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ABSTRACT 
This paper describes a PSO-Nelder Mead Simplex hybrid multi-
objective optimization algorithm based on a numerical metric 
called ε -fuzzy dominance. Within each iteration of this approach, 
in addition to the position and velocity update of each particle 
using PSO, the k-means algorithm is applied to divide the 
population into smaller sized clusters. The Nelder-Mead simplex 
algorithm is used separately within each cluster for added local 
search. The proposed algorithm is shown to perform better than 
MOPSO on several test problems as well as for the optimization 
of a genetic model for flowering time control in Arabidopsis. 
Adding the local search achieves faster convergence, an important 
feature in computationally intensive optimization of gene 
networks.   

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 
and Search – graph and tree search strategies, heuristic methods. 

General Terms 
Algorithms, Theory. 

Keywords 
Multi-objective optimization, evolutionary algorithms, fuzzy 
dominance, particle swarm optimization. 

1. INTRODUCTION 
Biologically inspired metaphors such as those based on Darwinian 
evolution or swarm intelligence are increasingly being applied to 
hard optimization problems. The great success of these 
approaches is because biologically inpired optimization 
algorithms: (i) are derivative-free techniques, (ii) do not easily get 
trapped in local minima,  (iii) sample a wide region of the search 
space, (iv) can be tailored specifically to suit the problem, and (v) 
can be hybridized with other algorithms for improved 
performance.  

A very recent algorithm belonging to the class of biologically 
inspired approaches is Particle Swarm Optimization (PSO) [8]. 
PSO is a population-based approach that maintains a set of 
candidate solutions, called particles, which move within the 
search space. The trajectory followed by each particle is guided 
by its own memory, as well as by its interaction with other 
particles. The specific method of adjusting the particles trajectory 
is motivated by the interaction of birds, fishes, or other organisms 
that move in swarms. Eventually, the particles converge to 
suitable optima. We will use the terms particle and solution 
interchangeably henceforth. 

Multi-objective optimization has been the focus of much recent 
research. Unlike in single-objective optimization where it is easy 
to compare one solution to another, in multi-objective problems, a 
solution that is inferior to another one in one objective, may in 
fact be better in another. Under these circumstances, the concept 
of Pareto optimality is used. Given a population S of solutions, a 
solution u is considered to dominate another solution v iff it is at 
least as good as v along all objectives, and furthermore, better in 
at least one. The non-dominated set is defined as the subset of S 
that contains all the non-dominated solutions. The non-dominated 
set of the entire solution space is called the Pareto set. Its 
corresponding image in the space of all objective functions is 
known as the Pareto front. Since all the solutions in the Pareto set 
are non-dominated, they must be treated as all equally good. 
Therefore, the goal of an effective multi-objective optimization 
algorithm is to find candidate solutions whose images in the 
objective function space are (i) are as close to the true Pareto front 
as possible, and (ii) are also as spread out and evenly spaced as 
possible, thereby sampling an extensive region of the Pareto front. 
These two conditions will be referred to as convergence and 
diversity respectively for the remainder of this paper. 

Multi-objective versions of PSO have been recently proposed 
[9, 10, 11]. In [11], an archive of all non-dominated solutions 
found is maintained. The velocities of the particles in the 
population are redirected towards archive solution. In order to 
preserve diversity, this process is carried out in a probabilistic 
manner, with archive solutions in sparser regions influencing 
more particles in the population. In [9], archive solutions that 
dominate the least number of population solutions can be used as 
a reorient the velocities of the latter as a method to enforce 
diversity. The concept of ε-dominance, which is an extension of 
the dominance, has been explored in [10]. 
While biologically motivated algorithms such as PSO are very 
effective in providing optimal solutions, they can be further 
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improved by maintaining the correct balance between exploration 
and exploitation. Adding an exploitative component allows the 
algorithm to make use of local information to guide the search 
towards better regions in the search space. This property lets the 
algorithm convergence towards the Pareto front using fewer 
function evaluations – a much-desired characteristic in 
applications such as gene regulatory network modeling, where a 
substantial amount of computation is involved in evaluating each 
objective function. PSO hybrid algorithms for single objective 
optimization was proposed in [6, 7]. Although in [6], gradient 
term has been used indirectly through an extra term in the 
particles’ velocity updates, the algorithm suggested in [7] 
explicitly implements local search through a separate Nelder-
Mead operator [4], which iteratively replaces the worst particles 
with more promising ones.  

This paper introduces a novel multi-objective PSO algorithm as 
well as hybrid approach that combines PSO with Nelder-Mead 
based local search as in [7]. It also introduces a new metric, ε-
fuzzy dominance., for measuring the relative fitness of solutions in 
a multi-objective setting.  This metric, ε-fuzzy dominance is a 
variation of the recently proposed concept of fuzzy dominance [1, 
5]. Fuzzy dominance has proved to be highly effective in multi-
objective genetic algorithms [1, 5], producing significantly faster 
convergence for the most difficult multi-objective test functions 
as well as when applied to gene network parameter estimation in 
comparison to NSGA-II [2]. In this paper, ε-fuzzy dominance has 
been used in two ways. In the strict PSO algorithm, it is applied to 
the population individuals in order to discriminate between ones 
that are closer to the non-dominated front less dominated from 
those further behind. Additionally, when PSO is hybridized, ε-
fuzzy dominance provides an effective metric for the Nelder-
Mead algorithm to pick out the worst solutions for replacement.  

The hybrid algorithm proposed here combines the Nelder-
Mead search algorithm with PSO in a manner similar to [7]. In 
each iteration, the particles are divided into more localized 
clusters by means of the well-known k-means algorithm. The 
Nelder-Mead operation is carried out separately for each cluster. 
A single step of PSO is then carried out to compute the new 
positions and velocities of the particles. 

The hybrid algorithm was specifically applied to the problem 
of estimating the parameters of a differential equation model of 
gene networks. Unlike standard test functions that are developed 
specifically to have rugged fitness landscapes, in applications 
such as this, the landscape is relatively smooth. This makes it 
more suitable for local search operations. In an earlier work, it has 
been observed that the Nelder Mead process has a greater role in 
speeding up the hybrid algorithm’s convergence towards the 
Pareto front, in comparison to benchmarks such as the ZDT test 
suite [2]. 

2. APPROACH 

2.1 Fuzzy ε-Dominance 
Without a loss of generality, let us assume that the multi-objective 
problem entails the minimization of each of M objective functions 
ei(.), i = 1 … M. The solution space is denoted as nℜ⊂Ψ . Given 

a monotonically non-decreasing function )(⋅dom
iμ , whose range is 

in [0, 1], },,2,1{ ni K∈ , a solution Ψ∈u  is said to i-dominate 
solution Ψ∈v , if and only if )()( veue ii < . This relationship can 

be denoted as vu F
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be defined by invoking the concept of fuzzy intersection and 
using a t-norm,  
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In the previous implementation of fuzzy dominance [1, 5], the 
membership functions )(⋅dom

iμ  used to compute the fuzzy i-
dominances were defined to be zero for negative arguments. 
Therefore, whenever )()( veue ii > , the degree of fuzzy 

dominance vu F
if  was necessarily zero. In this paper, we allow 

non-zero values. The membership functions used are trapezoidal, 
yielding nonzero values whenever their arguments are to the right 
of a threshold ε, as shown in figure 1 below. 
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where, )()( uevee iii −=Δ .Given a population of solutions 
Ψ⊂S , a solution Sv∈  is said to be fuzzy dominated in S  iff it 

is fuzzy dominated by any other solution Su∈ . In this case, the 
degree of fuzzy dominance can be computed by performing a 
union operation over every possible ( )vu Fdom fμ , carried out 
using t-co norms as, 

U ff
Su
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Figure 1. Fuzzy membership functions used here to 
compute ε-dominances.
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In this manner, each solution can be assigned a single measure to 
reflect the amount it dominates others in a population. Better 
solutions within a set will be assigned lower fuzzy dominances, 
although, unlike in [1, 5] non-dominated solution may not 
necessarily be assigned zero values. The union and intersection 
operators follow the standard min and max definitions [3]. Further 
details about fuzzy dominance can be obtained from [1]. For 
optimization problems that involve constraints in either parameter 
or objective domain, we use a penalty term, which is equal to the 
total number of constraints violated by a solution and add the 
value to its fuzzy dominance. Since the value of fuzzy 
dominances obtained from equation (3) can never exceed unity, 
invalid solutions are always assigned higher fuzzy dominances 
than valid ones, and hence are least favored. 
In order to compare multiple solutions having similar fuzzy 
dominance values we use a diversity fitness value which is equal 
to the perimeter of the largest M-dimensional hypercube in the 
objective space which encloses the same solution but no others 
[2]. The value of the perimeter I(v) of the enclosing cuboid for 
any solution v is given as, 

( ) ( )∑
=

−−=
M

i
iiii eeweuevI

1

)min()max()()()(              (4) 

where u, and w are solutions adjacent to v when the merged 
population is sorted in ascending order according to the thi  
objective, ie . Boundary solutions are assigned ∞ values.  Larger 
values of I(v) imply sparseness in the region of the solution v. In 
comparing multiple solutions with similar fuzzy dominance 
values, the preference is given to solutions with higher values of 
I(v).  
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2 Clustering and Local Search 
The Nelder-Mead approach employs a simplex, which, in n-
dimensions, consists of 1+n  solutions, X(k), k = {1, 2, … n+1} 
[4] (i.e., a triangle in a two dimensional plane – see figure 2). The 
solutions are evaluated in each step and the worst solution W is 
identified. The centroid of the simplex is computed as,  

C = (ΣX(k))/n                                (5) 
where the worst point, W, is excluded from the summation. W is 
then reflected along the centroid. The reflected solution is given 
by, 

R = C + (C – W)                               (6) 
Usually, the worst point W is just replaced by the reflected point 
R. However, if the reflected point is better than any other solution 
in the simplex, the simplex is further expanded as, 

Re = C + η(C – W)                            (7) 
where η is an expansion coefficient. But, if R is worse than W, the 
simplex is contracted and the reflected solution is placed on the 
same side of the centroid. When R is better than W and worse than 
any other solution in the simplex, the simplex is still contracted, 
but the reflection is allowed to remain on the other side of the 
centroid. Reflection is carried out as follows, 

Rc = C ± κ(C – W)                            (8) 
where κ is a contraction coefficient. Solution W is replaced with 
the new one, R, Re, or Rc from the next step onwards. The simplex 
algorithm is allowed to run for multiple steps before being 
terminated. We will refer to each step of the simplex as a flip. 

The k-means algorithm is useful to divide a population of 
solutions into separate clusters, where each cluster consists of 
proximally located solutions only. Here k refers to the total 
number of clusters. It is a simple approach that begins by 
randomly placing k cluster centers in the solution space. In each 
iteration, it computes the distance of each X(i) to the clusters, and 
applies two steps for a predefined number of steps: 

1. For each X(i), determine its closest cluster center 
C(X(i)), 

2. Replace each center with (ΣX(k))/n, the summation 
being carried out over all particles belonging to that 
cluster center, and n being the total number of such 
particles. 

In this application, clusters must be disjoint, with only n+1 
points each, so the algorithm was modified accordingly to assign 
only the only nearest n+1 points to a cluster. The unassigned 
points are then assigned to the next closest cluster with less than 
n+1 points.  
2.3 Standard PSO  
We first describe the variant of the standard PSO algorithm that 
has been used in the rest of the paper.  This algorithm maintains a 
population of N particles whose positions, X(i), i = 1, 2, … N, are 
initialized to random values. These positions are incremented in 
each iteration t of the algorithm according to the instantaneous 
velocity Vt(i), as follows, 

Xt+1(i) = Xt(i) + Vt(i)                              (9) 

The velocity is also updated in each iteration, using the particle’s 
own recorded previous best position, as well as the current 
location of the other particles. The update is 

      Vt+1(i) = χ(Vt(i) + C1×U[0,1]×(Xib(i) – Xt(i)) 

+ C2×U[0,1]×(Xgb,t – Xt(i)))             (10) 

In the above equation, C1 and C2 are two constants, called the 
cognitive and the social constants, and χ is a constriction 
coefficient, that helps in maintaining stability [1]. U[0,1] is a 
uniformly distributed random number in [0, 1]. The quantity Xib is 
the individual best recorded position of the ith particle so far, Xib(i) 
= Xt’(i), such that ∀s ∈ {0, 1, … t}, e(Xt’(i)) ≤ e(Xs(i)), where e(·) 
is the objective function to be minimized. The other quantity, Xgb,t 
is the global best position of any particle in the current iteration t. 

Figure 2. The simplex used by Nelder-Mead search in 3 
dimensions. The worst point W is replaced with either R, 
Re or Rc. 
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In other words, Xgb,t = Xt(j), for some j, such that ∀k ∈ {0, 1, … 
N}, e(Xt(j)) ≤ e(Xt(k)). For all the test problems, we have used: χ = 
0.4, C1 = 2.1 and C2 = 2.1. 

2.4 Multi-objective PSO 
In the case of multi-objective PSO, the choice of global best and 
individual best solutions is not straightforward [11]. There could 
be multiple non-dominated solutions in the current population that 
are potential candidates for being a global solution. At the same 
time, comparison of the so far best recorded position of a particle 
with its current position may not always be possible, as they could 
be incomparable in multiple objectives. Due to these reasons the 
standard PSO is generally modified to be applicable for multi-
objective optimization [11, 13, 14]. In addition to that main 
objective of a multi-objective optimization algorithm is to find 
multiple uniformly distributed solutions on the Pareto front. 
Hence it is quite common in multi-objective algorithms to use an 
external archive that stores the non-dominating solutions obtained 
at end of every run [2, 11].  
 In the current work, we have also modified the standard PSO as 
detailed in Section 2.3 to be applicable for multi-objective 
optimization to have an archive. The archive stores the best N 
non-dominated solutions found so far by the PSO. This is 
obtained by using top best N solutions from the union of the 
solutions in current iteration and archive from previous 
generation, which is then sorting based on fuzzy dominance 
values.  
 As explained in Section 2.1, when multiple solutions have 
similar fuzzy dominance values, then solutions with the highest 
value of I(v) are preferred. In equation (10), the global best 
solution (Xgb,t), is selected by doing a binary tournament selection 
from the individuals in the current archive. In deciding the 
personal best (Xpb,t), for a solution, we compare the particles 
current position and its position from previous iteration. The non-
dominating solution is assigned as the new personal best. 
However, if the solutions are incomparable i.e. mutually non-
dominant, then the current position of the particle is used as the 
updated personal best.   
 To avoid getting stuck in a local minimum a mutation is used in 
multi-objective PSO algorithms [11]. In the current work, we 
have implemented a turbulence factor into the velocity update 
equation (10), which is similar to a mutation operator in 
evolutionary algorithms. The modified update equation is given 
as: 

      Vt+1(i) = χ(Vt(i) + C1×U[0,1]×(Xib(i) – Xt(i)) 

+ C2×U[0,1]×(Xgb,t – Xt(i)))                

+exp(-δ×t) × U[-1,1]  (11) 

where δ is the turbulence coefficient. The negative exponential 
term assures that the turbulence in the velocities is higher at the 
initial generations that aids in exploration, and later in the 
algorithm would help it in exploitation.  

2.5 Multi-objective Hybrid PSO 
The hybrid algorithm is detailed below: 

1. t = 0. 
2. Randomly initialize the particle positions X0(i), and set 

the initial archive A0  to X0. 

3. Initialize all velocities, V0(i), to zeroes. 
4. Evaluate the objective function for each Xt(i). 
5. Evaluate the fuzzy dominance in the population. 
6. Update the archive Ai 
7. Update each particle i’s individual best and global 

best. 
8. Randomly initialize k cluster centers. 
9. Assign each particle i to a cluster using k-means. 
10. For each cluster apply Nelder-Mead simplex. 
11. Update velocity according to Equation (11). 
12. Update positions Xt(i) according to Equation (9). 
13. t = t + 1. 
14. If t > tmax, stop, else go to Step 4. 

3. TEST PROBLEMS 
In order to assess the performance of the proposed algorithm, we 
compare its performance with MOPSO [11], on the following 
standard test problems (KUR, ZDT1, ZDT3, ZDT4 and ZDT6) 
and a three gene network-modeling problem. 

3.1 Standard Test Problems 
The following standard test problems are commonly used to give 
a fair comparison of the multi-objective optimization algorithms 
in finding the Pareto front in different scenarios [2]. For all the 
standard test problems, the maximum number of allowed function 
evaluations was set at 12,000, except for ZDT4, which was given 
20,000. The details of the different test functions are as given 
below.  
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where n = 3, xi∈[-5, 5], and has a discontinued Pareto front.  
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where n = 10, xi∈[0, 1], and at the convex Pareto front, the 
function g(x) = 1. 
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where n = 10, xi∈[0, 1], and a discontinuous Pareto front is 
formed with g(x) = 1. 
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where n = 10, x1∈[0, 1] and x2, x3,… xn∈[-5, 5]. The Pareto front 
is defined as the locus of all points such that g(x) = 1. The ZDT4 
problem and tests an algorithm’s robustness against multi-
modality. 
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where n = 10, xi∈[0, 1] and the non-convex Pareto front is formed 
with g(x) = 1. 

3.2 Modeling Flowering Time Control in 
Arabidopsis 
In the molecular genetic model plant, Arabidopsis thaliana, three 
genes TERMINAL FLOWERING 1 (TFL1), APETALA 1 (AP1), 
and LEAFY (LFY) play a special role in flowering [6]. OFF to ON 
state changes in two of them (AP1 and LFY) signal plant 
commitment to flowering. All three interact so closely in 
regulating each other that is not possible to completely 
disentangle their linkages based on extant experimental data. One 
possible model, however, is that of a three-element positive 
feedback loop comprising a bistable switch. A model for this 
switch is the coupled set of differential equations, 
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where hup and hdwn are, respectively, promotive (n=3) and 
repressive (n = -3) Hill functions [15] defined as,  
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where n is a cooperativity coefficient. The function g is a 
repressive Hill function whose input is (TFL1-SOC1). The 
difference input to g is restricted to positive values; negative 
biochemical concentrations are impossible.   
 The TFL1 gene becomes progressively more active with time in 
the apex of the growing shoot [16].  It influences the activity of 
LFY and AP1 in leaf primordia that sequentially emerge from the 
apex. It is not known precisely how this molecular influence is 
exerted, but the result is to slow the plant’s development toward 
flowering. Increasing levels of LFY and AP1 within each 
primordium offset this effect.  Ultimately, the switch changes 
state, causing the primordium within which this happens to 
initiate inflorescence development.   Equation (17) models all 
these effects as if they are direct, but they may not be so. 

External switch input is provided by the expression level of the 
SUPRESSOR OF OVEREXPRESSION OF CO (SOC1) gene, 

which is a linear, ramped sinusoid.  The steepness of the ramp and 
the amplitude of its oscillations relate to the rate of progress 
toward flowering. An equation for SOC1 expression levels is, 
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 A synthetic data set of 244 data points was generated covering 
a period of nine days and the emergence of four leaf primordia. 
Each primordia was simulated until it could either be assumed to 
be committed to leaf development (at 30 hrs) or until its floral 
switch copy changed state, which ever came first.   
 The objective is to find the set of nine parameters in equation 
(17) :[RL, RH, RT, λL, λH, λT, KLFY, KAP1, and KTFL1], such that it 
simultaneously minimizes the mean squared error between the 
actual and simulated data for AP1 and TFL1.  

4. PERFORMANCE COMPARISON 
4.1 Experimental Setup 
We compared the performance of the proposed algorithm with 
MOPSO [11], on standard test problems and a gene network 
problem, which are detailed in the previous section. In order to do 
a fair comparison, for each problem 10 independent runs are done 
using both the algorithms. The results presented are the average of 
all the runs.  For all the runs, both the algorithms use a population 
size of 100 and an archive (or repository) size of 100. MOPSO 
was implemented using 30 divisions of adaptive grid and with a 
mutation rate of 0.5.  For the hybrid PSO, as we have a population 
size of 100 and all the problems that have nearly 10 parameters 
we have used 9 k-means clusters. In case of test problem KUR 
that has only 3 parameters, a population size of 40 was used. The 
Nelder-Mead simplex algorithm was implemented with η=1.5 and 
κ=0.5. Two simplex flips were done per iteration within each 
cluster. When a point in the cluster is flipped using the simplex, 
the position of the particle changes. Hence the old velocity would 
have no relevance with the particle’s new position. To over come 
this problem we have opted two different methods to update the 
velocity of the new particle.  

1. Random: Reinitialize the velocity of the particle 
randomly. 

2. Flip Update: The velocity of the particle undergoes the 
exact same operations as the position in Nelder-Mead 
simplex. 

4.2 Performance Metrics 
The following metrics are used to provide a qualitative 
assessment of the performance of both the algorithms on the 
standard test problems.  
4.2.1 Generational Distance  

In case of the benchmark test problems, a target set can be 
created to compute the convergence by distributing points on the 
Pareto front, which is known a priori. The minimum distance 
from the non-dominated solutions found by each algorithm to the 
uniformly distributed solutions on the known front is a good 
convergence measure [17]. The procedure for calculating this 
metric is: 

1. Create a target set Γ*, of non-dominated solutions from the 
known Pareto front 

2. For every generation of the evolutionary algorithm, 
identify the set of non-dominated solutions P*(t), in the 
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current population P(t) 
3. For each solution i, in P*(t) compute the smallest Euclidian 

distance di to all points in Γ* as: 
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where M is the number of objectives and fk(.) is the fitness 
of an individual for objective k, and |.| denotes the cardinality 
of the set. 

4. The generational distance, GD, is the average of di, for all 
non-dominated solutions in the current population: 
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4.2.2 Spacing Metric  
 In addition to comparing the convergence to the actual Pareto 
front, we also need to get a qualitative measure of the spread of 
the solutions in the final solution. The spacing metric (S) 
measures the spread of the solutions in the non-dominated front 
by evaluating the variance of the nearest distance between 
neighboring solutions [18]. The spacing metric can be evaluated 
as: 
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where d and di are defined in equation (23) and n is the number 
of solutions in the non-dominated front. 
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Lower values of S indicate a more even spread of solutions in the 
front, and a value of zero suggests that all the solutions are evenly 
spread out. 
 It should be noted that a comparison of the spacing metric is 
only meaningful when the different algorithms have similar 
generational distance values. In other words, a comparison of the 
diversity is only applicable when both algorithms have a similar 
convergence to the actual Pareto front. In addition to this, in the 
case of gene network problem, the actual Pareto front is unknown, 
hence the metrics are not evaluated for that problem. However, 
the comparison of the final non-dominated solutions obtained by 
both the algorithms would provide a good performance  

5. RESULTS 
Figures 3-8 show the plot of the final non-dominated solutions 
obtained by both the algorithms in one of the runs. Tables I and II 
show the performance metrics that have been averaged over all 
runs. Comparing these results, it is evident that the proposed 
multi-objective hybrid PSO algorithm has outperformed MOPSO 
on all the problems except in KUR, where both algorithms had 

similar performance. However, the number of parameters to be 
found in KUR is only 3. When dealing with problem with higher 
dimensions there is a significant difference between MOPSO and 
the proposed method. Comparing the different approaches to 
update the velocities in the simplex algorithm, the flip update 
scheme shows better results than random approach.  
 As we have no information on the detail of the actual Pareto 
front for the gene network problem, to compare we select an 
individual from the non-dominated solutions obtained and plot its 
response to the actual data in Figure 9. It can be noted that the 
prediction closely follows the actual data and hence a good fit of 
parameters have been obtained for the problem. 

6. CONCLUSION 
To achieve a better exploration and exploitation, global search 
algorithm are generally optimized with local search methods. 
Nelder-mead simplex algorithm has been a popular choice for 
hybridization due to its gradient free, fast local search 
capabilities. In this paper, the first multi-objective PSO hybrid 
algorithm has been presented. The hybrid algorithm was also 
shown to outperform MOPSO. Future work would be directed in 
using the hybrid algorithm for parameter estimation for more 
complex gene network models.  

  

Table I. Results of Generations Distance for the two different 
approaches of hybrid PSO and MOPSO 

PROBLEM 
UPDATED 

HYBRID 

RANDOM 

HYBRID 
MOPSO 

KUR 0.044856 0.063236 0.053350 

ZDT1 0.004143 0.020045 0.585582 

ZDT3 0.001961 0.065657 0.686700 

ZDT4 0.004248 0.014319 0.280784 

ZDT6 0.002295 1.552199 1.359427 

 

Table II. Results of Spacing metric for the two different 
approaches of hybrid PSO and MOPSO 

PROBLEM 
UPDATED 

HYBRID 

RANDOM 

HYBRID 
MOPSO 

KUR 0.074627 0.609093 0.190415 

ZDT1 0.008679 0.068562 0.025590 

ZDT3 0.012893 0.054150 0.009207 

ZDT4 0.008132 0.127192 0.009876 

ZDT6 0.007747 0.196983 0.076379 
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Figure 3. Sample Pareto fronts obtained by two different 
approaches of hybrid PSO and MOPSO for KUR 
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Figure 4. Sample Pareto fronts obtained by two different 
approaches of hybrid PSO and MOPSO for ZDT1 
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Figure 5. Sample Pareto fronts obtained by two different 
approaches of hybrid PSO and MOPSO for ZDT3 
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Figure 6. Sample Pareto fronts obtained by two different 
approaches of hybrid PSO and MOPSO for ZDT4 
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Figure 7. Sample Pareto fronts obtained by two different 
approaches of hybrid PSO and MOPSO for ZDT6 
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Figure 8. Sample Pareto fronts obtained by two different 
approaches of hybrid PSO and MOPSO for Gene Network  
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Figure 9. Simulation of one of the solution obtained by 

updated hybrid algorithm. (Lo, To, and Ao, represent the 
predicted output for LFY, TFL and AP1. L, T, and A, 

represent actual values for LFY, TFL and AP1) 
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