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ABSTRACT 
In multiobjective particle swarm optimization (MOPSO) methods, 
selecting the local best and the global best for each particle of the 
population has a great impact on the convergence and diversity of 
solutions, especially when optimizing problems with high number 
of objectives. This paper presents a two-level of nondominated 
solutions approach to MOPSO. The ability of the proposed 
approach to detect the true Pareto optimal solutions and capture 
the shape of the Pareto front is evaluated through experiments on 
well-known non-trivial test problems. The diversity of the 
nondominated solutions obtained is demonstrated through 
different measures. The proposed approach has been assessed 
through a comparative study with the reported results in the 
literature.   

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – heuristic methods. 

General Terms 
Algorithms, Experimentation, Performance, Verification. 

Keywords 
Particle Swarm Optimization, multiobjective optimization, 
Pareto-optimal set, nondominated solutions. 

1. INTRODUCTION 
Evolutionary Algorithms (EA) are good candidate to 
multiobjective optimization problems due to their abilities, to 
search simultaneously for multiple Pareto optimal solutions and, 
perform better global search of the search space [1]. The Particle 
Swarm Optimization (PSO) is a swarm intelligence method that 
models social behavior to guide swarms of particles towards the 
most promising regions of the search space [2-5]. Generally, PSO 
is characterized as simple in concept, easy to implement, and 
computationally efficient. Unlike the other heuristic techniques, 
PSO has a flexible and well-balanced mechanism to enhance and 

adapt the global and local exploration abilities. It usually results 
in faster convergence rates than the Genetic Algorithms [6]. The 
PSO has  been  applied to  different  single  objective optimization  
problems with impressive success [7-11]. Although PSO's 
performance, in single-objective optimization tasks, has been 
extensively studied, a little work has been done for multiobjective 
optimization problems thus far.  

Recently, investigators are paying more and more interest on PSO 
to solve multi-objective problems as discussed in the following 
section. Changing a PSO to a multi-objective PSO (MOPSO) 
requires redefinition of global and local best individuals in order 
to obtain a front of optimal solutions in MOPSO. In 
multiobjective particle swarm optimization, there is no absolute 
global best, but rather a set of nondominated solutions. In 
addition, there may be no single local best individual for each 
particle of the swarm. Choosing the global best and local best to 
guide the swarm particles becomes nontrivial task in 
multiobjective domain. Some attempts have been done in the 
literature to select the best guides for the particles in MOPSO. 

Parsopoulos and Vrahatis [12] presented a first study of the 
performance of the PSO in multiobjective optimization problems. 
The performance of the PSO in terms of finding Pareto front in 
weighted aggregation cases was presented. A vector evaluated 
PSO (VEPSO) based on the concept of the vector evaluated 
genetic algorithm (VEGA) [13] was proposed and examined to 
perform multiobjective optimization. However, selection of 
individuals that excel in one objective without looking to the 
other objectives implies a problem of killing the middling 
performance individuals that can be very useful for compromise 
solutions [14].  

Hu and Eberhart [15] presented a MOPSO that uses dynamic 
neighborhood strategy to obtain the best local guide for each 
particle in biobjective optimization problems. However, selecting 
the best local guides based on one of the objectives degrades the 
algorithm performance as one-dimensional optimization is used to 
deal with multiple objectives. In addition, selecting the fixed 
objective needs a priori knowledge about the objective functions. 
Furthermore, choosing the number of neighbors considered, the 
objective function to optimize and the one to be fixed, and 
extending the algorithm to higher dimensional objective spaces 
are very much involved questions.  

Coello and Lechuga [16] proposed a MOPSO where the objective 
space is divided to hypercubes before selecting the best local 
guide for each particle in the population. However, this method 
biases the selection toward under-represented areas of the 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’07, July 7–11, 2007, London, England, United Kingdom. 
Copyright 2007 ACM 978-1-59593-697-4/07/0007…$5.00. 
 



estimated Pareto front and only one local best solution is 
maintained for each particle. In addition, the random selection of 
the best local guide affects its quality. However, The proposed 
method is compared with the Pareto Archived Evolutionary 
Strategy (PAES) and Nondominated Sorting Genetic Algorithms 
II (NSGA-II) with promising results. 

Fieldsend and Singh [17] proposed a MOPSO which uses a 
dominated tree for the choice of the best local guide for each 
particle in the population. The presented method has been tested 
on four biobjective test problems with promising results in three 
test problems compared with PAES and a competing MOPSO 
presented in [16]. However, the performance of the presented 
MOPSO in [16] and in [17] was very poor in the multifrontal 
fourth test problem with multimodality [18]. In addition, the 
algorithm has not been validated on higher dimensional objective 
spaces and might lose the most suitable solutions. 

Mostaghim and Teich [19] proposed a sigma method in which the 
best local guides for each particle are adopted to improve the 
convergence and diversity of a PSO approach used for 
multiobjective optimization. They also use a "turbulence" 
operator, but applied on decision variable space. The use of the 
sigma values increases the selection pressure of PSO which was 
already high. This may cause premature convergence in some 
cases e.g., in multifrontal problems. Comparisons with the 
strength Pareto evolutionary algorithm 2 (SPEA2) [20] and the 
dominated trees of [17] using four test problems and the coverage 
metric [21].  

Hu et al. [22] adopted a secondary population called extended 
memory and introduced some further improvements to their 
dynamic neighborhood PSO approach presented in [15]. 
Nevertheless, it is worth indicating that this approach completely 
fails in generating the true Pareto front of some problems. In 
addition, the presented algorithm has been compared to the SPEA 
[23] using the set coverage metric [21].  

Li [24] proposed an approach in which the main mechanisms of 
the NSGA-II [25] are adopted in a PSO algorithm. The proposed 
approach showed a very competitive performance with respect to 
the NSGA-II even outperforming it in some cases.  

Lu [26] presented the dynamic population strategy assisted PSO. 
This method can evolve to an approximately optimal population 
size while the population is approaching the true Pareto front. 
However, this algorithm suffers from some difficulties in finding 
a well-approximated Pareto optimal front [27]. 

Mostaghim and Teich [28] proposed a new method uses the 
property of moving particles in MOPSO and divides the 
population of the covering MOPSO into subswarms. The 
subswarms try to cover the gaps between the nondominated 
solutions found in the initial run. The proposed covering method 
is tested on different test problems. 

In most recent work in the field of MOPSO, different approaches 
have been introduced to identify the local best solution based on 
memorizing all the nondominated solutions visited by a particle 
and selecting the local best among them [29]. These approaches 
have been implemented on some standard test problems where the 
results show that keeping the particle archive improves 
significantly the effectiveness of the technique. However, keeping 
all the nondominated solutions visited by a particle has a 

drawback of increasing drastically the computational burden. On 
the other hand, a comprehensive survey of the state-of-the-art in 
multiobjective particle swarm optimizers can be found in [30] 
where different techniques reported in MOPSO development have 
been categorized and discussed. 

In this paper, a new MOPSO technique based on two-level of 
nondominated solutions is proposed. The ability of the proposed 
approach to detect the true Pareto optimal solutions and capture 
the shape of the Pareto front is studied through experiments on 
well-known non-trivial test problems.  

2. MULTIOBJECTIVE OPTIMIZATION 
Many real-world problems involve simultaneous optimization of 
several objective functions. Generally, these functions are non-
commensurable and often conflicting objectives. Multiobjective 
optimization with such conflicting objective functions gives rise 
to a set of optimal solutions, instead of one optimal solution. The 
reason for the optimality of many solutions is that no one can be 
considered to be better than any other with respect to all objective 
functions. These optimal solutions are known as Pareto-optimal 
solutions. 

A general multiobjective optimization problem consists of a 
number of objectives to be optimized simultaneously and is 
associated with a number of equality and inequality constraints. It 
can be formulated as follows: 
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where fi is the ith objective function, x is a decision vector that 
represents a solution, and Nobj is the number of objectives. 

For a multiobjective optimization problem, any two solutions x1 
and x2 can have one of two possibilities- one dominates the other 
or none dominates the other. In a minimization problem, without 
loss of generality, a solution x1 dominates x2 iff the following two 
conditions are satisfied: 
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If any of the above conditions is violated, the solution x1 does not 
dominate the solution x2. If x1 dominates the solution x2, x1 is 
called the nondominated solution within the set {x1, x2}. The 
solutions that are nondominated within the entire search space are 
denoted as Pareto-optimal and constitute the Pareto-optimal set 
or Pareto-optimal front. 

3. PROPOSED APPROACH TO MOPSO 

3.1 Overview 
In multiobjective particle swarm optimization, a set of 
nondominated solutions must replace the single global best 



individual in the standard single objective PSO case. In 
addition, there may be no single local best individual for 
each particle of the swarm. Choosing the global best and 
local best to guide the swarm particles becomes nontrivial task in 
multiobjective domain. This paper presents two-level of 
nondominated solutions approach to address these problems. In 
the proposed approach, elitism is also considered by copying any 
nondominated solution obtained to an external set in order to keep 
the new nondominated solutions obtained during generations. The 
external set is updated regularly to hold only the nondominated 
solutions. The basic definitions and the major steps of the 
proposed approach can be explained as follows. 

3.2 Proposed MOPSO Algorithm 
The major elements of the proposed MOPSO technique are 
briefly defined as follows: - 

Nondominated local set, Sj
*(t),: It is a set that stores the 

nondominated solutions obtained by the jth particle up to the 
current time. As the jth particle moves through the search space, 
its new position is added to this set and the set is updated to keep 
only the nondominated solutions. An average linkage based 
hierarchical clustering algorithm [31] used by SPEA [32] is 
employed to reduce the nondominated local set size if it exceeds a 
certain prespecified value.  

Nondominated global set, S**(t),: It is a set that stores the 
nondominated solutions obtained by all particle up to the current 
time. First, the union of all nondominated local sets is formed. 
Then, the nondominated solutions out of this union are members 
in the nondominated global set. An average linkage based 
hierarchical clustering algorithm is employed to reduce the 
nondominated global set to a manageable size.  

Local best, Xj
*(t), and Global best, Xj

**(t),: The individual 
distances between members in nondominated local set of the jth 
particle, Sj

*(t), and members in nondominated global set, S**(t), 
are measured in the objective space. If Xj

*(t) and Xj
**(t) are the 

members of Sj
*(t) and S**(t) respectively that give the minimum 

distance, they are selected as the local best and the global best of 
the jth particle respectively. 

In the proposed MOPSO algorithm, the population has n particles 
and each particle is an m-dimensional vector, where m is the 
number of optimized parameters. The computational flow of the 
proposed MOPSO technique can be described in the following 
steps. 

Step 1 (Initialization): Set the time counter t=0 and generate 
randomly n particles, {Xj(0), j=1, …, n}, where Xj(0)=[xj,1(0), …, 
xj,m(0)]. xj,k(0) is generated by randomly selecting a value with 
uniform probability over the kth optimized parameter search space 
[xk

min , xk
max]. Similarly, generate randomly initial velocities of all 

particles, {Vj(0), j=1, …, n}, where Vj(0)=[vj,1(0), …, vj,m(0)]. 
vj,k(0) is generated by randomly selecting a value with uniform 
probability over the kth dimension [-vk

max , vk
max] where the 

particle velocity in the kth dimension is limited by some maximum 
value, vk

max. This limit enhances the local exploration of the 
problem space and it realistically simulates the incremental 
changes of human learning. To ensure uniform velocity through 
all dimensions, the maximum velocity in the kth dimension is 
proposed as: 

Nxxv kkk /)( minmaxmax −=    (5) 

where N is a selected number of intervals. 

Each particle in the initial population is evaluated using the 
objective functions. For each particle, set Sj

*(0)={Xj(0)} and the 
local best Xj

*(0)=Xj(0), j=1, …, n. Search for the nondominated 
solutions and form the nondominated global set S**(0). The 
nearest member in S**(0) to Xj

*(0) is selected as the global best 
Xj

**(0) of the jth particle.  Set the external set equal to S**(0). Set 
the initial value of the inertia weight w(0). 

Step 2 (Time updating): Update the time counter t=t+1. 

Step 3 (Weight updating): Update the inertia weight. 

Step 4 (Velocity updating): Using the local best Xj
*(t) and the 

global best Xj
**(t) of each particle, j=1, …, n, the jth particle 

velocity in the kth dimension is updated according to the following 
equation: 
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where c1 and c2 are positive constants and r1 and r2 are uniformly 
distributed random numbers in [0,1]. If a particle violates the 
velocity limits, set its velocity equal to the proper limit. 

Step 5 (Position updating): Based on the updated velocities, each 
particle changes its position according to the following equation. 
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If a particle violates its position limits in any dimension, set its 
position at the proper limit. 

Step 6 (Nondominated local set updating): The updated position 
of the jth particle is added to Sj

*(t). The dominated solutions in 
Sj

*(t) will be truncated and the set will be updated accordingly. If 
the size of Sj

*(t) exceeds a prespecified value, the hierarchical 
clustering algorithm will be invoked to reduce the size to its 
maximum limit. 

Step 7 (Nondominated global set updating): The union of all 
nondominated local sets is formed and the nondominated 
solutions out of this union are members in the nondominated 
global set S**(t). The size of this set will be reduced by 
hierarchical clustering algorithm if it exceeds a prespecified 
value. 

Step 8 (External set updating): The external Pareto-optimal set is 
updated as follows.  

Copy the members of S**(t) to the external Pareto set.  

Search the external Pareto set for the nondominated individuals 
and remove all dominated solutions from the set.  



If the number of the individuals externally stored in the Pareto set 
exceeds the maximum size, reduce the set by means of clustering. 

Step 9 (Local best and global best updating): The individual 
distances between members in Sj

*(t), and members in S**(t), are 
measured in the objective space. If Xj

*(t) and Xj
**(t) are the 

members of Sj
*(t) and S**(t) respectively that give the minimum 

distance, they are selected as the local best and the global best of 
the jth particle respectively. 

Step 10 (Stopping criteria): If the number of iterations exceeds 
the maximum then stop, else go to step 2. 

3.3 The Proposed MOPSO Implementation 
The proposed MOPSO based approach was implemented using 
FORTRAN language and the developed software program was 
executed on a 1.8-GHz Pentium 4 PC. Initially, several runs have 
been done with different values of the PSO key parameters such 
as the initial inertia weight and the maximum allowable velocity. 
Other parameters are selected as: number of particles n=50, 
decrement constant α=0.99, c1=c2=2, and the search will be 
terminated if the number of iterations reaches 1000. 

To demonstrate the effectiveness of the proposed approach, 
different cases with various objectives are considered in this 
study.  

4. RESULTS AND DISCUSSIONS 
To compare the results and to assess the effectiveness of the 
proposed approach to MOPSO, a group of benchmark test 
problems to compare the multiobjective techniques have been 
examined. The test for each function has been done for 100 runs. 
For the first two test problems, TP1 and TP2, the SPEA [32] 
implemented in [33-34] has been employed for comparison 
purposes. However, the results of SPEA for the last two test 
problems, TP3 and TP4, have been downloaded from [35]. 

4.1 Test Problem TP1 
This test problem can be defined as follows [34]. 
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This test problem has a discontinuous Pareto front. The Pareto 
fronts of the proposed MOPSO and SPEA are shown in Fig. 1. 

4.2 Test Problem TP2 
This test problem can be defined as follows. 
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The Pareto fronts of the proposed MOPSO and SPEA are shown 
in Fig. 2. 

4.3 Test Problem TP3 
This test problem can be defined as follows [18]. 
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This test problem has a convex Pareto optimal front formed with 
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The Pareto fronts of the proposed MOPSO and SPEA are shown 
in Fig. 3. 

4.4 Test Problem TP4 
This test problem can be defined as follows [18]. 
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Figure 1: Pareto front of test problem 1 produced by 
(a) Proposed MOPSO  (b) SPEA 

 

[0,1],   1, 2,...30ix i∈ =    (30) 
 
This test problem represents the discreteness feature. Its Pareto 
optimal front consists of several non-contiguous formed with 

 

2( ,....., ) 1ng x x =     (31) 

 

The Pareto fronts of the proposed MOPSO and SPEA are shown 
in Fig. 4. 
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Figure 3: Pareto front of test problem 2 produced by 

(a) Proposed MOPSO  (b) SPEA 
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Figure 3: Pareto front of test problem 3 
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Figure 4: Pareto front of test problem 4 

 

It can be shown from Figs. 1, 2, 3, and 4 that the proposed 
MOPSO has satisfactory diversity and distribution characteristics 
for these test problems. The superiority of the proposed MOPSO 
compared to SPEA is more pronounced in test problems TP3 and 
TP4 as the proposed MOPSO captures the true Pareto optimal 
front in these test problems with satisfactory diversity and 
distribution. 

 

5. A COMPARATIVE STUDY 
In this section, a comparative study for quality measures has been 
carried out to assess the proposed MOPSO. Generally, the 
definition of quality in the case of multiobjective optimization is 
more complex than for single objective optimization problems 
since the optimization goal itself consists of multiple objectives 
[18, 21, 23]. Therefore, the above results have been compiled and 
compared in view of the following objectives. 

• The obtained nondominated set should be as close as 
possible to the Pareto-optimal front. 

• The obtained nondominated solutions should be as diverse as 
possible. 

• The obtained nondominated solutions should have good 
distribution over the nondominated front.  

A performance measure of the extent of the nondominated 
solutions is presented in [18]. The measure estimates the range to 
which the fronts spread out. In other words, it measures the 
normalized distance of the two outer nondominated solutions. The 
average values of the normalized distance measure over 100 
different optimization runs are given in Table 1. The results show 
that the proposed MOPSO has larger extent of the nondominated 
solutions in all test problems considered except TP1 where SPEA 
has similar result with respect to this measure.  

On the other hand, the set coverage metric measure [23] for 
comparing the performance of the proposed MOPSO and SPEA 
has been examined in this study. The average values of this 
measure over 100 different optimization runs are given in Table 2. 
It can be shown that the performance of the proposed MOPSO is 
comparable with that of SPEA in TP1 as a percent of 1% of the 
nondominated solutions of each technique is covered by those of 
the other. It can be also seen from Table 2 that the proposed 
MOPSO has better performance in TP2. The better performance 
of the proposed MOPSO is more pronounced in case of test 
problems TP3 and TP4 where the nondominated solutions 
obtained by the proposed MOPSO completely cover those of 
SPEA and none of SPEA covers any solution of the proposed 
MOPSO. This confirms the fronts shown in Figs. 3 and 4. 

In this study, the quality measure presented in [34] is also 
implemented. For each test problem, individual nondominated 
sets of the proposed MOPSO and SPEA are combined to form a 
pool. Then, the dominance conditions are applied to all solutions 
in the pool. The nondominated solutions are extracted from the 
pool to form an elite set of Pareto-optimal solutions obtained by 
both techniques. The average over 100 different runs for each test 
problem is given in Table 3. It can be observed that the proposed 
MOPSO has a 100% share to the elite set while SPEA has no 
contribution in test problems TP3 and TP4. The better 
performance of MOPSO is observed also in case of TP2 while a 
comparable performance has been experienced in TP1.  

 

Table 1. Normalized distance measure 

Test Problem TP1 TP2 TP3 TP4 
Proposed MOPSO 1.412 1.409 0.965 0.976 
SPEA 1.402 1.400 0.961 0.987 
 

 



Table 2. Percentage of nondominated solutions of set B 
covered by those in set A 

Set A Set B TP1 TP2 TP3 TP4 
Proposed 
MOPSO SPEA 1.0 12.0 100.0 100.0 

SPEA Proposed 
MOPSO 1.0 6.0 0.0 0.0 

 

 

Table 3. Average number of Pareto-optimal solutions in elite 
set of nondominated solutions 

Test Problem TP1 TP2 TP3 TP4 
Proposed MOPSO 99 94 100 100 
SPEA 99 88 0 0 
Elite Set Size 198 182 100 100 
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7. CONCULSIONS 
A new approach to multiobjective particle swarm optimization 
technique is presented in this paper. The proposed approach is 
based on two-level, local and global, of nondominated solutions 
to select the local and global guides for each particle in the 
swarm. The capability of the proposed MOPSO to obtain the true 
Pareto optimal solutions and capture the shape of the Pareto front 
is evaluated and tested on well-known non-trivial test problems. 
The diversity of the nondominated solutions obtained by the 
proposed MOPSO is demonstrated through different measures. 
The proposed approach has been assessed through a comparative 
study with the reported results in the literature. The results show 
the superiority of the proposed MOPSO approach in terms of 
capturing the shape of the Pareto front and obtaining 
nondominated solutions with satisfactory diversity characteristics 
for the test problems considered. 
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