
Action-Selection and Crossover Strategies for
Self-Modeling Machines

Josh Bongard
Department of Computer Science

University of Vermont
33 Colchester Ave., Burlington VT 05405

josh.bongard@uvm.edu

ABSTRACT

In previous work [7] a computational framework was demon-
strated that employs evolutionary algorithms to automati-
cally model a given system. This is accomplished by alter-
nating the evolution of models with the evolutionary search
for new training data. Theory predicts [23] that the best new
training data is that which induces maximum disagreement
across the current model set. Here it is demonstrated that in
a robot application this is not the case, and alternative fit-
ness functions are developed that seek other, better training
data. Also, it is shown that although crossover successfully
reduces the mean error of the model set, it compromises the
ability of the framework to find new, informative training
data. This has implications for how to create adaptive, self-
modeling machines, and suggests how competitive processes
in the brain underlie the generation of intelligent behavior.

Categories and Subject Descriptors

I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics

General Terms

Algorithms

Keywords

Evolutionary robotics, self-modeling, artificial intelligence

1. INTRODUCTION
Industrial robots have permeated and revolutionized ev-

ery aspect of heavy industry because they can execute pre-
programmed actions in fixed, indoor industrial environments.
Robots would be equally useful in outdoor or home envi-
ronments, but creating devices that can continuously adapt
and autonomously cope with the constantly changing as-
pects of such environments has had limited success. Rather
than continuously having to re-program new controllers for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7-11, 2007, London, England, United Kingdom
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

a robot once it or its environment changes, evolutionary
robotics [21] is a field that uses evolutionary computation
to autonomously generate behaviors for robots. There are
three main approaches to evolutionary robotics: controllers
are either evolved directly on the physical device, requiring
thousands of evaluations [10, 11]; controllers are adapted
from an existing, hand-designed controller [24]; or a hand-
designed simulator is used to evolve controllers in simula-
tion before transferal to the physical device [14, 22]. The
first approach is infeasible for continuous, rapid adaptation;
the second approach requires a human to create the starting
behavior; and the third approach requires a human to craft
a simulation of the robot.

In previous work [6, 7] we introduced a fourth method that
overcomes these obstacles by allowing the robot to evolve
simulations of itself and its local surroundings, and then use
the best of the evolved simulations to internally rehearse
behaviors before attempting them in reality. Rather than
most evolutionary computation-based modeling approaches
in which a set of training data is generated first and then
models are evolved to explain that data (eg. [18, 1, 12]), the
framework developed in [6, 7] uses an active learning [2] ap-
proach: modeling alternates with a search for new training
data, based on the current state of the models.

This raises the question of how to search for new training
data. Seung et al. [23] showed that in theory, the optimal
choice for the next training data is the one which causes the
current set of models to disagree in their predictions. Once
this training data is evaluated by the system being mod-
eled and added to the training set, now only some of the
models, not all, will agree with the results from the system,
because the models disagree about the new training data.
Further modeling can then replace these recently-revealed
erroneous models with new models that explain all the old
data, plus the new training data. Iterating this process is
therefore shown to converge most rapidly on good models
of the target system. However, finding such training data
that induces maximum model disagreement is not trivial,
if the space of possible training data is very large. In pre-
vious work we introduced the estimation-exploration algo-
rithm [6], or EEA, which uses an evolutionary algorithm to
search for these informative training samples: a fitness func-
tion rewards candidate training data for how much model
disagreement it causes. A second evolutionary algorithm
optimizes a set of models against the current set of training
data. We have applied the EEA to problems in machine
learning [4], gene network identification [9], damage local-
ization in truss structures [17], and to robotics [7].

198

Figure 1: The EEA applied to a quadrupedal robot. The algorithm begins by supplying a random action
(1. in a) to the target robot (b). The action causes the robot to move, and its main body tilts (c). The
tilt information is bundled with the action that caused it, and supplied to the modeling phase. The robot
meanwhile relaxes back to the default flat position. In the modeling phase (d), a set of 15 models are evolved
to explain all the tilt information extracted from the target robot so far. These evolved models are then used
to search for a new action (a). This process is repeated for a set number of cycles.

In this paper it is shown that, in practice, selecting train-
ing data to induce maximal model disagreement is not op-
timal. Instead it is demonstrated that a series of improve-
ments lead the algorithm to find better training data, in a
robotics application. In the next section I describe the basic
algorithmic framework, as well as a set of algorithm variants
that improve the modeling process. Finally, it is shown that
introducing crossover into the model evolution phase, while
reducing mean model error over the population, it also re-
duces the variation in the model population and therefore
frustrates the algorithm’s ability to find new, useful train-
ing data. I conclude with some general discussion of the
repercussions of this finding for automated science (should
computers seek new experiments to disprove hypotheses in
the same way that human scientists do?) and human cogni-
tion (how do our brains model our bodies?).

2. METHOD
The EEA, applied to a robotics application, is outlined in

Fig. 1. In this application the algorithm attempts to dis-
cover the correct topology of a simulated, four-legged robot,

without direct information about how the robot’s body parts
are connected together. Previously [7] we showed that this
framework allows a physical robot of the same topology to
automatically construct a simulation of itself, use that sim-
ulation to internally rehearse behaviors, and automatically
diagnose and recover from damage. The framework is com-
posed of three components: the robot to be modeled (Fig.
1b,c), a set of self-models (Fig. 1d), and a set of candidate
actions that can be executed on the robot (Fig. 1a).

2.1 The robot
The target robot used here is a simulated, four-legged

robot (Fig. 1b). The robot is composed of nine body parts:
the main body, and four upper and lower legs (Fig. 2a).
The eight leg parts are motorized, and can rotate through
the vertical plane that lies parallel to the leg. Positive ro-
tations cause the part to rotate upward, and negative ro-
tations downward. The robot is simulated within a three-
dimensional, physics-based environment1. A training data
in this application is an action: a set of eight desired mo-

1ode.org

199

tor rotations, expressed in degrees (Fig. 1a), that causes all
eight motors to rotate, sending the robot to a fixed position
(Fig. 1c). In this position, two tilt sensors record how much
the robot’s main body tilts to the left or right (−90o to
+90o), and how much forward or backward (−90o to +90o).
These two angles together form the result generated by the
target robot. The robot then rotates the motors back to 0o,
causing the robot to lie flat again. The result is bundled
with the action that caused them, and sent to the modeling
phase (Fig 1d).

2.2 The models
In the modeling phase (Fig. 1d), a set of 15 model

robots are evolved using a parallel hill climber to infer the
way in which the robot’s body parts are attached together.
This setup has been used to a demonstration that a physical
robot can autonomously synthesize a model of its own body
and its immediate surroundings [8, 6, 7]. The training set
is composed of the set of action/result pairs that have been
obtained from the target robot so far. On the first cycle
through the algorithm, the modeling phase has one pair; on
the second cycle through it has two action/result pairs; and
so on. The algorithm is assumed to know: how many motor-
ized parts there are (eight); the mass and geometry of each
part; parts are attached perpendicularly to each other; each
body part is horizontal; and that actuating a body part with
a positive angle will cause it rotate upward by that amount,
and a negative angle downward by that amount. In future
work these constraints will gradually be removed. The al-
gorithm must indirectly infer how the parts are connected
using only the tilt information in the training data.

A model is encoded as a 8 × 2 genotype G with floating-
point values in the range [0.0, 1.0], and dictates how the
nine known body parts (Fig. 2a) should be connected to
one another to produce a phenotype. The phenotype is a
three-dimensional, physically realistic simulated robot, like
those shown in Fig. 1d. The genotype is translated into a
phenotype as follows. Each row in the matrix corresponds to
one of the eight body parts. For each of the i = 1, 2, . . . , 8
body parts, entry G(i, 1) is scaled to an integer value in
[0, i−1]. This indicates to which body part the current part
attaches to. A value of 0 indicates the part attaches to the
main body; a value of 1 indicates it attaches to motorized
body part 1; and so on. In the example shown in Fig. 2b,
part 1 attaches to part 0 (G(1, 1) = 0), and part 5 to part
1 (G(5, 1) = 1). The second value in the row, G(i, 2), in-
dicates where on the periphery of the parental body part
the current part should be attached. A value of G(i, 2) = 0
indicates that part i should connect to the upper left of the
parent body part; larger values attach the part at further
positions around the periphery of the parent part, proceed-
ing in a clockwise direction. In the example shown in Fig.
2b, body part 1 attaches to the upper-right of the main body
(G(1,2)=0.25), and then body part 5 attaches in turn to the
upper-right of body part 1 (G(5,2)=0.25).

Once a model robot is formed, it is actuated with each
of the actions in the training data that have already been
executed on the target robot. For each action, the result-
ing tilt of the model robot’s main body is recorded. The
subjective error of a model is then given by

me =

∑k
i=1(|t

(i)
lr − m

(i)
lr | + |t

(i)
fb − m

(i)
fb |)

2k
, (1)

a

b

Figure 2: Genotype to phenotype translation for the
self-models. The algorithm begins by knowing how
many motorized parts the robot is composed of (a).
A model genotype G encodes information for con-
necting the parts together. G(i, 1) indicates to which
body part i should attach. G(i, 2) indicates where on
the periphery it should attach.

where k is the total number of actions that have been per-

formed by the target robot so far; t
(i)
lr is the amount the

target robot tilted to the left or right when it executed ac-

tion i; m
(i)
lr is the amount the model robot tilted to the left

or right when it executed action i; t
(i)
fb is the amount the

target robot tilted forward or backward when it executed

action i; and m
(i)
fb is the amount the model robot tilted for-

ward or backward when it executed action i. In short, the
accuracy of a model is how well it reproduces the behaviors
of the target robot when supplied with the same actions.

A hill climber then optimizes each of the 15 models in an
attempt to minimize me. Once a model has been evaluated,
its genotype is copied, a single value in the matrix is chosen
at random, and Gaussian mutation is applied. A new model
is created from this matrix, and evaluated. If the new model
achieves a lower error than the parent model, the parent
genotype is discarded; otherwise, the child is discarded. This
process is continued for 200 generations, for each of the 15
models. These optimized models are then passed to the
testing phase (Fig. 1a) for finding a new action. On the
second and subsequent cycles through the modeling phase,
hillclimbing begins with the best models from the previous
cycle, but the models are re-evaluated against the larger
training set, which contains the original action/result pairs
plus the new pair just obtained from the target robot.

2.3 The actions
The testing phase attempts to find a new action that,

when executed by the target robot, will provide more infor-
mation about the robot’s topology. At the outset of a run,
36 random actions are generated (Fig. 1a) but not yet exe-
cuted on the target robot. Initially, one of the 36 actions is

200

a ⊳ b ⊲ c

d
0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

Action

F
re

q
u
e
n
c
y
 o

f
E

x
e
c
u
ti
o
n

Variant ii
Variant iii
Variant iv
Single−joint actions
Non−moving actions
Dangerous action 1
Dangerous action 2
Reveals lower leg

Figure 3: (a,b): Two ‘dangerous’ actions, performed by the target robot, which stays upright. Model robots
that are morphologically similar to the target robot may fall to one side or the other (c), therefore incurring
a drop in fitness. (d) The frequencies with which different algorithm variants chose actions to be sent to the
target robot. Actions marked with an asterisk only rotate one part downward; all other actions rotate two
parts downward. Actions marked with a downward-pointing triangle do not cause the main body to tilt at
all. Actions marked with a left- and right-pointing triangle correspond to the dangerous actions shown in (a)
and (b). Only the actions marked with a circle reveal information about the four lower legs.

sent to the target robot to generate the first training data.
On the second and subsequent cycles, the optimized models
from the modeling phase are used to determine which new
action to send to the target robot for evaluation. Each ac-
tion is supplied to the fifteen models, and the fitness of an
action is computed using

af =
σ2(mlr) + σ2(mfb)

2
, (2)

where σ2(mlr) is the variance across the left and right tilting
of the 15 optimized models when supplied with action a, and
σ2(mfb) is the variance across the forward and backward
tilting of the 15 optimized models. In short, the more that
an action can cause the optimized models to tilt in different
directions, the better it is.

Of the 36 actions, the one with maximal af , and which
has not yet been executed is sent to the target robot for ex-
ecution. It is then bundled with the resulting tilt informa-
tion, and passed to the modeling phase, where the number
of training data is incremented from k to k + 1. Once the
modeling phase has been cycled through 16 times, the algo-
rithm halts, and returns the model with the lowest error as
its best guess as to the topology of the target robot.

2.4 The algorithm variants
Initially it was found that even after 16 cycles, the algo-

rithm was only able to infer the correct positions of a few
of the body parts. In this paper a series of variants are in-
troduced to the algorithm to perform its modeling ability.

First, it was observed that the errors of the models increased
from one cycle to the next (data not shown), indicating that
the algorithm is being overwhelmed with information from
the target robot: it cannot reduce the errors of the models
against the current training data before modeling halts, and
new training data is injected into the modeling process. In
previous work [5] we found such algorithms must often be
fed easier training data in order to make progress.

Variant i—In the first variant, we narrowed the range of
angles that an action can rotate motors from 60 to 30 degrees
(Fig. 1i).

Variant ii—In the second variant, the possible actions
were further constrained. Actions were still limited to ro-
tations in [−30o, 30o], but instead of actuating all motors
differently, an action could rotate only one or two motors
downward, and all the others upward, thereby removing
their influence on the main body’s tilt (Fig. 1ii). This
variant was created in light of the observation that human
scientists, when investigating phenomena, only alter one or
a few independent variables, and then observe the result; it
is difficult to attribute phenomena to a particular variable if
all variables are changed at once. This variant allows the al-
gorithm to in effect investigate single or pairs of body parts
at a time. This constraint reduces the possible number of
actions to 36: 8 single joint rotations, and 18 double joint
rotations.

Variant iii—During experimentation with variant ii, it
was observed that two actions effectively halted further mod-
eling. These actions are shown in Fig. 3a and b. These ‘dan-

201

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

Cycle

O
b

je
c
ti
v
e

 E
rr

o
r

Actions in [−60
o
,60

o
]

Variant i
Variant ii
Variant iii
Variant iv

Figure 4: Comparison of modeling ability across the five algorithm variants. The bars correspond to mean
objective error, averaged over the best models from 30 independent trials. The models used for averaging
were those that had the lowest subjective error (Eqn. 1) at the end of each cycle through the modeling phase.
Error bars indicate 1 unit of standard deviation.

gerous’ actions rotate the two opposing lower legs downward,
raising the main body off the ground. Any models that are
very accurate, but not identical to the target robot will have
slightly different mass distributions and will fall to one side
or the other (Fig. 3c). This will cause a previously accurate
model to suddenly experience an increase in error, as its be-
havior diverges from that of the target robot. Worse still,
the testing phase tends to focus in on these actions, because
near the end of the run, when the 15 models are all similar,
and close to the target, they will continue to disagree—they
will fall in different directions—about these two actions, so
they tend to be sent to the target robot for evaluation.

These actions are known in dynamical systems as bifur-
cations: two similar models exhibit very different behavior
when exposed to one of these actions. In the third variant,
the fitness function in the testing phase was altered to steer
selection away from such ‘dangerous’ actions. This was ac-
complished as follows.

A mutant of each of the 15 models used to evaluate ac-
tions is created by mutating their underlying genotypes as
explained above. Two such mutations are shown in Fig. 1iii:
model ∗† is a mutant of model ∗, and model ∗∗† is a mutant
of model ∗∗. As before, all 15 models are actuated using the
current action under consideration; now, these 15 mutants
are also actuated with the current action. The fitness of an
action af now is computed as

σ2(mlr) + σ2(mfb)

2
−

∑15
i=1 |m

(i)
lr − m

′(i)
lr | + |m

(i)
fb − m

′(i)
fb |

30
, (3)

where the first term, as before, awards actions for maximiz-
ing disagreement across the 15 models. The second term
penalizes actions for causing disagreement between model i

(m
(i)
lr/fb) and its mutant, m

′(i)
lr/fb. For example, in Fig. 1aiii,

a given action causes models ∗ and ∗∗ to disagree: the for-
mer falls to the right, and the latter falls forward. However,
the same action causes their mutants to disagree: model ∗†
falls forward, rather than right, and model ∗ ∗ † falls for-
ward and left, rather than forward. By penalizing actions in
this way, the algorithm selects against potentially bifurcat-
ing actions: if two similar models m and m′ exhibit different
behavior, and this is supported by many of the models (m(1)

to m(15)), it is likely that the current action will stall the
modeling process. In short, this fitness function selects both
for informativeness (the first term) and reliability (the sec-
ond term).

Variant iv—In the fourth variant, variant iii is retained,
but crossover is added to the parallel hillclimber in the mod-
eling phase (Fig. 1div). Crossover is conducted as follows.
Whenever a new child model is to be created, the geno-
type matrix of its parent is copied and mutated as explained
above. With a 50% probability, another parent model is se-
lected as a donor. Each row of the donor matrix is copied
over the same row in the new genotype matrix, with a 50%
probability. This effectively combines data from two models
into the new model.

3. RESULTS
For each of the five algorithms described above (the basic

algorithm, plus variants i-iv), 30 independent trials were
conducted, yielding a total of 150 trials. Each trial begins
with a random action, and then cycles through the algorithm
16 times. At the end of each cycle through the modeling
phase, the model with the lowest error is output, providing
a series of 16 increasingly accurate models.

Within the algorithm, model error is calculated using data
obtained from the target robot, but this is subjective er-
ror, from the point of view of the model: it only indicates
how well the model fits a subset of information. A second
error metric, known as objective error, calculates how sim-
ilar the topologies of the model and target robot are. This
is calculated using

mo =

∑8
i=1

√

(t
(i)
x − m

(i)
x)2 + (t

(i)
z − m

(i)
z)2

8
,

where t
(i)
x is the horizontal position of body part i on the

target robot when it lies flat, m
(i)
x is the horizontal position

of body part i on the model robot, t
(i)
z is the z-position of

body part i on the target robot, and m
(i)
z is the z-position

of body part i on the model robot. Therefore, the objective
error of a model is the mean Euclidean difference between
the positions of the target robot’s body parts, and the model
robot’s body parts. This metric then gives an unbiased in-
dication of how close the model is to the topology of the
target robot.

Fig. 4 reports the mean objective errors of the model
robots from the five algorithms, arranged from the best
model produced at the end of the first cycle, to the best
model produced by the last cycle. As can be seen, in gen-
eral the objective error of the models decreases as the trials

202

2 4 6 8 10 12 14 16
0

20

40

60

80

Cycle

M
o
d
e
l
V

a
ri
a
n
c
e

Actions in [−60
o
,60

o
]

Variant i
Variant ii

Figure 5: The mean model variance induced by the actions sent to the target robot (Eqn. 2), for three
algorithm variants. During the first cycle through the testing phase, there are no models available from the
modeling phase for evaluating actions, so an action is chosen at random and therefore its model variance
cannot be calculated. Model variances are therefore plotted for testing cycles 2 to 16.

proceed, indicating that some improvement in the models is
achieved. However, the base algorithm and variant i make
relatively little progress, compared to variant ii, when only
one or a pair of body parts are allowed to rotate downward.
This indicates that, like a human scientist, the computer is
better able to model the system in question when it perturbs
one or at most two variables at once, rather than changing
them all in parallel.

However, the actions produced by variant ii produce less
model disagreement than the actions produced by the base
algorithm and variant i. Fig. 5 reports the mean model
prediction disagreements (Eqn. 2) caused by the 15 actions
sent to the target robot by the base algorithm, variant i and
variant ii. Not surprisingly, the base algorithm can induce
more disagreement, because it can tilt the main body further
when motors can rotate between [−60o, 60o] than when they
can only rotate between [−30o, 30o]. Further, restricting the
actions to only rotate one or two motors downward (vari-
ant ii) yields actions that produce about the same amount
of model variance as when they can all be rotated down-
ward (variant i). In late cycles it can be seen that variant
ii achieves less model variance than variant i, but this is be-
cause the models during these later cycles are more accurate
than those from variant i, and therefore more similar to each
other. This finding contradicts the theoretical conclusion of
[23]: it is shown here that greater model disagreement does
not necessarily imply accelerated modeling.

Fig. 4 indicates that from cycle 14 on, variant iii outper-
forms the previous three algorithms, indicating that choos-
ing actions not simply based on their informativeness (i.e.,
model variance) but also on their reliability (Eqn. 3) im-
proves modeling. This finding is supported by Fig. 3d,
which reports the frequency with which different algorithm
variants selected actions to send to the target robot. As can
be seen, actions 3 and 11 correspond to the ‘dangerous’ ac-
tions shown in Figs. 3a and b, and were sent by algorithm
variant ii to the target robot at some point during all 30
runs (frequency of appearance = 1). This is not surprising,
as these actions can best induce disagreement among mod-
els, even during later stages of the run when the models are
similar to the target robot, and to one another. However,
variant iii sent these actions to the target robot very rarely
(frequencies of appearance = 0.33 and 0.2 for actions 3 and
11), because these actions were heavily penalized for being
unreliable (the second term in Eqn. 3).

Other biases in selecting actions are revealed by Fig. 3d.
First, those actions that rotate both the upper and lower

parts of the same leg (indicated by a circle) were selected
very often. These actions are the only ones that reveal in-
formation about the four lower legs. When only one or two
motors may be rotated downward (variant iii), if only the
lower leg is rotated downward but the upper leg is rotated
upward, the lower leg does not touch the ground and cannot
be inferred. The fact that the algorithms usually propose
these actions to the target robot indicates that the models
are becoming more accurate: the models predict that ex-
actly these pairs of downward motor rotations will reveal
where body parts 5 to 8—the lower legs (Fig. 2a)—are lo-
cated. Similarly, the models predict that certain actions
(actions 27 to 36) do not cause the main body to tilt at all,
and are therefore not very informative, and should not be
executed by the target robot.

Finally, Fig. 4 reports the effect on modeling if crossover
is introduced into the modeling phase (variant iv). Sur-
prisingly, this has an adverse effect on modeling: the mean
objective errors of models in cycles 14, 15 and 16 are gener-
ally higher than variant iii, which is the same as variant iv
except crossover is not employed. Fig. 6 reports the average
quality of the worst models from algorithm variants iii and
iv. The worst model is defined as the model at the end of
each cycle through the modeling phase that has the high-
est subjective error (Eqn. 1). Clearly, crossover reduces
the average subjective error across the 15 models, as the
worst model has a significantly lower subjective error when
crossover is used (variant iv), than when it is not (variant
iii). Therefore, crossover is successful in the sense that it
is transferring useful genetic material from better models to
worse models. Therefore, the adverse effect of crossover as
seen in Fig. 4 cannot be due to crossover disrupting model
improvement during the modeling phase.

An alternative explanation is illustrated in Fig. 7. When
the algorithm lacks crossover, and the models are almost
correct during the later cycles of a run, the models will still
disagree about the location of the few body parts (Figs. 7a
and b) for which they have not obtained any evidence (such
as part 8 in Fig. 7). Due to lack of evidence, that body
part may reside anywhere on the robot’s body. The test-
ing phase will converge on an action that moves body part
8, because its different locations on the models will cause
them to tilt in different directions when that body part is
actuated (Fig. 7a,b). However, when crossover is employed,
the more accurate model (such as model 1 in Fig. 7c) will
contribute genetic material to the lesser accurate models
(such as model 2 in Fig. 7d), including position information

203

2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

Cycle

W
o

rs
t

M
o

d
e

l
E

rr
o

r

Variant iii
Variant iv

Figure 6: A comparison of mean error of the worst models produced by the algorithm variant without
crossover (variant iii) and with crossover (variant iv). The gradual rise in error observed in variant iii
reflects the increasing failure of the worst models to explain the new training data being accumulated by the
algorithm. Crossover negates this effect by transferring genetic information from more accurate models into
these less accurate models.

Figure 7: An example illustrating why crossover
compromises the ability of the algorithm to model
the target robot. In models from the algorithm lack-
ing crossover (a,b), body parts for which no infor-
mation has been gathered (i.e. part 8) appear at
different locations on the models. Actions are then
selected and executed by the target robot that actu-
ate these parts, because they cause the models to tilt
in different directions (indicated by arrows). When
crossover is employed, the models agree about the
locations of poorly modeled body parts (c,d), and
actions do not target the actuation of them.

for body parts yet to be inferred. Therefore models will
agree not just about body parts that have been inferred,
but also those that have not yet been inferred. Because
of this, actions that rotate non-inferred body parts such as
body part 8 in Fig. 7 will not induce any more model dis-
agreement than actions that rotate well understood parts
(Fig. 7c,d). Therefore crossover frustrates the ability of the
testing phase to locate new, informative tests, and modeling
suffers as a result. In other words, information about the
remaining, poorly-modeled parts of the target robot cannot
be extracted. This line of reasoning is supported by Fig.
3, which indicates that the only four actions which reveal
information about the lower legs (marked with circles) are
executed less often when crossover is employed (variant iv)
than when it is not (variants ii and iii).

4. DISCUSSION AND CONCLUSION
The computational framework discussed here incorporates

active learning research [2] which has shown that it is better
to alternate modeling with the collection of new training
data, rather than simply generating training data at random
before modeling commences. Seung et. al [23] derived the
optimal method for selecting new training data that should
be labeled by the system: the most informative training
data is that which induces the most disagreement among
the predictions of the current model set.

The framework previously developed, the Estimation -
Exploration Algorithm (EEA) [9, 8, 3, 6, 4, 5, 7], employs
evolutionary computation to optimize a set of models us-
ing the training data collected from the system under study
so far, and also to search for new training data, once the
model set has been optimized. In this paper several vari-
ants of this framework were explored, when applied to a
particular system: a legged robot, able to execute actions
(the training data) and observe its own resulting behavior
(the ‘labeling’ of that training data). More specifically, it
was shown that simply seeking actions that induce the most
model disagreement does not, as theory predicts [23], accel-
erate modeling. Rather, constraining the space of possible
training data such that only one or a pair of variables of the
system are perturbed at once improves the ability of the al-
gorithm to model the system under study. This agrees with
the way in which human scientists investigate phenomena.
By only perturbing one or a few variables at a time, and ob-
serving any resulting change in the system, the experimenter
can draw causal relationships between different parts of the
system. Developing automated systems that can not only
model physical systems, but also propose new experiments
to improve those models is just now becoming feasible [16],
and it has been shown that evolutionary computation has
an important role to play in these endeavors [7].

In addition to the kinds of actions that should be used in
such a process, it has been shown here that a fitness func-
tion that only awards training data for how much model
disagreement it induces is insufficient. We demonstrate that
a more sophisticated fitness function that awards for both
model disagreement and reliability is superior. Reliability is
measured by the ability of the proposed action to avoid bi-
furcation, as predicted by the current model set. The EEA
is a type of coevolutionary algorithm [13, 15], in the sense
that the relative fitness between two models changes when
a new piece of data from the target system is introduced;
in effect, the new training data alters the fitness landscape
for the models. Actions that induce bifurcations (accurate
models behave very differently from the target system, when

204

supplied with the same action) cause the space of possible
models to become rugged: highly fit models perform dif-
ferently than the target system, and therefore obtain a low
fitness. In effect, the fitness function described here ensures
that the fitness landscape for the models remains smooth
over the course of the run, thereby accelerating modeling.

Finally, it was shown that even when crossover is intro-
duced and is functional in the sense that the overall fitness of
the model population decreases, it compromises the EEA’s
ability to model the system. This is due to the fact that the
dormant variability in the model population—those parts of
the target system that have not been perturbed are mod-
eled in different ways by the different models—dissipates,
and the algorithm cannot find training data that perturbs
those unseen parts of the system.

In the same way that evolutionary algorithms rely on the
latent variation in populations of candidate solutions, the
EEA is able to better model target systems by relying on
model populations, rather than a single model. This has
wider implications not just for system identification [20],
but for neuroscience. Evidence is emerging that suggests
competition between competitive processes in the brain may
be the underpinning of intelligent behavior [19]. The work
presented here, which enables an adaptive robot to model
itself, may provide the first few steps in a systematic method
for exploring this new way of looking at cognition.

5. REFERENCES

[1] H. Andrew. System identification using genetic
programming. In Proceedings of the Second Intl. Conf.
on Adaptive Computing in Engineering Design and
Control, pages 57–62, 1996.

[2] Y. Baram, R. El-Yaniv, and K. Luz. Online choice of
active learning algorithms. Journal of Machine
Learning Research, 5:255–291, 2004.

[3] J. Bongard and H. Lipson. Once more unto the
breach: Co-evolving a robot and its simulator. In
Proceedings of the Ninth International Conference on
the Simulation and Synthesis of Living Systems
(ALIFE9), pages 57–62, 2004.

[4] J. Bongard and H. Lipson. Active coevolutionary
learning of deterministic finite automata. Journal of
Machine Learning Research, 6(Oct):1651–1678, 2005.

[5] J. Bongard and H. Lipson. ‘Managed challenge’
alleviates disengagement in co-evolutionary system
identification. In Proceedings of the 2005 Genetic and
Evolutionary Computation Conference, pages 531–538,
Washington DC, 2005.

[6] J. Bongard and H. Lipson. Nonlinear system
identification using coevolution of models and tests.
IEEE Transactions on Evolutionary Computation,
9(4):361–384, 2005.

[7] J. Bongard, V. Zykov, and H. Lipson. Resilient
machines through continuous self-modeling. Science,
314:1118–1121, 2006.

[8] J. C. Bongard and H. Lipson. Automated robot
function recovery after unanticipated failure or
environmental change using a minimum of hardware
trials. In Proceedings of The 2004 NASA/DoD
Conference on Evolvable Hardware, pages 169–176,
Seattle, WA, 2004.

[9] J. C. Bongard and H. Lipson. Automating genetic

network inference with minimal physical
experimentation using coevolution. In Proceedings of
The 2004 Genetic and Evolutionary Computation
Conference, Seattle, WA, 2004.

[10] D. Cliff, P. Husbands, and I. Harvey. Evolving visually
guided robots. In J.-A. Meyer, H. Roitblat, and
S. Wilson, editors, Proceedings of the Second
International Conference on the Simulation of
Adaptive Behaviour, Boston, MA, 1993. MIT Press.

[11] D. Floreano and F. Mondada. Hardware solutions for
evolutionary robotics. In P. Husbands and J.-A.
Meyer, editors, EvoRobots, pages 137–151, 1998.

[12] G. Gray, D. Murray-Smith, Y. Li, K. Sharman, and
T. Weinbrenner. Nonlinear model structure
identification using genetic programming. Control
Engineering Practice, 6:1341–1352, 1998.

[13] W. D. Hillis. Co-evolving parasites improve simulated
evolution as an optimization procedure. Physica D,
42:228–234, 1990.

[14] N. Jakobi. Evolutionary robotics and the radical
envelope of noise hypothesis. Adaptive Behavior,
6(1):131–174, 1997.

[15] E. D. Jong and J. Pollack. Ideal evaluation from
coevolution. Evolutionary Computation,
12(2):159–192, 2004.

[16] R. D. King, K. E. Whelan, F. M. Jones, P. G. K.
Reiser, C. H. Bryant, S. H. Muggleton, D. B. Kell,
and S. G. Oliver. Functional genomic hypothesis
generation and experimentation by a robot scientist.
Nature, 427:247–252, 2004.

[17] B. Kouchmeshky, W. Aquino, H. Lipson, and J. C.
Bongard. Coevolutionary strategy for structural
damage identification using minimal physical testing.
International Journal for Numerical Methods in
Engineering, 69(5):1085–1107, 2006.

[18] J. Koza. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT
Press, Boston, MA, 1992.

[19] A. Livnat and N. Pippenger. An optimal brain can be
composed of conflicting agents. PNAS,
103(9):3198–3202, 2006.

[20] L. Ljung. System Identification: Theory for the User.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1999.

[21] S. Nolfi and D. Floreano. Evolutionary Robotics. MIT
Press, Boston, MA, 2000.

[22] J. B. Pollack, H. Lipson, S. Ficici, P. Funes,
G. Hornby, and R. Watson. Evolutionary techniques
in physical robotics. In J. Miller, editor, Evolvable
Systems: from biology to hardware, pages 175–186.
Springer-Verlag, 2000.

[23] H. S. Seung, M. Opper, and H. Sompolinsky. Query
by committee. In Proceedings of the Fifth Workshop
on Computational Learning Theory, pages 287–294,
New York: ACM Press, 1992.

[24] R. Tedrake, T. Zhang, and H. Seung. Learning to walk
in 20 minutes. In Proceedings of the Fourteenth Yale
Workshop on Adaptive and Learning Systems, Yale
University, New Haven, CT, 2005.

205

