
Investigating Data-Flow Coverage of Classes Using
Evolutionary Algorithms

Konstantinos Liaskos
University of Strathclyde, Glasgow

Livingstone Tower, 26 Richmond St.
Glasgow G1 1XH, UK
+44 (0)141 548 3590

konstantinos.liaskos@cis.strath.
ac.uk

Marc Roper
University of Strathclyde, Glasgow

Livingstone Tower, 26 Richmond St.
Glasgow G1 1XH, UK
+44 (0)141 548 2956

marc.roper@cis.strath.ac.uk

Murray Wood
University of Strathclyde, Glasgow

Livingstone Tower, 26 Richmond St.
Glasgow G1 1XH, UK
+44 (0)141 548 3390

murray.wood@cis.strath.ac.uk

ABSTRACT
It is not unusual for a software development organization to
expend 40% of total project effort on testing, which can be a very
laborious and time-consuming process. Therefore, there is a big
necessity for test automation. This paper describes an approach to
automatically generate test-data for OO software exploiting a
Genetic Algorithm (GA) to achieve high levels of data-flow (d-u)
coverage. A proof-of-concept tool is presented. The experimental
results from testing six Java classes helped us identify three
categories of problematic test targets, and suggest that in the
future full d-u coverage with a reasonable computational cost may
be possible if we overcome these obstacles.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – Testing
tools

General Terms
Verification

Keywords
Object-oriented testing, evolutionary algorithms, automatic test-
case generation, data-flow coverage

1. INTRODUCTION
Search-based test case generation techniques are well researched
for procedural software [1], but relatively little research has been
done in the area of OO testing. Our aim is to build on existing
work [2] and investigate the applicability of GAs to the problem
of automated testing with d-u as the adopted coverage criterion.

2. THE PROBLEM
Data-flow coverage has the advantage of requiring very thorough
testing, because the paths reported have direct relevance to the
way the program handles data. In this context, data-flow coverage
is particularly appropriate for OO testing, where classes combine
data and behavior in the form of methods that access and
manipulate that data. Two drawbacks of this coverage criterion
are the high complexity and the fact that it does not include
decision coverage.

3. OUR APPROACH
The class under test is analyzed prior to the execution of the GA
in order to identify the test targets (d-u pairs). Our research
focuses on the design of the fitness function (every statement of
the d-u pair is considered a partial target, for which traditional
fitness computation is utilized) and the implementation of the GA.
JUnit is used to execute the resulting test cases, and various
coverage tools are used to measure different types of coverage.

4. EXPERIMENTAL EVALUATION
Six classes (same as in [2]) from the standard Java library were
used. Statement, branch and d-u coverage were measured and
compared with each other. D-u coverage is relative high, but
lower than branch or statement coverage in the case of classes
with high cyclomatic complexity. Lower coverage, higher
computational cost, and the large number of test cases can be
explained by the fact that the number of test goals in our case is
much higher compared to branch coverage. The analysis of our
experimental results helped us identify three categories of
problematic test targets: equivalent (i.e. d-u pairs that correspond
to the same code structure), subsequent (i.e. the satisfaction of a
test target is strongly related with another), and unrealistic.

5. CONCLUSIONS AND FUTURE WORK
The major contribution of this paper is the utilization of data-flow
as the coverage criterion. Our experimental results suggest that in
the future full d-u coverage with a reasonable computational cost
may be possible if we manage to address the recorded
problematic test targets. To this end, the first step is to examine
the use of a modified fitness function that incorporates
information from both partial targets of a d-u pair simultaneously,
and then investigate the exploitation of an AIS algorithm with a
path-oriented affinity computation mechanism to better guide the
search.

6. REFERENCES
[1] McMinn, P. Search-based Software Test Data Generation: a

Survey. Journal of Software Testing, Verifications, and
Reliability, vol. 14, no. 2, pp. 105-156, June 2004.

[2] Tonella, P. Evolutionary Testing of Classes. In Proceedings
of the ACM SIGSOFT International Symposium of Software
Testing and Analysis, Boston, MA, July 2004, pp. 119-128. Copyright is held by the author/owner(s).

GECCO’07, July 7–11, 2007, London, England, United Kingdom
ACM 978-1-59593-697-4/07/0007.

1140

