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ABSTRACT
This paper introduces a continuous model for Multi-cellular
Developmental Design. The cells are fixed on a 2D grid
and exchange ”chemicals” with their neighbors during the
growth process. The quantity of chemicals that a cell pro-
duces, as well as the differentiation value of the cell in the
phenotype, are controlled by a Neural Network (the geno-
type) that takes as inputs the chemicals produced by the
neighboring cells at the previous time step. In the proposed
model, the number of iterations of the growth process is not
pre-determined, but emerges during evolution: only organ-
isms for which the growth process stabilizes give a phenotype
(the stable state), others are declared nonviable. The opti-
mization of the controller is done using the NEAT algorithm,
that optimizes both the topology and the weights of the Neu-
ral Networks. Though each cell only receives local informa-
tion from its neighbors, the experimental results of the pro-
posed approach on the ’flags’ problems (the phenotype must
match a given 2D pattern) are almost as good as those of a
direct regression approach using the same model with global
information. Moreover, the resulting multi-cellular organ-
isms exhibit almost perfect self-healing characteristics.

1. INTRODUCTION
Evolutionary Design uses Evolutionary Algorithms to de-

sign various structures (e.g. solid objects, mechanical struc-
tures, robots, . . . ). It has been known for long [11] that the
choice of a representation, i.e. of the space to search in, is
crucial for the success of any Evolutionary Algorithm. But
this issue is even more critical in Evolutionary Design. On
the one hand, the success of a design procedure is not only
measured by the optimality, for some physical criteria, of the
proposed solutions, but also by the creative side of the pro-
cess: a rich (i.e. large) search space is hence mandatory. But
on the other hand, because scalability, and thus re-usability
and modularity, are important characteristics of good design
methodologies, the search space should have some structure
allowing those properties to emerge.
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The importance of the type of embryogeny (the mapping
from genotype to phenotype) of the chosen representation
in Evolutionary Design has been highlighted for instance in
[3], and more systematically surveyed in [18]. Direct rep-
resentations, with no embryogeny (the relation between the
phenotype and the genotype is a one-to-one mapping), have
been very rapidly replaced in the history of Evolutionary
Design by indirect representations, where the embryogeny
is an explicit program, generally based on a grammar - and
evolution acts on this program. The phenotype is then the
result of the execution of the genotype. Many works have
used this type of representation in Evolutionary Design,
from the seminal works of Gruau [8] and Sims [16] and their
many successfull followers (cited e.g. in [18]). However, even
though those representations did to some extent address the
issues of modularity, re-usability and scalability, there was
still room for improvement. First, the scalability is still an
issue, possibly because the bigger the structure, the more
difficult it is to fine-tune it through the variation operators,
due to the uncontrolled causality (the effect of small muta-
tions is not always small). Second, the embryogeny itself,
and hence the resulting structures, are not robust to per-
turbations [2], an important characteristic when it comes to
design autonomous systems such as robots.

In order to address those issues, several recent works have
chosen to use multicellular developmental models: the em-
bryogeny is implicit, based on exchanges of some ’chemicals’
between ’cells’, and more or less faithfully connected to Tur-
ing’s early ’reaction-diffusion’ model [19] (see again [18], and
the more recent works cited in Section 4). But several in-
stances of this model have been proposed, and a number of
issues remain open, if not unsolved: Is the number of cells
fixed, and the structure is then the result of their differentia-
tion, or is the whole organism growing from a single cell? Do
the chemicals diffuse on a given ’substrate’ or only through
the interactions and exchanges among neighboring cells –
and is the topology of cell interactions fixed, evolved, or has
it emerged during the development process? What is the
granularity of the possible values of chemical concentrations
or quantities? When and how does development stop (the
’halting problem’ of developmental approaches)? Finally,
maybe the most important issue when it comes to evolve
such embryogenies: what kind of ’reaction’ takes place in
each cell – or, from an operational point of view, what type
of controller is used within each cell, and subject to evolu-
tion?

All those questions are of course interwined (e.g. you
don’t use the same type of controller depending on the type
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of values you intend to evolve). However, and whatever the
choices when answering the above questions, most works
evolving multi-cellular developmental models report convinc-
ing results as far as scalability is concerned [7, 5], as well
as unexpected robustness properties [14, 2, 6]. Indeed, even
though the self-repairing capacities of the biological systems
that inspired those models were one motivation for choosing
the developmental approach, self-healing properties were not
explicitly included on the fitnesses, and initially appeared as
a side-effect rather than a target feature (see Section 4 for
a more detailed discussion).

This paper proposes yet another model for Multicellular
Developmental Evolutionary Design. A fixed number of cells
placed on a two-dimensional grid is controlled by a Neural
Network. Cells only communicate with their 4 neighbors,
and exchange (real-valued) quantities of chemicals. In con-
trast with previous works (but this will be discussed in more
detail in Section 4), the phenotypic function of a cell (its
type) is one of the outputs of the controller, i.e. is evolved
together with the ’chemical reactions’. Moreover, the halt-
ing problem is implicitly left open and solved by evolution
itself: development continues until the dynamical system
(the set of cells) comes to a fixed point (or after a –large–
fixed number of iterations). We believe that this is the rea-
son for the excellent self-healing properties of the organisms
that have been evolved using the proposed model: they all
recover almost perfectly from very strong perturbations – a
feature that is worth the additional computational cost in
the early generations of evolution.

The paper is organized as follows: Section 2 introduces the
details of the proposed model and of its optimization using
the NEAT general-purpose Neural Network evolution algo-
rithm [17], that optimizes both the topology and the weights
of the network. The approach is then tested in Section 3 on
the well-known ’flag’ benchmark problems, where the tar-
get “structure” is a 2D image. A meaningful validation is
obtained by comparing the results of the developmental ap-
proach to those of the data-fitting approach: the same neural
optimization method is used but the inputs are the coordi-
nates (x,y) of the cell: indeed, it should not be expected to
obtain better results with the developmental approach than
with this direct data-fitting approach. Furthermore, the ex-
cellent self-healing properties of the resulting structures are
demonstrated. Those results are discussed in Section 4 and
the proposed approach is compared to other existing ap-
proaches for Multicellular Developmental Design. Finally,
further directions of research are sketched in concluding Sec-
tion 5.

2. DEVELOPMENTAL MODEL
The context of the proposed approach is what is now

called Multi-Cellular Development Artificial Embryogeny [15]:
An organism is composed of identical cells; Each cell en-
capsulates a controller (loosely inspired from a biological
cell’s regulatory network); All cells, and thus the organism,
are placed in a substrata with a given topology; Cells may
eventually divide (i.e. create new cells), differentiate (i.e.
assume a predefined function in the phenotype), migrate
and/or communicate with one another in the range of their
neighborhood.

In the literature there is a clear distinction between ap-
proaches that do not rely on cell division, and thus require
that the environment is filled with cells at startup [2], and

approaches where cells divide and migrate [4, 12]. In both
case however, communication may be performed from one
cell to another [2, 4] (direct cell-cellmechanism) or diffused
through the environment [12] (substrata diffusion mecha-
nism of chemicals).

A cell or group of cells “grows”, or “develops”, by in-
teracting with the environment, usually at discrete time
steps. This process stops at some point and the organism is
evaluated w.r.t. the target objective. In all the works that
are cited above, the growth stop is forced (development is
stopped after a predefined number of steps). Defining an
efficient endogenous stopping criterion can be related to ad-
dressing the halting problem for Developmental Embryo-
geny.

In this context, the model proposed in this paper has the
following characteristics: a fixed number of cells are posi-
tioned on a two-dimensional non-toroidal array (no cell di-
vision or migration). The state of each cell is a vector or
real values, and the controller is a Neural Network. Cells
produce a predefined number of ’chemicals’ that diffuse by
a pure cell-cell communication mechanism. Time is dis-
cretized, and at each time step, the controller of each cell
receives as inputs the quantities of chemicals produced by its
neighboring cells (4-neighbors Von Neuman neighborhood is
used - boundary cells receive nothing from outside the grid).
The neural controller takes as external input the chemicals
of the neighboring cells and computes a new state for the
cell, as well as the concentrations of the chemicals to be sent
to neighboring cells at next time step. No global informa-
tion is available or transmitted from one cell to another –
the challenge is to reach a global target behavior from those
local interactions.

As noted in the introduction, this model can be thought of
as a simplified instance of Turing’s reaction-diffusion model
[19], with discretized time and space. But it can also be
considered as a very simple model of a Genetic Regulatory
Network [1]. The topology of the network is fixed, all ’genes’
produce the same ’proteins’, but the activation/inhibition of
protein production is given by the (non-linear) neural net-
work function. Finally, looking beyond biological analogies,
the proposed model can also be seen as a Continuous Cel-
lular Automata [20], i.e. cellular automata with continuous
states and discrete time, more precisely as a Cellular Neu-
ral Network [10], cellular automata where the update rule
for each cell is given by a neural network, typically used in
VLSI design.

2.1 The Neural Network Controller
In this work, the state of a cell, that is responsible for

for both its differentiation (i.e. its phenotypic expression)
and the communication with other cells though the diffu-
sion of chemicals, is a vector of real values: a single real
value (gray level) in the ’flag’ applications described in Sec-
tion 3 – though more complex environments could require
more complex differentiation states. Hence the widely used
and studied model of Discrete Time, continuous state, Re-
current Neural Network (DTRNN) with sigmoidal transfer
functions was chosen for the cell controllers. This choice of
a Neural Network as a controller of the cells was inspired by
the long-known property that Neural Networks are Univer-
sal Approximators [9]. The inputs of the Neural Network
are the values of the chemical quantities coming from the 4
neighbors of the cell. Its outputs are the state of the cell



Figure 1: Schematic view of teh connections be-
tween cells in the case of 2 chemicals

plus one output per chemical. If there are N neurons and
M external inputs, the more general form of update rule at
time step t for neuron i of a DTRNN is

ai(t+ 1) = σ(

N
X

j=1

wi,jaj(t) +

M
X

j=1

zi,jIj(t))

En gnral, l’activation est juste la somme pondre des
entres. Ce que tu donnes est la sortie. De plus,
IL FAUT DISTINGUER LES ESPECES ??? where
ai(t) is the activation of neuron i at time t, Ij(t) is the jth

external input at time t, wi,j is the weight of the connection
from neuron j to neuron i (0 if no connection exists), zi,j is
the weight of the connection from input j to neuron i, and
σ(x) = 1

1+e−x
is the standard sigmoid function.

It is important to note that, even if the neural controller
is a feedforward neural network (i.e. there are no loops in
the connection graph), the complete system is nevertheless
a large recurrent neural network because the exchanges of
chemicals between the cells do create loops. In this respect,
the chemicals can be viewed as an internal memory of the
whole system. Figure 1 shows a schematic view of a cell
with its 4 neighbors, that uses two chemical concentrations
to communicate. The cell transmit the same concentrations
of each chemical to it neighboring cells, so we have only 2
outputs but 8 inputs. An additional output (not shown) is
used for the differentiation value.

Obviously, this model can be easily extended to any num-
ber of chemicals, as well as to any dimensions for the state
of the cells, allowing differentiations into more sophisticated
mechanical parts (e.g. robot parts, joints with embedded
controller, etc).

2.2 Controller Optimization
Even though the smaller class of simple sigmoidal 3-Layer

Perceptron has the Universal Approximator property, de-
termining the number of hidden units for a MLP remains
an open issue, and practical studies have demonstrated that
exploring the space of more complex topologies (including
recurrent topologies) could be more efficient than just ex-

Population size 500
Max. number of evaluations 250000

Reproduction ratio per species 0.2
Elite size per species 1

Crossover prob. 0.15
Add-node mutation prob. 0.01
Add-link mutation prob. 0.01

Enable-link mutation prob. 0.045
Disable-link mutation prob. 0.045

Gaussian weights mutation prob. 0.8
Std. dev. for Gaussian weight mutation 0.1

Uniform weights mutation prob. 0.01
Distance parameters for fitness sharing 1.0 – 1.0 – 0.2

Table 1: NEAT parameters (see [17] for details).

periencing with a one hidden layer perceptron. Moreover,
many algorithms have been proposed for the evolution of
Neural Networks, and a good choice for the evolution of cell
controllers was the NEAT algorithm [17], a state-of-the-art
evolutionary NN optimization algorithm that makes it pos-
sible to explore both feedforward and recurrent topologies.

This algorithm relies on a direct encoding of neural net-
work topologies that are evolved using a classical evolution-
ary stochastic optimization scheme. The main feature of
NEAT is that it explores the topologies from the bottom-up:
starting from the simplest possible topology for the problem
at hand, it performs variations over individuals by adding
neurons and connections to networks in such a way that the
behavior of the network is preserved at first - this makes it
possible to explore topology in a non destructive fashion.

Our NEAT implementation has been validated from pub-
lished results. For all the experiments in this paper, NEAT
parameters have been set to the values given in [17] for solv-
ing the sample XOR regression and double-pole balancing
tasks. Those values seemed robust for the problem at hand,
according to a limited parametric study. They are summa-
rized in table 1.

As already noted, an interesting feature of NEAT algo-
rithm is that it can handle the evolution of both feedfor-
ward and recurrent neural networks – hence allowing an easy
comparison of both models. Another interesting feature of
NEAT is that it allows the user to declare some constraints
on the topology - in this case, all input and output neurons
are forced to be connected to at least one neuron in the
controller.

2.3 Halting the Growth Process
In Multi-cellular developmental systems, the phenotype

(the target structure to be designed, on which the fitness can
be computed) is built from the genotype (the cell-controller,
here a Neural Network) through an iterative process: Start-
ing from a uniform initial condition (here, the activity of
all neurons is set to 0), all cells are synchronously updated,
or, more precisely, all neurons of all cells are synchronously
updated, in case the neural network is recurrent. But one
major issues of such iterative process is to determine when
to stop.

In most previous approaches (see Section 4), the number
of iterations is fixed once and for all by the programmer.
However, this amounts to adding one additional constraint
to the optimization process: Indeed, it is clear that the num-



ber of iterations that are necessary to reach a given state
depends on that state, but also on the organism. Moreover,
it also most probably should depend on the conditions of
the experiment: the dimension of the grid, the number of
chemicals, . . .

Because there seems to be no general way to a priori de-
termine the number of iterations that should be allocated to
the organisms to reach a target phenotype, a good solution
is probably to leave this parameter free, and to let evolution
tune it.

One straightforward way to do so would be to compute the
fitness of the organism at all stages of the iterative process,
i.e. on all intermediate states of the cells. However, because
such computation might be very heavy (for instance when
designing mechanical structures, one often has to compute
their fitness using some FEM analysis) this solution has been
rejected. On the other hand, if we suppose that cell updates
are cheap to compute compared to the actual fitness of a
phenotype, it is possible to let the system iterate until it
stabilizes. Of course, as is known from the Cellular Au-
tomata point of view [20], some systems will never stabilize,
having either a chaotic behavior, or approaching some non-
stationary attractor. However, one can hope that the set of
systems that actually do reach a fixed point is rich enough
to contain good solutions to the problem at hand.

The next challenge is to detect when the system stabilizes.
It is proposes here to compute some energy of the system at
each iteration, and to stop when this energy remains con-
stant during a certain number of iterations.

More precisely, the energy of the system is computed as
the sum of the activations of all neurons of all cells:

E(t) =
X

allneurons

a(t)2,

and the organism is considered stable when E(t) = E(t+
1) during a given number of time steps. Of course, a max-
imum number of iterations is given, and a genotype that
hasn’t converged after that time receives a very bad fitness:
such genotype has no phenotype, so the fitness cannot even
be computed anyway. After such a final stable state for the
organism has been reached, it is considered as the phenotype
and undergo evaluation.

3. EXPERIMENTS
Even though the long term goal of Developmental De-

sign is to design mechanical structures (bridges, buildings,
robots, . . . ), the computational cost of mechanical simula-
tions makes such applications out of reach at the moment.
Moreover, the classical benchmarks that have been used to
evaluate developmental approaches in recent works is the
flag problem, as originally proposed by Miller [13] and later
used by other researchers in the field [4, 7].

The cells are the square tiles of a rectangular grid, like
the pixels of a digitalized picture. At the end of the devel-
opmental phase, the cells must differentiate into a (generally
discrete) color state so that the whole organism matches a
given target picture. The rule of the game is that cells should
of course have no access to information about the target pic-
ture, or to global informations like their absolute position in
the grid. The only feedback from the target is the fitness of
the phenotype, provided by a similarity measure. Pictures
with simple patterns remains the most widely used, like the
French or Norwegian flags.

2-bands 3-bands disc half-discs

Figure 2: The four target pictures

3.1 On Fitness and Flags
The problem is to define a similarity measure between

the final state of the cells on the grid after differentiation
(i.e. each cell has a color) and the target flag. While most
previous works use discrete states as color values, with 3 or 4
different states, the continuous values taken by the cell states
in the Neural Network model allow a more precise sampling
of the possible colors. Hence all experiments reported in the
following use grayscale pictures with 256 gray levels: the
output of the controller, that is in [0,1], is discretized, and
the fitness is computed on the discrete values as follows.

The fitness measure is the similarity between the picture
generated by the developmental process and the target pic-
ture. A smooth similarity s(A,B) between two pictures A

and B with both w × h pixels is defined by:

s(A,B) =
1

wh

h−1
X

i=0

w−1
X

j=0

(A(i, j) −B(i, j))2

The value s(A,B) lies in [0, 1], and reaches 1 if A = B.
Four 32× 32 target pictures are used, that can be seen on

Figure 2. The first picture is a simple 2-bands symmetrical
picture with 2 colors. The 3-bands image contains 3 hori-
zontal layers of different colors, and should be slightly more
difficult to retrieve. However, because of the x-y bias of the
chosen representation (information is transmitted horizon-
tally or vertically), the last 2 images should be (and will be)
more difficult to grasp, as they contain circular patterns.
Note that because scalability is not the primary issue un-
der study in this work, only pictures of this medium size
(compared to previous work on the flag problem) are used.

3.2 The Different Models
In order to explore different models within the general

context described in Section 2, 4 instances of the proposed
model are experimented with: a feedforward neural network,
and 1 chemical, termed 1-ffwd, a recurrent neural network
with 1 chemical, termed 1-recurr, a recurrent neural network
with 2 chemicals, termed 2-recurr, a feedforward neural net-
work, and 2 chemicals, termed2-ffwd.

However, there are (at least) two possible causes of error
in the proposed approach: on the one hand, there might
not exist any fixed point of the multi-cellular developmental
systems under study that can approximate the target image;
but on the other hand, even if a good solution does exist,
the chosen computation method (evolutionary optimization
of a neural network using NEAT) might not be able to ap-
proximate it. Note that this situation is common to all com-
putational approaches of complex systems: the former error
is termed ’modeling error’ and the latter ’method error’. A
third type of error is also reported in numerical experiments,
the ’numerical error’, due to propagating round-offs, and will
be neglected here.



In order to try to discriminate between the modeling er-
ror and the method error, a fifth model is also run, on the
same test cases and with similar experimental conditions
than the four developmental approaches described above:
the layout is exactly the same (a 2D grid of cells), the same
NEAT parameters are used (to evolve a feedforward neu-
ral network), and selection proceeds using the same fitness.
However, there is no chemical nor any exchange of informa-
tion between neighboring cells, and on the other hand, all
cells receive as inputs their (x,y) coordinates on the grid.
Hence the flag approximation problem is reduced to a sim-
ple regression problem. In the following, the results of this
model will be considered as reference results, as it is not
expected that any developmental approach can ever beat a
totally informed model using the same NEAT optimization
tool. This experiment is termed “f(x, y) = z“ from now on.

3.3 Experimental setup
All 5 models described in previous section have been run

on the 4 flags showed on Figure 2. All results presented in
the following are statistics over 16 independent runs.

As already said, the evolutionary neural network opti-
mizer is NEAT, with the settings that are described in Table
1. It is worth noticing that during all runs, no bloat was ever
observed for the NEAT genotypes. The mean size of the
networks (measured by the total number of edges between
neurons) gently grew from its starting value (between 5 and
10 depending on the model) to some final value below 40
– the largest experiment reaching 45. This first result con-
firms the robustness of this optimization tool, but also, to
some extent, demonstrates the well-posedness of the prob-
lems NEAT was solving (bloating for Neural Networks can
be a sign of overfitting ill-conditioned data).

As argued in section 2.3, the halting of the growth process
is based on the stabilization of the energy of the organism,
checked over some time window. The width of this time win-
dow has been set to 8 time-steps in all experiments. How-
ever, because not all networks will stabilize, a maximum
number of iterations has to be imposed. This maximum
number was set to 1024, and if no stabilization has occurred
at that time, the fitness is set to value 0: as 0 is the worst
possible value for the fitness, this amounts to using some
death penalty for the stabilization constraint.

With such settings, a typical run lasts about one day on a
3.4GHz Pentium IV. Though this might seem a huge compu-
tational cost, we believe that it is not a critical issue when
designing real-world structures: On the one hand, design-
ing mechanical parts is already a time-consuming process,
involving highly trained engineers – and human time nowa-
days costs much more than CPU time. On the other hand,
when the structure that is being designed is bound to be
built by thousands or millions, a few days represent a very
small overhead indeed.

3.4 Results

3.4.1 Comparing fitnesses
The statistics for the off-line results are displayed as the

usual box-plots1 on Figures 3, 4 and 5 respectively for the

1as generated by the R statistical package, see
http://en.wikipedia.org/wiki/Box plot for a precise
description.

f(x, y) = z 1−ffwd 2−ffwd 1−recurr 2−recurr
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Figure 3: Off-line results for the 3-bands problem

f(x, y) = z 1−ffwd 2−ffwd 1−recurr 2−recurr
0.

88
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92
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00

Figure 4: Off-line results for the disc problem

3-bands, disc and half-discs problems of Figure 2, and on-
line results (the average over the 16 runs of the fitness of
the best-of-generation individuals as evolution progresses)
are shown on Figure 6 for the 3-bands problem.

The results for the 2-bands problem are almost identical
for the 5 models, and are not presented here: same aver-
age fitness of 0.999, with a slightly larger variance for the
developmental approaches (and variance 0 for the regres-
sion model). For each setting of the embryogenic approach,
though, some runs were able to find a marginally better so-
lution than that of the regression model – but without any
statistical significance. For the slightly more difficult target
three-bands, the reference model is still able to find an ex-

f(x, y) = z 1−ffwd 2−ffwd 1−recurr 2−recurr

0.
80

0.
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0.
90

0.
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Figure 5: Off-line results for the half-discs problem
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Figure 6: Evolution of average of best fitness for
the 3-bands problem. The lowest curve is that of
the 1-recurr model, and the 3 indistinguishable curves
above the other 2 are those of the other 3 artificial
embryogeny models.

neuron 0 (gray level)

neuron 1 (chemical 1)

neuron 2 (chemical 2)

Figure 7: Development stages on the three-bands
problem for the recurrent NN with 2 chemicals at
iterations 16, 32 and 44 (columns) for the phenotype
(top row), and both chemicals.

act solution, as shown in figure 3, while the 3 embryogenic
models give nearly optimal individuals.

As expected, the disc target is difficult for the embryo-
genic approaches: as can be seen on the box-plots (Figure
4, all 4 are clearly outperformed by the reference model,
that was not trapped in the same local optimum. The on-
line results did not reveal any other conclusion, and are not
shown here. It is worth noting that here, experiments using
2 chemicals outperform the same model with a single chem-
ical (with statistically significant differences according to a
95% confidence T-test).

Finally, the situation is slightly different for the half-discs,
the most difficult target (Figure 5): all embryogenic mod-
els are, again, clearly outperformed by the reference model,
even though this model doesn’t reach such a good fitness
than for the disc problem. However, the best results among
embryogenic approaches are obtained by the recurrent net-
works, that exhibit a much larger variance, and thus some-
times reaches much better fitnesses – with a slight advantage
for the 2-chemicals recurrent model in this respect.

3.4.2 Halting Criterion and Robustness
The evolved halting criterion is one of the main original

feature of the proposed approach. It thus needs to be studied
in detail, especially as it is closely related to the self-healing
properties, i.e. the robustness with respect to noise during

neuron 0 (gray level)

neuron 1 (chemical 1)

neuron 2 (chemical 2)

Figure 8: Development stages on the half-discs prob-
lem for the recurrent NN with 2 chemicals at iter-
ations 28, 64 and 122 (columns) for the phenotype
(top row), and both chemicals.

Figure 9: Self-healing on the three-bands problem
for the recurrent NN and 2 chemicals: Snapshots
of the phenotype at iterations 0 (beginning of the
perturbation), 4, 11, 17 and 22.

the growth iterations.
Because all organisms are allowed 1024 iterations in their

growth process, it could be feared that several hundreds iter-
ations would be needed before stabilization even for the best
solutions found by the algorithm. The total computational
costs would henceforth have been tremendously higher that
it already is. The good news is that in all cases, and for
all embryogenic models, the whole population rapidly con-
tains a large majority of organisms that did stabilize within
a few dozens iterations. Illustrations of the growth process
are given in Figures 7 and 8. For the easy 3-bands prob-
lem, only 44 iterations are needed (and chemical 1 doesn’t
change after the 16th iteration). For the more difficult half-
discs problem, 122 iterations are needed.

But another important issue is that of robustness: ear-
lier works [12, 6] have demonstrated that developmental ap-
proaches lead to robust solutions as far as development is
concerned

Here, the robustness of the fixed points was checked by
applying a centered Gaussian perturbation with unit stan-
dard deviation to the states of all neurons. The good news
is that for any perturbation, 100% of the feedfoward con-
trollers and 75% of the recurrent controllers return to the
very same state they had before the perturbation. The other
25% reccurent controllers returns to a state very close to the
one they had before perturbation. An example of perfect
and fast self-healing for the three-bands problem is shown in
Figure 3.4.2.

To sum up, the embryogenic approach perform often nearly
as good as a simple regression (f(x, y) = z), if using the same
optimizer. The feedforward and the recurrent networks seem
hardly distinguishable across the 4 experiments, and a slight
advantage of the 2-chemical over the 1-chemical could be hy-
pothesized. The most interesting result concerns the almost
perfect self-healing property of the resulting organisms.



4. RELATED WORKS AND DISCUSSION
This section discusses the proposed approach in the light

of other works on multi-cellular embryogenies from the lit-
terature.

The pioneering work by Julian Miller [12] belongs to the
’duplicating cells’ category: Cells are allowed to duplicate,
and growth starts with a single cell. Cells achieve commu-
nication by placing chemicals at their location and reading
chemicals from their 8 neighbors. Moreover, a hand-written
mechanism ensures their diffusion on the grid. Each cell can
also differentiate into one of four cell types (one of the three
colors, or the ’dead cell’ tag) and each cell communicates its
type to neighboring cells. The cell controller is designed as a
boolean logic circuit optimized with Cartesian Genetic Pro-
gramming [14] and the task is to find an organism that fits
a 12x9 French flag. Experiments are conducted with a vary-
ing number of chemicals (from 0 to 4) and results showed
that after 10 iterations, the french flag could be reproduced
with nearly 95% similarity. Even more interesting results
concerning self-repairing showed that with varying pertur-
bations, the system could still recover and converge toward
patterns that are somewhat similar (though not identical)
to the ones it would have achieved without perturbations.

In [4], Diego Federici extends Miller’s work: again, only
one single cell exists at iteration 0, and duplication is al-
lowed. Each cell gets as input the 4 neighboring cell types
and one single chemical concentration, resulting here also
from a hand-written diffusion rule. The controller is a multi-
layer perceptron with fixed topology (only the weights are
optimized) and the task is to fit a set of 9x6 flags (includ-
ing the Norwegian flag). One interesting feature is that the
optimization process is twisted to favor diversity, and imple-
ments a clever problem decomposition scheme named ”mul-
tiple embryogenic stages” with convincing results.

The work by Gordon and Bentley [2] differs from previous
approaches by considering only communication and differ-
entiation in the substrata. The grid starts with a cell at
all available grid points, and cells communicate by diffusing
chemicals to neighboring cells only. Each cell then receives
as input one chemical concentration, computed as the av-
erage of the concentrations of all neighboring cells: hence,
no orientation information is available. In the Cellular Au-
tomata context, such system is called a totalistic automa-
ton. One drawback of this approach is that it requires that
some cells have different chemicals concentration at start-
up. Furthermore, it makes the whole model biased toward
symmetrical patterns (”four-fold dihedral symmetry”). The
controller is a set of 20 rules that produce one of the four
chemicals and sends it towards neighboring cells. The set of
rules is represented by a bit vector and is evolved using a
classical bitstring GA. The paper ends with some compar-
isons with previous works, namely [4, 12], demonstrating
comparable and sometimes better results. But a possible
explanation for that success could be the above-mentionned
bias of the method toward symmetrical patterns.

The approach proposed here shares some similarities with
the approaches described above. The controller is defined as
a neural networks, as in [4]; but in contrast to [4], both the
topology and the weights are optimized, thanks to NEAT.
Further work should determine whether this difference is es-
sential or not by running the same algorithm (i.e. with the

stabilization incentive in the fitness) and multi-layer percep-
tron controllers.

However, there are even greater similarities between the
present work and that in [2]. In both works, the grid is filled
with cells at iteration 0 of the growth process (i.e. no replica-
tion is allowed) and chemicals are propagated only in a cell-
cell fashion without the diffusion mechanisms used in [4, 12].
Indeed, a pure cell-cell communication is theoretically suffi-
cient for modelling any kind of temporal diffusion function,
since diffusion in the substrata is the result of successive
transformation with non-linear functions (such as the ones
implemented by sigmoidal neural networks with hidden neu-
rons). However, this means that the optimization algorithm
must tune both the diffusion reaction and the differentiation
of the cells. On the other hand, whereas [2] only consider
the average of the chemical concentrations of the neighbor-
ing cells (i.e. is totalistic in the Cellular Automata termi-
nology), our approach does take into account the topology
of the organism at the controller level, de facto benefitting
from orientation information. This results in a more general
approach, though probably less efficient to reach symmetri-
cal targets. Here again, further experiments must be run to
give a solid answer.

But two main issues contribute to the originality of the
approach proposed here: (1) the output for cell differenti-
ation is a continuous value, and (2) the halting problem is
indirectly addressed through the fitness function, that favors
convergence towards a stable state (i.e. a fixed point).

Indeed, all other works consider that a cell may differen-
tiate into one of a given set of discrete states (e.g. blue,
red, and white) while output is considered here as a contin-
uous value (discretized into a 256-gray level value). At first
sight, this can be thought as making the problem harder by
increasing the size of the search space. However, it turns
out that a continuous output results in a rather smooth fit-
ness landscape, something that is known to be critical for
Evolutionary Algorithms. Additional experiments (not re-
ported here) did demonstrate that it was much harder to
solve the same flag problems when discretizing the controller
outputs before computing the fitness (Section 3.1). Indeed,
discretized outputs lead to a piecewise constant fitness land-
scape and the algorithm has no clue about where to go on
such flat plateaus. However, here again, more experiments
are needed before drawing strong conclusions.

Secondly, from a dynamical system viewpoint, the objec-
tive function can be seen as selecting only the organisms
that do reach a fixed point, starting from given initial con-
ditions defined as uniformly initialized cells. First, all previ-
ous works needed to a priori decide the number of iterations
that growth would use, and it is clear that such parameter
is highly problem dependent, and hence should made adap-
tive if possible. But more than that, the good news is the
strength of the fixed point reached by the organism, its at-
tracting power when starting from other initial conditions -
that is, an extreme case of self-healing capabilities against
perturbations for the organism. Of course, previous works
[12] already noted the growth process is remarkably stable
under perturbations, and is able to reach a pattern quite
similar (though not identical) to the original target pattern.
However, it should be noted that the organisms evolved in
[12] keep on growing if growth is continued after the fixed
number of iterations, and eventually turn out to completely
diverge from the target pattern. Similarly, [4] observes that



a perturbation in the earlier stages of development leads
to an increase in the disruption of the final pattern that
is linear with respect to the number of development steps.
Robustness towards perturbation was later confirmed and
more thoroughly studied in [6].

But, as demonstrated by the experiments shown in Sec-
tion 3.4.2, our model achieves astounding results regarding
the self-healing property. Starting from completely random
conditions (i.e. inputs and outputs set to random values),
the system is able to perform a 100% recovery and to con-
verge to the exact pattern that was reached during evolution
(i.e. when starting with value 0 for all neuron activations).
Some runs were performed without the stabilization crite-
rion, the final individuals never shown such properties. This
seems to be a clear consequence of the way stabilization is
favored in the fitness function – though the precise reason
for the extraordinary absorbing property of all fixed points
reached in the experiments so far remains to be understood.

5. CONCLUSION
This paper has introduced a continuous Neural Network

model for Multi-Cellular Developmental Design. The Neu-
ral Network is evolved using the state-of-the-art NEAT al-
gorithm that optimizes both the topology and the weights of
the network, and can evolve both feedforward and recurrent
neural networks. The model was validated on four instances
of the ’flag’ problem, and on 3 out of 4 instances it per-
formed as good as NEAT applied to the equivalent regres-
sion problem: this is a hint that the modeling error of the
developmental approach is not much bigger than that of the
Neural Network approach for regression (which is proved to
be small, thanks to the Universal Approximator property),
and is in any case small compared to the computational error
(i.e. the error done by NEAT when searching the globally
optimal network).

But the most salient feature of this model lies in the stop-
ping criterion for the growth process: whereas most previ-
ous work required to a priori decide on a number of itera-
tions, the proposed algorithm selects organisms that reach a
fixed point, making the stopping criterion implicitly adap-
tive. The major (and somewhat unexpected) consequence
of this adaptivity is the tremendous robustness toward per-
turbations during the growth process: in almost all experi-
ments, the fixed point that is reached from the initial state
used during evolution (all neural activations set to 0) seems
to be a global attractor, in the sense that the organism will
end up there from any starting point.
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