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ABSTRACT
Evolutionary algorithms applied in real domain should profit
from information about the local fitness function curvature.
This paper presents an initial study of an evolutionary strat-
egy with a novel approach for learning the covariance matrix
of a Gaussian distribution. The learning method is based on
estimation of the fitness landscape contour line between the
selected and discarded individuals. The distribution learned
this way is then used to generate new population members.
The algorithm presented here is the first attempt to con-
struct the Gaussian distribution this way and should be
considered only a proof of concept; nevertheless, the em-
pirical comparison on low-dimensional quadratic functions
shows that our approach is viable and with respect to the
number of evaluations needed to find a solution of certain
quality, it is comparable to the state-of-the-art CMA-ES in
case of sphere function and outperforms the CMA-ES in case
of elliptical function.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization; G.1.2 [Nume-
rical Analysis]: Approximation—approximation of surfa-
ces and contours, nonlinear approximation; I.2.6 [Artificial
Intelligence]: Learning—concept learning, induction

General Terms
Algorithms, Design, Experimentation, Performance, Theory

Keywords
evolutionary computation, estimation of distribution algo-
rithms, learnable evolution model, function optimization,
separating ellipsoid

1. INTRODUCTION
Many algorithms used for real-parameter black-box opti-

mization use Gaussian distribution to sample new points.
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This approach started with mutative evolutionary strate-
gies (ES) which were soon equipped with a feedback adapta-
tion of the step size (Rechenberg’s one fifth rule), and self-
adaptation of the step size, coordinate-wise step sizes, and
self-adaptation of the whole covariance matrix (see e.g. [14]).
However, Rudolph [11] showed that self-adaptive mutations
can lead to premature convergence.

Other algorithms that use Gaussian distribution very of-
ten fall into the class of estimation of distribution algo-
rithms (EDAs) [7]. They select better individuals and fit
the Gaussian distribution to them—usually by means of the
maximum likelihood estimation which is far from ideal (see
Fig. 1(a) for an example of Estimation of Multivariate Nor-
mal distribution Algorithm (EMNA)). Without imposing
limits on the minimal ‘size’ of the Gaussian, the variance
of the distribution in the direction of the fitness function
gradient quickly decreases, and the algorithm thus can get
stuck even on the slope of the fitness function [3].

One way of overcoming this drawback of maximum likeli-
hood estimation in real-valued EDAs is to estimate the dis-
tribution of the selected mutation steps instead of the distri-
bution of selected individuals (cf. 1(a) and 1(b)). Pošík [10]
applied this approach in a co-evolutionary manner. Hansen
at al. [5] use similar principles in the evolutionary strategy
with covariance matrix adaptation (CMA-ES) which is con-
sidered to be the state-of-the-art in real-valued black-box
optimization. It adapts the step size separately from the
‘directions’ of the multivariate Gaussian distribution. The
adaptation is based on accumulation of the previous steps
that the algorithm made.

Auger et al. [1] proposed a method of improving the
CMA-ES covariance matrix adaptation using a quadratic
regression model of the fitness function in the local neigh-
borhood of the current point. Their approach, however, re-
quired in D-dimensional space at least D(D+3)

2
+1 data vec-

tors to learn the quadratic function. Moreover, it assumed
that each point has its fitness value, i.e. it cannot use selec-
tion schemes based on pure comparisons of two individuals.

In this paper, we propose a novel algorithm for learning
the Gaussian distribution by modeling the fitness landscape
contour line that lies between the selected and discarded in-
dividuals (see Fig. 1(c)). If the population does not surround
a local optimum, the resulting Gaussian distribution should
fit into the local neighborhood to much greater extent com-
pared to Gaussian learned with CMA-ES-like algorithms.
Similar approach can be found in learnable evolution model
(LEM) framework [16]. We present an augmented percep-
tron algorithm that finds an elliptic decision boundary if
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it exists. If it does not exist, the algorithm will not stop.
From this, the main limitation of our approach immediately
follows: this preliminary algorithm is able to optimize only
convex quadratic functions. Despite of that, it serves as a
proof-of-concept and forms a strong basis for the develop-
ment of more capable learning algorithm.

We provide the main principle of the method and the com-
putational details in section 2. Section 3 describes the exper-
iments we have carried out to assess the very basic properties
of the proposed method. Section 4 presents the results of the
comparison of our method against the LEM3 and the CMA-
ES algorithms. Section 5 summarizes the paper, points out
the main advantages of the method and discusses the direc-
tions of future work on all the things that have to be done
before the algorithm is generally applicable.

2. PRINCIPLE AND METHODS
The basic principle of the proposed method is illustrated

in Fig. 1(c). After evaluation of the population, we try to
model the contour line of the fitness function with an ellipse
that would allow us to discriminate between the selected and
discarded individuals. The decision boundary is of the form
xAxT +xB+C = 0, where x is a D-dimensional row vector
representing a population member, A is a positive definite
D × D matrix, B is a column vector with D elements, and
C is a scalar.

After finding the quadratic decision function, we need to
turn it into the sampling Gaussian distribution. Auger et
al. [1] discussed that setting the covariance matrix Σ to
Σ = A−1 is a very good (if not optimal) choice. We fol-
low this approach since the elliptic decision boundary then
corresponds to certain contour line of the Gaussian density
function. The candidate members of the new population are
then sampled from this distribution.

We shall not learn the elliptic function directly—we shall
use a variation of the perceptron algorithm that generally
finds a linear decision function. To learn an ellipsoid we
shall map the points to a different space and then map the
learned linear function back into the original space where it
shall form the ellipsoid. Then, we shall turn this ellipsoid
into a Gaussian distribution, and we shall also modify the
Gaussian to ensure that a specified ratio of the sampled
points will lie inside the ellipsoid. The following subsections
introduce methods used to accomplish the process sketched
above.

2.1 Quadratic Mapping
We need to learn a quadratic function which would allow

us to discriminate between two classes of data points. The
classifier is then given as

C(x) =

{
1 iff xAxT + xB + C > 0
2 iff xAxT + xB + C < 0

. (1)

The decision boundary xAxT + xB + C = 0 is required
to be a hyperellipsoid which is a special case of quadratic
function, but, as was already stated, we shall approach that
problem with a method that is designed to find a linear de-
cision boundary. In order to be able to do that, we have
to use a coordinate transform such that if we fit the linear
decision boundary in the transformed space, we can trans-
form it back and get a quadratic function. This process is
sometimes referred to as the basis expansion [6] or feature
space straightening [12].

The matrix A is symmetric, i.e. aij = aji, i, j ∈ 〈1, D〉.
We can rewrite the decision boundary to the following form:

a11x1x1 + 2a12x1x2 + . . . + 2a1Dx1xD +
+ a22x2x2 + . . . + 2a2Dx2xD +

. . . +
+ aDDxDxD +

b1x1 + b2x2 + . . . + bDxD +
+ c = 0

(2)
This equation defines a quadratic mapping qmap which for

each point x from the input space creates a new, quadrati-
cally mapped point z, where

z = qmap(x) =
= (x2

1, 2x1x2, . . . , 2x1xD, x2
2, . . . , 2x2xd, . . . , x2

D,
x1, . . . , xD, 1)

(3)
Then, if we arrange the coefficients aij , bi, and c into a
vector w so that

w = (a11, a12, . . . , a1D, a22, . . . , a2D, . . . , aDD,
b1, . . . , bD, c),

(4)

we can write the decision boundary as zwT = 0 and the
whole classifier as

C(x) = C(z) =

{
1 iff zwT > 0
2 iff zwT < 0

, (5)

The dimensionality of the feature space is easily computed
as the number of terms in Eq. 2: we have D(D+1)

2
quadratic

terms, D linear terms, and 1 constant term. This gives
D(D+3)

2
+ 1 dimensions.

The learning of a quadratic decision boundary can be car-
ried out by the process sketched up as Alg. 1.

Algorithm 1: Learning of the quadratic decision
boundary
begin1

Transform the points x from the input space to2
points z in the quadratically mapped feature space
using Eq. 3.
Find the vector w defining the linear decision3
boundary in feature space.
Reorder the elements of vector w into matrices A,4
B, and C using Eq. 4.

end5

2.2 Separating Hyperplane
There are many ways to learn a separating hyperplane.

In this paper, the well-known perceptron algorithm is used.
The reason for this decision is the fact that in case of the
perceptron algorithm we found a relatively easy way to en-
sure that the learned linear function will correspond to a
quadratic function with positive definite matrix A in the
original space (see Sec. 2.3).

The perceptron algorithm can be stated as follows. We
have training vectors zi ∈ Z of the form zi = (zi1, . . . , ziD, 1),
each of them is classified into one of the two possible classes,
C(zi) ∈ {1, 2}. We search for a (D + 1)-dimensional weight
vector w so that ziw

T > 0 iff C(zi) = 1 and ziw
T < 0 iff

C(zi) = 2. In other words, we search for a hyperplane that
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(a) EMNA estimates the Gaussian
from selected points using maximum
likelihood method. It is highly prone
to premature convergence even on the
slope of the fitness function.
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(b) CMA-ES-like algorithm estimates
the Gaussian from selected muta-
tion steps using maximum likelihood
method. It fights the premature con-
vergence very well, but the learned
Gaussian generally does not fit to the
fitness landscape contour lines.
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(c) Elliptic classifier learns the Gaus-
sian by estimating the fitness landscape
contour line directly. The fit is much
closer than in case of the two previous
approaches.

Figure 1: An example of learning the covariance matrix using various methods. Contour lines illustrate a
2D quadratic function. Generating Gaussian (---) is used to sample new points which are then divided to
selected (•) and discarded (×) points which are in turn used to learn the generating Gaussian for the next
generation (—).

separates the two classes and contains the coordinate origin.
The algorithm is presented as Alg. 2.

Algorithm 2: The perceptron algorithm
begin1

Initialize the weight vector: w = 0.2
Invert points in class 2: zi = −zi for all i where3
C(zi) = 2.
Find the training vector with minimal projection4
onto the weight vector w: z∗ = arg minz∈Z(zw).
If the minimal projection is positive, z∗wT > 0, the5
separating hyperplane is found and the algorithm
finishes.
If the minimal projection is not positive, z∗wT ≤ 0,6
the separating hyperplane was not found yet and the
point z∗ is the one with the greatest error. Adapt
the weight vector using this point: w = w + z∗.
Go to step 3.7

end8

Of course, the algorithm will not stop if the two classes
of qmap-ed vectors are not linearly separable, i.e. if the
original vectors are not separable by a quadratic decision
boundary.

2.3 Ensuring Ellipticity
Previous sections showed how to learn a quadratic decision

boundary by mapping the training vectors into the quadratic
space, finding a linear decision boundary, and rearranging
the elements of the weight vector w into matrices A, B, and
C. However, this quadratic decision function might not be
elliptic, i.e. the matrix A might not be positive definite.

The perceptron algorithm described as Alg. 2 is basically
an algorithm for the satisfaction of constraints given in the
form of linear inequalities. The usual set of constraints that

must be satisfied is ziw
T > 0 for all i. If we found a way to

describe the requirement of positive definiteness of the ma-
trix A in the form of similar inequalities, and if we were able
to find vectors that violate these inequalities, we could use
only slightly augmented perceptron algorithm to learn an el-
liptic decision boundary. Such a way exists and is described
in the following paragraphs.

As shown in Sec. 2.1, the quadratic form can be written
using a linear function:

xAxT + xB + C = zwT . (6)

Matrix A is positive definite iff the condition xAxT > 0
holds for all non-zero vectors x ∈ R1×D. In order to write
the condition of positive definiteness xAxT > 0 in terms of
the weight vector w, we define a ‘pure’ quadratic mapping
pqmap for the vectors x where only the quadratic elements
are present while the D linear elements and 1 absolute ele-
ment are substituted with zero:

q = pqmap(x), (7)

where

qi =

{
zi iff i ∈ 〈1, D(D+1)

2
〉

0 iff i ∈ 〈D(D+1)
2

+ 1, D(D+3)
2

+ 1〉 , (8)

and

z = qmap(x). (9)

Using any D-dimensional vector x and its transformed vari-
ant q = pqmap(x), the following two conditions are equiva-
lent:

xAxT > 0 ⇐⇒ qwT > 0 (10)

Furthermore, all eigenvalues of any positive definite ma-
trix are positive. If we perform the eigendecomposition of
matrix A and get negative eigenvalues, then the related
eigenvectors v violate the condition for positive definiteness,
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i.e. vAvT = qwT ≤ 0, where q = pqmap(v). These pqmap-
ed eigenvectors can thus be used to adapt the weight vector
w in the same way as ordinary qmap-ed data vectors. An
augmented version of the perceptron algorithm that ensures
the positive definiteness of the resulting matrix A is shown
as Alg. 3.

Algorithm 3: The augmented perceptron algorithm
begin1

Initialize the weight vector: w = 0.2
Invert points in class 2: zi = −zi for all i where3
C(zi) = 2.
Find the training vector with minimal projection4
onto the weight vector w: z∗ = arg minz∈Z(zw).
Arrange the first D(D+1)

2
elements of vector w into5

a matrix A and find its minimal eigenvalue λ∗ and
corresponding eigenvector v∗.
If both the minimal projection and the minimal6

eigenvalue are positive, z∗wT > 0 and λ∗ > 0, the
separating hyperplane is found and the algorithm
finishes.
If the minimal projection is lower than the minimal7

eigenvalue, z∗wT < λ∗, adapt the weight vector
using the vector with greatest error: w = w + z∗.
If the minimal eigenvalue is lower or equal to the8

minimal projection, z∗wT ≥ λ∗, adapt the weight
vector using the pqmap-ed eigenvector for the sake
of ellipticity: w = w + pqmap(v∗).
Go to step 3.9

end10

Again, the algorithm will not stop if the original vectors
are not separable by an elliptic decision boundary.

2.4 From Quadratic Function to Gaussian Dis-
tribution

The quadratic function xAxT + xB + C learned by the
augmented perceptron algorithm is not defined uniquely; all
functions of the type k(xAxT + xB + C), k 	= 0, have the
same decision boundary (see Fig. 2 for an illustration in 1D
case).

One reasonable way of the standardization (assuming ma-
trix A is positive definite) is to fix the function value at the
minimum of the function. The minimum lies in the point
μ = − 1

2
(A−1B)T . We deliberately chose the function value

at the minimum to be −1, i.e. the following equation must
hold:

k(μAμT + μB + C) = −1 (11)

k = − 1

μAμT + μB + C
(12)

The matrices defining the standardized quadratic function
are then given as AS = kA, BS = kB, and CS = kC.

The multivariate Gaussian distribution N(μ,Σ) which will
be used to sample new points is then given by μ = − 1

2
(A−1B)T

and Σ = A−1
S .

2.5 Sampling from Gaussian Distribution
Sampling from the Gaussian distribution with the center

μ and covariance matrix Σ is rather a standard task. The
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Figure 2: Non-uniqueness of the quadratic deci-
sion function. All of them define the same decision
boundary.

distribution, however, suffers from the curse of dimension-
ality in such a way that the proportion of generated vectors
that lie inside the separating ellipsoid varies (drops with in-
creasing dimensionality).

Suppose we have a set of vectors generated from D-dimen-
sional standardized Gaussian distribution. Each of the co-
ordinates has unidimensional standardized Gaussian distri-
bution and their sum of squares has a χ2 distribution with
D degrees of freedom, χ2

D. Thus, if we wanted to spec-
ify the percentage p, p ∈ (0, 1), of vectors lying inside the
separating ellipsoid we can employ the inverse cumulative
distribution function of the χ2 distribution, CDF−1

χ2
D

, in a
way that is described in step 2 of the sampling algorithm
shown as Alg. 4.

Algorithm 4: Sampling algorithm
begin1

Eigendecompose the covarinace matrix so that2

Σ = RΛ2RT , where R is a rotational matrix of
eigenvectors and Λ2 is a diagonal matrix of the
eigenvalues, i.e. Λ is a diagonal matrix of standard
deviations in individual principal axes.
Modify the standard deviations using the critical3

value of the χ2 distribution,

Λ =
Λ√

CDF−1

χ2
D

(p)
. (13)

Generate the desired number of vectors xS from the4
standardized multivariate Gaussian distribution
N(0, I).
Rescale them using the standard deviations Λ and5
rotate them using R, i.e. xC = xSΛR.
Decenter the vectors xC using the center μ, i.e.6
x = xC + μ.

end7

This modification of the sampling algorithm can be con-
sidered a counterpart to the step size adaptation mecha-
nism in the CMA-ES. Although it is based on different ba-
sis, it modifies the size of the Gaussian. Furthermore, we
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should note that by fixing the percentage of points lying in-
side the separating hyperellipsoid, the search becomes more
local with increasing dimensionality.

2.6 Relations to Other Algorithms
Support Vector Machine (SVM) [13] is very success-

ful and popular method for solving classification and regres-
sion tasks. They combine two techniques:

1. Maximum margin separating hyperplane. When trying
to find a linear function discriminating between two
classes of observations, it is advantageous to take into
account only those observations that lie close to the
boundary of the two classes, and to maximize the dis-
tance of the separating hyperplane from these points
(to maximize the margin) [15]. This task was formu-
lated in the form of quadratic programming (is thus
solvable by standard quadratic programming solvers)
and has a unique solution. Later in [4], this method
was extended to handle even the non-separable case.

2. Kernel trick. The maximum margin separating hyper-
plane is still only a linear function. When trying to
make it non-linear, one could transform the observa-
tions from the original space to a non-linearly mapped
high dimensional feature space (e.g. to the quadratic
one, as it is done in this paper), find a linear deci-
sion boundary in that space, and then map it back
to the original space, which gives a non-linear deci-
sion boundary (e.g. quadratic, or elliptic, as it is done
in this paper). The kernel trick [2] is a way of doing
the same without having to map the points from the
original space to the high dimensional feature space.
Any linear algorithm based on the dot products of the
observations can be made non-linear just by replacing
the dot product with a kernel. Kernel is a function
which takes two observations, and produces a single
number. If the kernel function fulfills certain condi-
tions, it can be shown that it actually computes a dot
product of the observations in a non-linearly mapped
high-dimensional feature space.

Combining these two techniques, we get the SVM. In fact,
SVM with a quadratic kernel function can learn much better
elliptic boundary than our augmented perceptron algorithm
(see Fig. 3 for comparison) without the need to map the
points to the quadratic space. The reason why we do not
use it instead of the augmented perceptron algorithm is that
this algorithm produces general quadratic decision function,
while we need a special case of it—quadratic function with
positive definite matrix A in order to be able to invert it.

Learnable Evolution Model (LEM) The underlying
principle of the method presented in this paper (modeling
the contour line of the fitness function landscape that dis-
criminates the selected and discarded individuals, and to
turn the part of model describing the promising individu-
als into a probabilistic model from which new points are
sampled) is our original idea. Nevertheless, later it turned
out that it can be described as a special case of the learnable
evolution model [8]. LEM3 [16], which is the current version
of the system, consists of several alternative actions that can
be used to create offspring population based on the selected
parents: (1) learn and instantiate, (2) probe, (3) adjust rep-
resentation, and (4) randomize. The first type of action,
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Figure 3: The difference in decision boundaries
found by the augmented perceptron algorithm (solid
line, —) and the support vector machine (dashed
line, ---).

learn and instantiate, is actually the same idea as modeling
the fitness landscape contour line. Current implementation
of LEM, however, uses only the AQ21 classification rules [9]
and thus is able to cut the search space to hyperrectangles
only which are not structurally suitable as a description of
the neighborhoods of local extrema of continuous functions.

3. EMPIRICAL EVALUATION
To assess the basic characteristics of the algorithm, we

chose two quadratic fitness functions, spherical and ellip-
soidal :

fsphere =

D∑
d=1

x2
d (14)

felli =

D∑
d=1

(106)
d−1
D−1 x2

d (15)

and we compared the behavior of our proposed method (which
we shall designate as perceptron in figures) to the behavior
of CMA-ES and LEM.

3.1 Evolutionary Model
The evolutionary algorithm used in the experiments is

shown as Alg. 5.
For all three algorithms, the initial population is uniformly

generated in area 〈−10,−5〉D in order to test not only the
ability to focus the search when it resides in the area sur-
rounding the optimal solution, but also to test the ability
to efficiently shift the population toward the optimum. For
LEM, we also set the box constraints of the search space to
〈−100, 100〉D.

Our method uses elitism and samples N − 1 new individ-
uals. These two features ensure, that the new population
will contain at least 1 old individual and 1 new individual
which prevents the stagnation in situations when no new
individual is better than the worst old individual.

The algorithms were stopped if the best fitness value in
the population dropped under 10−8. The results reported
are taken from 20 independent runs for each algorithm and
configuration.
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Algorithm 5: Evolutionary model used for testing
begin1

Initialize the population of size N and evaluate it.2
Assign the discarded individuals (the worse half of3
the population) to class 1, the selected individuals
(the better half of population) to class 2.
Map the population to quadratic feature space, use4
the augmented perceptron algorithm to find a linear
decision boundary given by vector w, and rearrange
its coefficients into matrices A, B, and C.
Turn the quadratic model into Gaussian5
distribution, and modify its eigenvalues so that the
ellipsoid contains the desired proportion of new
individuals.
Sample N − 1 new individuals from learned6
Gaussian and evaluate them.
Join the old and new population using elitism and7
throw away some individuals so that the population
is of size N again.
If termination criteria are not met, go to step 2.8

end9

3.2 Where to Place the Gaussian?
After finding the decision ellipsoid and turning it into a

Gaussian distribution, we can decide where we want to place
it. There are basically two possible decisions:

1. Place it in the center of the learnt quadratic func-
tion. This placement is reminiscent of the process
done in conventional EDAs (and is actually depicted
in Fig. 1(c)). Also, if the ellipsoid were fit precisely
the algorithm could jump to the area of the global op-
timum in a few iterations.

2. Place it around the best individual of the population.
Such an approach is similar to mutative ES and the
search is more local.

Since we plan to compare our algorithm to CMA-ES which
uses the second option, we use it as well and center the
learned Gaussian distribution around the best individual in
the population.

3.3 Population Sizes
For LEM3 system, we chose the default values of param-

eters, the population size was 100. The CMA-ES uses a
population sizing equation of the form N = 4 + 
3log(D)�.
For the proposed algorithm, we do not have any population
sizing model yet. However, we want to evaluate the po-
tential hidden in our method, and thus we decided to tune
the population size for individual test problems and indi-
vidual dimensionalities.1 The best settings found for our
algorithm along with the population size used by CMA-ES
are presented in Table 1.

4. RESULTS AND DISCUSSION
The comparison of the proposed algorithm and its con-

ceptual sibling LEM3 algorithm is depicted in Fig. 4.
1This is not a good practice for production systems but in
this early stage of the research such a tuning is acceptable
for discovering the potential of the proposed method.

Table 1: Best population sizes for both test prob-
lems

Dimension 2 4 6 8
CMA-ES 6 8 9 10
Our method, Sphere 9 8 7 6
Our method, Ellipsoidal 11 10 8 6

We can see that our algorithm performs better than LEM3
on both testing functions for all tested dimensionalities. It
may be caused by two reasons: (1) the neighborhood struc-
ture induced by Gaussian distribution is more suitable for
the two functions chosen for evaluation than the hyperrect-
angular neigborhood structure used by LEM3, and (2) the
population size 100 used by LEM3 might be unnecessarilly
high (although we did not test it).

An interesting phenomenon can be observed looking at the
results of LEM3—it seems that the sphere function is harder
for LEM3 (LEM3 needs longer time to solve it) than the
ellipsoid function. We are not able to explain this behavior
at present, it deserves further research.

The comparison of of our algorithm and CMA-ES is de-
picted in Fig. 5. As can be seen, for the sphere function
our approach is slightly better for dimensions 2 and 4, and
slightly worse for dimensions 6 and 8. For the ellipsoid func-
tion, our algorithm clearly outperforms the CMA-ES for all
tested dimensions (2, 4, 6, 8). But again, the difference be-
tween our method and CMA-ES gets lower with increasing
dimensionality. This could suggest that the efficiency of the
algorithm does not scale up well and drops with increasing
dimensionality of the problem.

However, another reason of the diminishing performance
of the algorithm can be hidden in the perceptron algorithm
we used. The algorithm finds any elliptical decision bound-
ary, not the optimal one (compare the boundaries found by
our algorithm and by the SVM in Fig. 3). With increasing
dimensionality, there is a higher chance that the resulting
separating ellipsoid will significantly differ from the optimal
one.

Coming back to Table 1, we can observe very interesting
phenomenon. The ‘optimal’ population size drops with in-
creasing dimensionality which is something nobody of us ex-
pected. We do not have any sound explanation for that. We
can only hypothesize that it is again due to the learning al-
gorithm, the augmented perceptron. It may be profitable to
use smaller populations which would impose less constraints
on the ellipsoid that would be in turn less deformed.

Another interesting observation is that the rate of conver-
gence is constant during the whole evolution (which can be
seen in Fig. 5(b)). The CMA-ES has to adapt the Gaussian
to all dimensions (slow progress phase) before it can aim
for the global optimum (fast progress phase); it resembles
the steepest descent algorithm. Our method, on the con-
trary, exhibits a constant progress which suggests better fit
of the Gaussian distribution to the local neighborhood; it
resembles second-order quazi-newton methods.

5. SUMMARY AND FUTURE WORK
In this paper, a new and original way of learning the pa-

rameters of Gaussian distribution in the context of EDAs
is presented. The learning algorithm is based on modeling
the fitness landscape contour line. The whole process com-
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(a) Sphere function.

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−10

10
−5

10
0

10
5

10
10

Number of Evaluations

A
ve

ra
ge

 B
S

F
 F

itn
es

s

Ellipsoid Function

 

 

Perceptron
LEM

(b) Eliptic function.

Figure 4: Comparison of average evolution traces for the proposed algorithm (—) and the LEM3 system
(---). The individual lines belong to 2, 4, 6, and 8 dimensional versions, respectively, from left to right.
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Figure 5: Comparison of average evolution traces for the proposed algorithm (—) and the CMA-ES (---).
The individual lines belong to 2, 4, 6, and 8 dimensional versions, respectively, from left to right.

prises of transforming the original data points into quadrati-
cally mapped feature space, finding a linear decision function
in that space using our augmented perceptron algorithm,
transforming the parameters of the decision function back
into the original space where they form a quadratic decision
function, and computing the parameters of the Gaussian
distribution using the parameters of the quadratic decision
function.

We expect this concept to have a number of advantages
over the conventional evolutionary algorithms. The most
important are:

1. the Gaussian distribution should fit the local neighbor-
hood much better than in case of EMNA or CMA-ES,

2. it works with individuals marked only with select/dis-
card labels, it does not need the fitness values for each
of them (as is the case in [1]),

3. it estimates a ‘reasonable’ Gaussian even from a small
number of individuals (much less than D(D +3)/2+1
that are needed by [1]).

The presented algorithm is an initial attempt to proof the
concept of modeling the fitness landscape contour line. As
such it has strong assumptions which must be relaxed before
the algorithm is generally applicable. At present state it is
able to optimize only convex quadratic functions.

A number of promissing topics for future work remain to
be addressed:

• We work on a way of modifying the maximum mar-
gin hyperplane algorithm (mentioned in Sec. 2.6) to
produce elliptic decision boundary which would allow
us to construct optimal separating ellipsoid (and not
just any separating ellipsoid). We expect that such an
algorithm could take advantage of larger populations
and would preserve its superior performance with in-
creasing dimensionality.

• Further extension on our list is to employ the soft mar-
gin which will allow us to apply the algorithm even on
the non-convex functions, i.e. in cases when the se-
lected and discarded points are not separable with an
ellipsoid.
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• We have not pursued the possibility to use the learned
center of the quadratic function as the center of the
Gaussian. This feature must be also studied and we
expect it to further increase the efficiency of the algo-
rithm.

• With a learning algorithm that finds an elliptic de-
cision boundary even for non-separable cases, there
are possibilities to create a learning algorithm for a
whole mixture of Gaussians which would allow us to
successfully apply the algorithm on multimodal func-
tions. Moreover, such an algorithm can be able to au-
tomaticly select the number of Gaussian components.
It would be more time demanding, however, it is a
generalization worth trying.

On the other hand, we have thought of several other pos-
sibilities of extending this algorithm in which we do not see
much promise:

• Could we use the quadratic kernel function in the max-
imum margin hyperplane algorithm instead of the ex-
plicit quadratic mapping of the data points from the
original space? This seems to be a reasonable sug-
gestion, however, based on our preliminary modifica-
tions of the maximum margin hyperplane algorithm
this would make the requirement of positive definite
matrix A significantly more difficult to achieve.

• If we used a different mapping (not quadratic), could
we estimate the distribution of individuals using a dif-
ferent probabilistic model (not Gaussian)? Although
this is theoretically possible, we do not see it as a
promising research direction. We could for sure learn
a different type of decision function this way, however,
the critical step is the transformation of the decision
function to the probabilistic distribution. The trans-
formation used in this work (quadratic function →
Gaussian distribution) is (more or less) exception since
for this case the transformation is rather straightfor-
ward.

To conclude, the experiments carried out suggest there
is a big potential in this method if our objective is to find
a solution of certain quality using the least possible num-
ber of fitness function evaluations. For high-dimensional
fitness functions the process of learning the separating el-
lipsoid may be higly time demanding so that this method
should be mainly applicable in cases when the fitness func-
tion evaluation is expensive or takes a long time to compute.
Nevertheless, we believe that this method can play a signif-
ficant role in the future development of the real parameter
optimization field.
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