≈ 10.58
ζ(1.15) ≈ 7.25
ζ(1.25) ≈ 4.60

ζ(1.40) ≈ 3.11
ζ(1.50) ≈ 2.61
ζ(1.65) ≈ 2.16
ζ(1.75) ≈ 1.96

ζ(1.90) ≈ 1.75
ζ(2.00) ≈ 1.65

P(Ui,on = d|Ui,off = k) = P(Ui,on = d|Ui,off ≥ 1) = P(Ui,on = d) (7)

by using eq. 3 and eq. 5 and taking into account that P(Ui,off ≥ 1) = 1. Note that
both eq. 3 and eq. 5 indicate that the duration of any actual “on” or “off” period
only depends on the time elapsed from the last change in the chain.

Theorem 4.2 Distribution of “on” and “off” durations. The probability

distribution of the random variables Ui,on and Ui,off, i = 1, 2, . . . is Pareto-like with

tail indices αon and αoff respectively. That is,

P(Ui,on < d) = 1 −

(

1

d

)αon

and P(Ui,off < d) = 1 −

(

1

d

)αoff

(8)

(9)

for d = 1, 2, . . ..

Proof. Without loss of generality let us assume that X1 = 1. Thus,

P(U1,on ≥ d) =

(

d − 1

d

)αon
(

d − 2

d − 1

)αon

· · ·

(

1

2

)αon

=
1

dαon
(10)

for d = 1, 2, . . . and, similarly, P(Ui,off ≥ d) = 1/dαoff , which completes the proof of

the theorem.

Corollary 4.3. The expectation of the random variables Ui,on and Ui,off, i =
1, 2, . . . is the Riemann function evaluated at the tail-indices αon and αoff respec-

tively. That is,

E[Ui,on] = ζ(αon) =

∞
∑

d=1

1

dαon
(11)

and E[Ui,off] = ζ(αoff). Note that Ui,on and Ui,off are both positive a. s. and, thus,

E[Ui,on] =
∑

∞

d=1 P(U1,on ≥ d) and E[Ui,off] =
∑

∞

d=1 P(U1,off ≥ d)

Obviously, the burst length variance is infinity.
The Riemann function ζ(x) has no closed form. A few example values are shown

in table I.
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5. LONG-RANGE DEPENDENCE

The previous theorems indicate that the discrete-time heavy-tailed chain is a
special case of the “on/off” process considered in [Taqqu et al. 1997]. In fact, the
model in [Taqqu et al. 1997] encompasses any on/off process with independent “on”
and “off” durations, such that, when x → ∞, P(Ui,on > d) ∼ lonx−αonLon(x) and
P(Ui,off > d) ∼ loffx−αoffLoff(x) for d > 0 where lon > 0, loff > 0 are constants and
Lon(x) > 0, Lon(x) > 0 are slowly varying functions, namely limx→∞ L(tx)/L(x) =
1 (see [Resnick 1997] for further details concerning heavy tails). It is worth noticing
that the discrete-time heavy-tailed chains meet these two requirements, as can be
readily seen from eq. 8. According to this, it can be concluded that the discrete-

time heavy-tailed chains basically provide a discrete-time version of the “on/off”
model considered in [Taqqu et al. 1997].

Indeed, the superposition of an infinite number of “on/off” heavy-tailed sources
leads to a random process, say Z = {Zn, n = 1, 2, . . .}, which shows long-range

dependence. More precisely, there exist a real number β ∈ (0, 1) and a constant
value cρ such that the process’ autocorrelation function ρ(k), k = 1, 2, . . . fulfills:

lim
k→∞

ρ(k)

cρk−β
= 1 (12)

as pointed out in [Beran 1994, Definition 2.1]. As a consequence, the variance of
the aggregated process: Var(

∑n
i=1 Zi) ≈ Kn2H as n → ∞, where K > 0 is a

constant and H is the Hurst parameter, with 1/2 < H < 1, according to [Beran
1994, Theorem 2.2]. Note that the process Z shows slowly-decaying autocorrelation
and variance of the aggregated process,

∑n
i=1 Zi. Intuitively, such slowly-decaying

behaviour implies that the traffic burstiness smooths out very slowly with the ag-
gregation level, in contrast to processes with independent increments.

Moreover, the process Z, made up by aggregating a large number of such “on/off”
sources converges to Fractional Gaussian Noise [Taqqu et al. 1997], a long-range
dependent process with Gaussian marginal distribution, very often used in the so-
called “black-box” modelling of network traffic [Norros 1995]. Finally, it is worth
pointing out that the Hurst parameter is related to the tail-indices αon and αoff as
follows:

H =
3 − min(αon, αoff)

2
(13)

The reader is referred to [Beran 1994] and to [Resnick 1997] for a detailed study
of long-range dependent models and heavy tail modelling. The following section
shows how to obtain the tail-indices of the “on” and “off” states, based on measured
data.

6. INFERENCE OF THE TAIL-INDEX α

Clearly from the previous sections, the estimation of each state’s tail-indices αon

and αoff is key in determining essential aspects of the model, such as the burst
length and their expectation. Taking into account the fact that both the “on” and
the “off” sequences are heavy-tailed, the Hill’s estimator provides a good way to
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estimate the chain’s index parameters αon and αoff. Following Hill [1975], the Hill’s
estimator proceeds as follows:

Remark 6.1 Hill’s estimator. Let Xi,on and Xi,off i = 1, . . . , n refer to the i-th
sample obtained from Ui,on and Ui,off respectively, that is, samples of sequences of
“on” and “off” periods. Let X(1),on ≥ X(2),on ≥ . . . X(k+1),on denote the k + 1 < n
largest “on” sequences, sorted from largest to smallest, and let X(1),off ≥ X(2),off ≥
. . . X(k+1),off refer to the k + 1 < n largest “off” sequences, again sorted from
largest to smallest. Then the Hill’s estimator for αon and αoff, based on such k < n
subsample, is given by:

α̂on,k =

(

1

k + 1

k
∑

i=1

log
X(i),on

X(k+1),on

)−1

(14)

α̂off,k =

(

1

k + 1

k
∑

i=1

log
X(i),off

X(k+1),off

)−1

(15)

When k is significantly large, the estimate α̂k approaches the real index α. Fig-
ure 2 shows the performance of the Hill’s estimator for a discrete-time heavy-tailed
chain with tail indices: αon = 1.5 and αoff = 1.75. The chain was simulated with
T = 107 states. Out of them, only the k = 1000 largest sequences of active and idle
periods have been considered to estimate αon and αoff, as shown.

0 100 200 300 400 500 600 700 800 900 1000
1

1.2

1.4

1.6

1.8

2
Hill estimate

k

α on

0 100 200 300 400 500 600 700 800 900 1000
1

1.2

1.4

1.6

1.8

2

k

α of
f

Fig. 2. Example of the performance of the Hill’s estimator for a discrete-time heavy-tailed chain
with αon = 1.5 and αoff = 1.75.
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In conclusion, the Hill’s estimator is a very good procedure to obtain the discrete-
time heavy-tailed chain main characteristic parameters: αon and αoff.

7. NUMBER OF ACTIVE SOURCES

This section derives the probability distribution of the number of active sources,
say in a router’s output link, at a random discrete-time. Clearly, this value provides
a measure of the router’s load as seen by a new source arriving randomly (i.e. a
Poisson arrival), and is key in the design of network resources.

Remark 7.1 Number of active sources in a given random time. Let N refer to the
number of connections handled by a router simultaneously, that is, discrete-time
“on/off” heavy-tailed sources. The number n of flows in the “on” state at a given
random time is given by the following binomial distribution:

P(n) =

(

N

n

)

pn
on(1 − pon)N−n (16)

characterised by the parameter pon, which stands for the probability of a single
source to be “on” at a random time. Such value is given by:

pon =
ζ(αon)

ζ(αon) + ζ(αoff)
(17)

Note that the on/off process induced by eq. 3 and eq. 5 is renewal, and, then,
using [Ross 1996, Theorem 3.4.4], eq. 17 can be shown to hold in the long run.
Thus, the validity of eq. 16 follows.

By the De Moivre-Laplace theorem, when the number N of connections is large,
eq. 16 approaches a gaussian distribution N (µ, σ) with mean µ = Npon and stan-
dard deviation σ =

√

Npon(1 − pon). This result agrees with the fact that the
superposition of infinite “on/off” sources leads to a Fraction Gaussian Noise, which
is a Gaussian process [Taqqu et al. 1997].

Figure 3 shows a case example of the validity of the remark above. In this
example, a router is handling N = 100 heavy-tailed connections with tail indices
αon = 1.5 and αoff = 1.75 for a number of T = 107 discrete time-slots. Out of
them, we have chosen 10000 time-slots randomly, accounted the number of active
sources in each time-slot, and plotted its histogram, along with the theoretical
binomial distribution given by eq. 16. As expected, the simulation-based histogram
accurately matches the theoretical probability density function.

In this example, the simulated results shows that pon = 0.5710, thus giving the
values of µ = 57.10 and σ = 4.95 for the Gaussian approximation.

8. SUMMARY

This work has introduced the discrete-time heavy-tailed chains, a practical method-
ology that can be used to simulate discrete-time “on/off” sources with heavy-tailed
distributed sequences of the “on” and the “off” periods, in the light of the “on/off”
source model described by Willinger et al. [1997]. The literature and previous work
demonstrates that the aggregation of multiple sources of such characteristics con-
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Fig. 3. Distribution of the number of active sources in a random discrete-time. Total number of

sources: N = 100, and αon = 1.5 and αoff = 1.75

verges to Fractional Gaussian Noise, a Gaussian long-range dependent process, very
often used in the simulation and modelling of network traffic.

Indeed, the key rule for constructing the heavy-tailed chains proposed in this work
shows how it promotes the creation of bursts, i.e. sequences of consecutive “on”
periods with infinite variance, which causes the long-range dependence observed
in the aggregated traffic. The average length of such bursts depends on the α
parameter that characterises the chain, which can be easily estimated via the Hill
estimate. Also, it is shown how to infer the number of active sources in a given
random time, if the total number of sources are known and so are the tail indices
of the “on” and “off” periods.

Finally, it is worth remarking that the discrete-time heavy-tailed chains can be
applied to the performance study and evaluation of a number of discrete-time com-
munication systems, say ATM and Optical Packet Switching, for instance.
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