A Chain-Model Genetic Algorithm for Bayesian Network
Structure Learning

Ratiba Kabli
School of Computing

Frank Herrmann
School of Computing

John McCall
School of Computing

The Robert Gordon University = The Robert Gordon University = The Robert Gordon University

Aberdeen, United Kingdom
rk @comp.rgu.ac.uk

ABSTRACT

Bayesian Networks are today used in various fields and do-
mains due to their inherent ability to deal with uncertainty.
Learning Bayesian Networks, however is an NP-Hard task
[7]. The super exponential growth of the number of pos-
sible networks given the number of factors in the studied
problem domain has meant that more often, approximate
and heuristic rather than exact methods are used. In this
paper, a novel genetic algorithm approach for reducing the
complexity of Bayesian network structure discovery is pre-
sented. We propose a method that uses chain structures as a
model for Bayesian networks that can be constructed from
given node orderings. The chain model is used to evolve
a small number of orderings which are then injected into a
greedy search phase which searches for an optimal structure.
We present a series of experiments that show a significant
reduction can be made in computational cost although with
some penalty in success rate.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search - heuristic methods; 1.2.6 [Artificial
Intelligence]: Learning

General Terms

Algorithms, Performance, Experimentation

Keywords
Bayesian Networks, Genetic Algorithms, Greedy Search

1. INTRODUCTION

Bayesian Networks (BNs) are probabilistic models useful
for reasoning with, or representing knowledge under uncer-
tainty. Essentially a BN can be defined as a pair (G, P)
where G is a directed acyclic graph (DAG) G = (V, E) with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’07, July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

Aberdeen, United Kingdom
fh@comp.rgu.ac.uk

1264

Aberdeen, United Kingdom
jm@comp.rgu.ac.uk

the vertices V' as the nodes in the network. Each node repre-
sents a random variable X; relevant to the problem domain.
The dependencies among these variables are represented by
the set of edges E in the underlying DAG factorizing the
joint probability distribution P(X) over the set of random
variables X,, into a conditionally independent one

P(X1, X2, ..., Xp) = [[P(Xi|Pa(X)) (1)

i=1

with Pa(X;) as the set of parent nodes for node X;. To make
use of the power of Bayesian Networks in knowledge repre-
sentation and inference, they have to first be constructed
for the given problem. To fully specify a Bayesian network,
one has to first define the underlying DAG structure repre-
senting the network and then the BN’s conditional proba-
bility distribution. For the latter, we have to determine the
prior probabilities for all the nodes with no incoming links
(i.e. root nodes), and all conditional probabilities for the
remaining nodes. This is essentially a parameter estimation
problem and is not discussed in the present work.

In this paper, we look at the structure learning part of speci-
fying Bayesian networks. Although time consuming and not
always possible, this can be achieved manually given exten-
sive knowledge of the domain from experts or available lit-
erature. A popular alternative that has emerged, however,
from within the artificial intelligence community in recent
years, is the attempts to empirically induce BN structures
from data. Various algorithms have in fact been developed
in order to deal with this problem. Nevertheless, even when
an array of assumptions and restrictions are made, struc-
ture learning for Bayesian Networks remains a hard prob-
lem [8]. This is mainly due to the fact that the number
of possible structures for a given problem grows super ex-
ponentially given the number of variables in that problem.
Robinson [24] quantifies the number as O(n!2)) for a prob-
lem of size n. So where a 3 variable problem would have 25
possible networks, a 5 variable problem would have 29,281
and a 6 variable problem would have 3,781,503 possible net-
works. This makes exact methods for structure discovery
impractical and seldom used without imposing a great deal
of restrictions [17]. More often used nowadays are approx-
imate methods and approaches based on some heuristics.
Mainly, these can be classified into two main groups: Search
and Score methods and Conditional Independence Testing
methods. The latter is a constraint based approach which
relies on a number of statistical tests to determine whether
two variables are independent or dependent given a set of
conditioned variables. Tests such as Pearson’s Chi-Square

and mutual information are often used. Work by de Cam-
pos [12] and Spirtes and Glymour’s PC algorithm [25] illus-
trate this. This approach tends to give good results with
sparse networks and small samples of data however it does
not scale very well for large datasets and dense networks.

In this work, we are interested in the Search and Score ap-
proach and more specifically in the use of genetic algorithms
and greedy search in inducing Bayesian network structures
from data. A brief overview of work done based on this ap-
proach follows in the next section. We then look at research
done in learning Bayesian network structures by searching
through the space of orderings in which we are particularly
interested for this work. In Section 4 we describe our ap-
proach and hypothesis with regards to the usefulness of using
chain structures in evaluating node orderings. We then de-
scribe the experiments carried out for testing this hypothesis
in Section 5. We discuss the results in Section 6 and con-
clude in Section 7.

2. SEARCH AND SCORE METHODS FOR
LEARNING BAYESIAN NETWORKS

Bayesian network structure discovery generally involves
searching through the space of all possible network struc-
tures for one that best describes the data. Traditionally,
this is done by employing some search mechanism along with
an information criterion to measure goodness and differen-
tiate between candidate structures met while traversing the
search space. The idea would be to try and maximize this
information measure or score by moving from one structure
to another by means of some local variation such as a dele-
tion or an addition of a link between two nodes and then
evaluating the overall effect of the move. This is iterated
until an optimal score is found. The associated structure is
then chosen to represent and explain the data. There has
been a lot of work done in both score functions and search
algorithms used for this purpose. Examples of scoring met-
rics include the AIC metric, BDeu, the Bayesian metric, the
CH metric, the Minimum Description Length (MDL), etc.
An overview of these metrics can be found in [4,10,11,16].
On the other hand, there has also been a great deal of vari-
ation in terms of the search strategies used. Some of these
methods such as a hill climber by Buntine [6] look at a single
network structure at a time and iteratively modify it until
a good solution or some stopping criteria has been reached.
Examples of this approach include Boukaert’s application
of Simulated Annealing [5], Goldzmit and Friedman’s TAN
method [13] based on work done by Liu and Chow [9], the
B algorithm and popular greedy search algorithm K2 de-
veloped by Cooper and Herskovits [10]. We will review the
latter in more details in the next sections. Contrarily to
the approach above, there also has been research into meth-
ods which consider a group of network structures at a time
rather than a single structure. They also use a scoring func-
tion to evaluate the current group (or population of struc-
tures) from which a new and better population is created
and then evaluated and so on. The algorithms iterate until
a set stopping criteria is reached. The advantage of this ap-
proach is that it tends to explore the search space better and
therefore has lower chances of getting stuck in local optima.
Various algorithms which follow this approach have been
proposed. They use evolutionary algorithms such as ge-

1265

netic programming [29], genetic algorithms [15,18,19,22,27].
Other approaches to structure learning of Bayesian networks
look at another aspect of the learning process; mainly the
search space. They focus on ways to reduce this space and
thus making any search strategy more tractable. Some con-
tribution to this problem include work by Friedman [14]
with the sparse candidate algorithm, Provan [23] with fea-
ture/attribute selection, searching over the space of equiv-
alence classes, and discussed in this paper ordering based
searches [18,26]. In recent years, work on using Markov
Chain Monte Carlo methods and other related techniques
should also be noted [30].

3. SEARCHING THROUGH THE SPACE
OF NODE ORDERINGS

The nodes in a Bayesian network admit at least one or-
dering based on the DAG structure underlying the network.
This topological ordering imposes the property that a node
X is dependent on X; implies X; < X; in the ordering. In
other words, a node can only be a parent to another node
if it precedes it in the node ordering. One way of searching
for Bayesian network structures is to search through this
space of orderings, looking for those that will admit good
structures. This is more efficient than searching through the
space of structures as it reduces the search further eliminat-
ing all cyclic structures and structures incompatible with the
given ordering. It remains to say however that an exhaus-
tive search through all orderings for large problems remains
intractable (n! for a problem of size n), and therefore heuris-
tics are generally used.

In [18], Larranaga et al. propose a genetic algorithm to
search the space of node orderings rather than the full space
of structures. For the purpose of this paper, we denote this
algorithm by K2GA. The initial individuals in the popula-
tion are randomly created node orderings which are then
evolved until a good ordering is found. At each iteration,
two individuals are selected for crossover and mutation given
the rank of the value of their fitness in the population. Only
one individual offspring is created at a time and in case is
better, it replaces the worst individual in the current popu-
lation. Figure la illustrates this process. The fitness of each
ordering is calculated by running the greedy search algo-
rithm on that ordering at each time and returning the score
of the network structure found.

The greedy search algorithm used is the K2 proposed by
Cooper and Herskovitz [10]. The algorithm assumes that a
priori, all structures are equally likely and that cases in the
data occur independently and are complete. Moreover, it
assumes the presence of a node ordering and imposes a max-
imum number of parents a node can have (inbound edges).
With these conditions satisfied, K2 starts with an empty an-
cestor set for each node and incrementally adds links that
maximize the score of the resulting structure. The algo-
rithm stops when no more ancestor node additions improve
the score. K2 was originally used along the CH score which
captures the probability of a candidate network structure
Bs given a set of data D. Formally the discrete probability
P(Bs, D) is given by

P (B.,D) =

HH (N3 +m—1'HN”’“' 2)

1131

Where ¢; denotes the number of possible different instances

Population

!

K2 Search

N Find Structure and Score

Return score as ordering
fitness

If fitter than Evaluate

worst L

individual

Insert in -

population ‘ Selection ‘
i

Crossover

One *-----------1

Breed

a) K2GA

-{ Population ‘

v Evaluate
|
|
I
I
If fitter than X1X2X3X4 @’@’@’@ score i
worst M X2x3X1x4 @’@’@’@ — w !
individual X1X4X3X2 |
Insert ir] 1 @ @ @ @ i
population assign fitness i
|
!
‘ Selection ‘
v
; reed
One 7
offspring

End of Evolution

K2 Search @
X1X2X3X4 > @ @
X2X3X1X4 = " %‘
@ é\,

b) Chain-Model GA

Figure 1: Genetic Algorithm for Bayesian Network Structure Learning

the parent of variable X; can take. r; is the number of values
X has, Njji denotes the number of cases in the dataset D
in which X; takes value k of its x; instance when its parent
Pa; has its jth value. Njj; is the sum of all N;j; for all val-
ues z; can take. Although simple to implement and widely
used, K2 is prone to local optima and may not find the glob-
ally best structure. Moreover, it relies on prior knowledge of
the node ordering and does not guarantee to find an equiv-
alent network structure given any ordering. Computation-
ally also, K2 can be very expensive. A cheaper alteration
we can make to K2 would be to use a less expensive scoring
metric such as the MDL score based on the Minimum De-
scription Length Principle [4]. The latter is based on entropy
and states that the description length of a Bayesian network
and a dataset of cases is the sum of the size of the network
and the size of the dataset after it has been compressed us-
ing that network. The best network is thus the one with
the smallest description length. MDL balances complexity
and accuracy of the resulting networks. Wong [29] and van
Dijk [27] both use MDL as a measure of goodness in learn-
ing Bayesian networks. Although cheaper compared to the
CH metric, we still face the problem of running K2 search
to evaluate each ordering in our evolution process. In this
paper, we look at ways of reducing the computational cost
related to this.

4. FILTERING GOOD ORDERINGS
4.1 Chain Structures

We investigate the use of chain structures to evaluate or-

derings by replacing the K2 expensive evaluation in Larranaga’s

genetic algorithm. We base our approach on a hypothesis
that a chain is a sufficiently good model to locate node or-

derings of which good Bayesian network structures can be
built. In Section 5 we describe the experiments we ran in
order to test this hypothesis.

We make the orderings’ evaluation step cheaper by eval-
uating their associated chain structure rather than search
for the best structure with K2. In other words, given a set
of variables (X1, X, ..., X») and an ordering X1, Xa, ..., Xn,
then it admits a chain structure X; — Xo — , ..., — X, i.e.
X; is the sole parent of X;11 (Figure 2a).

We hypothesise that the ordering dominates the score for
a given network structure and therefore more time should
be spent searching for a good structure given a good enough
ordering. In other words, we evaluate the node ordering by
building its associated chain structure (the structure result-
ing from drawing a link between each node and the node
proceeding it in the node ordering) and evaluating it given
the data with our scoring metric. We hypothesise that this
chain structure, although simple, may hold important infor-
mation about the ordering and its relation to the network
structure. This is, intuitively true for many practical do-
mains where the links between the nodes represent genuine
causal relationships. For instance, medical data usually fol-
lows a diagnosis, treatment and outcome pattern.

4.2 Chain-Model GA

We now define the proposed Chain-Model GA, illustrated
in Figure 1b. Following the same GA approach used by
K2GA, the ChainGA as we will refer to our Chain-Model
GA, differs in its evaluation step, where a chain structure of
the given ordering is evaluated and the ordering assumes the
fitness returned by the chain. This low resolution evaluation
phase preselects orderings, rejecting all not good enough
ones and keeping the ones that could be good ones. The
ChainGA model then adds on another step at the end of

SRCRCRG

a) Chain Structure

b) Complete Structure

Figure 2: Proposed Structures

Table 1: The Genetic Algorithm Settings

GA Settings

Asia Dataset | Car Dataset | Alarm Dataset

Evolution type

Steady State (Genitor)

Number of Offspring

1

Selection Rank Selection
Crossover Cycle Crossover: rate:0.9
Mutation Displacement Mutation: rate:0.1

Population size 100

10

20 |

each evolution where K2 is run on a percentage of the best
orderings to search for a good structure. This reduces com-
putation time since the number of links to evaluate are fixed
in contrast to K2. However, there is a need to investigate
this and the quality of the resulting network structures.

In order to evaluate our method discussed above, we ran a

series of experiments on three benchmark datasets. For com-
parisons, we implemented the K2GA algorithm. Netica was
used for data sampling and BNJ [3] was used to view the re-
sulting network structures saved in XML format. For the im-
plementation of our Chain-Model GA approach, we chose to
keep the choice of evolution described in Larranaga’s work,
with a steady state like evolution mimicking the Genitor
system developed by Whitley [28]. The crossover and muta-
tion operators used; respectively cycle crossover with a rate
of 0.9 and displacement mutation with rate of 0.1 were also
kept as they performed best with node ordering individuals.
Table 1 summarizes the evolution parameters used for all
three sets of experiments. The difference is in the evalua-
tion function.
In our algorithm, to evaluate each node ordering, we build
its chain structure and score it given the data, with the CH
metric used by K2. At the end of each run, we run K2 on
a group of orderings in the current population and record
the resulting structures and their scores. We have experi-
mented with several options in respect of the orderings to
run K2 on. Mainly, on the best ordering in the current pop-
ulation, a random selection of orderings and a group of the
best orderings in the population. Work done has shown that
choosing a group of the best orderings resulted in the best
performance. We have chosen to run the K2 full search on
10 to 50% of the individuals in the population, depending
on the population size used. At the end of the run, the
group of structures and choices generated by K2 are com-
pared and the ordering corresponding to the best scoring
network structure is selected as the best individual of the
run. It should be noted that we kept the inbound degree,
or the number of ancestor nodes permitted for each node to
four.

1267

S. EXPERIMENTAL RESULTS

We ran the algorithms several times and for each, we
recorded: the best structure found, its associated score and
the number of factor evaluations done. In this paper, we de-
fine a factor evaluation as being the count of times the term
F in Formula 3 is accessed when Formula 2 is used. Since
the score can be decomposable in its log form, it is possi-
ble to retrieve a node and its family score from the overall
network score. In other words, we count as factor evalua-
tions the number of times operations are needed to build
and score the parent set for a specific node X; in F’

Zfl
H NUT+ ri— 1)1 H Nigw!)

We can already anticipate less factor evaluations by this
approach since for the simple chain structures the parent set
for any node is fixed given the ordering that generated that
structure. Therefore, for each ordering of size n, a fixed n
factor evaluations for its chain structure are performed. In
contrast to the number of factor evaluations needed by K2
search. However, we should note that the number of evalu-
ations recorded for the ChainGA approach also includes the
number of evaluations done by the K2 phase carried out at
the end of each run.

Figure 3: Original Asia Network Structure

5.1 The Asia Network

We first evaluated our approach on the Asia (Chest Clinic)
benchmark dataset. A diagnostic demonstrative Bayesian
network, it first appeared in work done by Lauritzen and
Spiegelhalter [20]. The Asia network (Figure 3) is a simple
network with 8 binary nodes and 8 edges and allows valida-
tion in a straightforward manner. We generated a dataset
of 5000 cases for the Asia network which we will use as our
learning dataset. The cases were simulated using Netica’s

case simulation facility [21].

Figure 6: Original Car Network Structure

Figure 4: Recovered Asia Network Structure

RLD Asia (30 runs)
1001

——K2GA
9o} | = = =ChainGA
80 ;
701

601

Runs completed (%)
8

0 ; ; ; ; ; ;
0 1000 2000 3000 4000 5000 6000
Factor evaluations

Figure 5: Run Length Distribution (Asia Network
30 Runs)

5.2 The Car Diagnosis Network

The Car Diagnostic Network is another artificial network
present in different versions in most of the available Bayesian
network tools e.g. in Hugin, Netica, BayesiaLab [1]. It con-
sists of 18 nodes and 17 edges (see Figure 6). We used
BayesiaLab’s version of the network and generated a dataset
of 10000 cases for the purpose of the experiment. Table 3b
shows the results for 50 runs of each algorithm.

5.3 The Alarm Network

We also evaluate the two approaches on the Alarm moni-
toring network dataset [2]. The Alarm network is a medical
diagnostic system for intensive care patient monitoring and
consists of 37 nodes and 46 edges. For these experiments, we
used a sample of 3000 data cases, sampled using the Netica

tool.

b) ChainGA

Figure 7: Car Network Recovered Structures

1268

x10*

Asymptotic best score
2315540 g8 gyl
232}
-2.325

-2.33

-2.335

Score

-2.345

235

-2.355

-2.365

Plot of best scores K2GA

(] L) L] L]
%00 (3 %% 000°%,%%% o0,
L]

x 10"
T 0ge® oo %o 2315
L]
oo ° . .
2320 .
. 2325
-2.331

-2.335

Score

-2.345

-2.351

-2.355

L
25
Run

L L L L
5 10 15 20

a) K2GA

L
30

-2.365

Asymptotic best score

Plot of best scores ChainGA

L L L), L L L
35 40 45 50 5 10 15

L L L L
20 25 30 35

L L |
40 45 50
Run

b) ChainGA

Figure 8: Best found Structures at Each Run (Car Network)

Table 2: Success Rates
Asia Network | Car Network | Alarm Network
K2GA 100% 98% 75%
ChainGA 90% %58 75%

Table 3: Experimental Results

a) Asia 5000 Cases
Avg Best Score FE’s

b) Car Diagnosis 10000 Cases
Avg Best Score FE’s

c) Alarm 3000 Cases
Avg Best Score FE’s

K2GA -11244.3 £ 2.0

3645 £+ 968

-23168.5 £ 21.0 2227.96 £+ 395

-30068.4 £ 164 2458.4 + 474

ChainGA | -11248.1 £ 11.0

1924 £ 273

-23213.3 £ 152 1018.7.+ 177

-30097.3 + 141 1844(1421) £ 116

RLD Car (50 runs)

——K2GA
L| = - -ChainGA

Runs completed (%)

! L L L)
1500 2000 2500 3000 3500

Factor evaluations

L L
0 500 1000

Figure 9: Run Length Distribution (Car Network
50 Runs)

1269

We ran each algorithm 60 times and recorded the score and
evaluations results in Table 3c. In this experiment, we fix
the number of orderings to go through to the K2 phase to
50% of the population, i.e. 5 orderings in this case.

6. DISCUSSION

For the Asia dataset, an ensemble of 30 experiments were
ran for each algorithm. We scored the original network
structures and stopped each run when the resulting score
is a percentage away from the original network score. As
we can see from Figure 4, both algorithms managed to re-
cover a near optimal Asia network structure with one edge
missing from the VisitAsia node to Tuberculosis. Table 3a
also shows comparable average network scores and success
rates (Table 2). The difference is apparent in the number of
factor evaluations needed to achieve these structures (Fig-
ure 5). We can notice the same pattern for the Car diagnosis
problem, where even though the recovered structures are not
identical, they are very similar and close to the original net-
work structure (Figures 7a and 7b). The scores illustrated
in Table 3b also do not seem to be significantly different.
Figures 8a and 8b show the plot of the resulting best scores
of all runs for each of the algorithms. Again the noticeable
difference seems to be in the number of factor evaluations
carried out by each of the algorithms, although the success
rate is about 58% for ChainGA (Table 2) for this problem
and therefore we might need to run the experiments twice
as often to get the same results (Figure 9). More experi-
ments will be carried out in the future in order to explain
this result.

RLD Alarm (60 runs)

70

@ @
S S
T T

Runs completed (%)
8

301

h L L L L)
1500 2000 2500 3000 3500 4000

Factor evaluations

L L
[500 1000

Figure 10: Run Length Distribution (Alarm Net-
work 60 Runs)

For the Alarm problem, we ran each experiment 60 times.
Table 3c records the results. The difference between the
average best scores achieved by each approach is negligi-
ble. However, we can see the reduction in the number of
factor evaluations when using the ChainGA approach. In-
deed K2GA needs nearly as much as double the number to
find similar network structures. Furthermore, the number
of evaluations reported in the table is when at the K2 search
phase of ChainGA, we run the search on 50% of the popu-
lation, i.e. in this case 5 orderings. In general we would run
only a percentage of 10 to 20% of the population at the end
of the run by K2, which would need in this case less number
of factor evaluations (e.g.1421 for 20% of the population).
Figure 10 shows the run length distribution for each of the
algorithms. We can see how the ChainGA runs completed
need less factor evaluations than their K2GA counterparts.
For both algorithms, the success rate is comparable as we
can see from Table 2 about 45 runs have completed suc-
cessfully out of the 60 runs carried out for each. The best
scores found for each run for both algorithms can be seen in
Figures 11a and 11b.

We speculate that this good performance is somewhat re-
lated to the nature of the problems used. All three networks
used in this work are diagnostic and rely immensely on the
causal relationship between the factors of the problem. The
chain structures emphasize a certain choice of causal links
given a certain ordering and therefore where the ordering
considered is close to the optimal ordering, the chain struc-
ture seem to give us enough information about the network
structure to build.

7. CONCLUSION AND FUTURE WORK

We proposed a method for reducing the computation time
needed for learning Bayesian network structures. The pro-
posed method uses a chain-model GA which relies on chain
structures for the evaluation of node orderings of which
Bayesian network structures are then searched for using K2
search. We applied our model to the Asia, the Car and
the Alarm networks; three different benchmark datasets of
various complexity. We compared our method to the GA
designed by Larrafiaga for searching for Bayesian network
structures through the space of node orderings.

1270

Plot of best scores K2GA

R4
Asymptotic best score
-2.96
L]
-2.98- . PSR] .
.
e ®e ° . e e
. ° ° .
o, © o ° .
2 3 Ty . L3 . 3
3 ' ° o o .
) L]
° o . °«°®,
L] L]
o o ° °
-3.02¢% .
L)
. .
L] L]
-3.041
L]
L]
-3.06
.
5 10 15 20 25 30 35 40 45 50 55 60
Run
a) K2GA
x10° Plot of best scores ChainGA
SR
Asymptotic best score
-2.96
-2.98- .
L L]
o 3 o o° . e o o . ®%,
] ° ° ® o g0 o
8 oy ® o
& ° o0 o o 00
LI o ° " ° ° ¢ o o0

-3.02 .

-3.04f ° .

-3.06 .

L L L L
30 35 40 45
Run

b) ChainGA

L
25

Figure 11: Best found Structures at Each Run
(Alarm Network)

Our preliminary results show that our method obtained com-
parable results in term of structure score and structure topol-
ogy to those obtained by K2GA but in a reduced number of
factor evaluations. This seems promising although for the
Car Diagnosis problem as we have shown, the success rate
is lower and although this might be solved with restarts, in
future work, we would like to investigate the reasons for this
and explore whether or not this is problem related. More-
over, to improve success rate we would like to build on the
idea of the chain and investigate the complete structure as-
sociated with an ordering. I.e. where each node in the
ordering is connected to the nodes coming after it in the
node order given (Figure 2b). Using this complete structure
to filter orderings we speculate will result in better quality
network structures as the optimal structure should be con-
tained within this complete structure. In practice this might
be less efficient than the simple chain structure approach as
it will require a greater number of factor evaluations. Pre-
liminary experiments on the Asia dataset have proved this.
Work on customizing the scoring metric we use to cater for
these chain structures and not penalize them for complexity
is also envisaged. Consequently, another avenue we would
like to explore is the use of other available scoring metrics
such as the MDL principle.

8.

ACKNOWLEDGMENTS

The Authors would like to thank the Robert Gordon Uni-
versity for their support and funding of this research.

9.
1]

2]

[6]

[7]

8]

[9]

(14]

(15]

REFERENCES

Bayesia. Bayesialab Bayesian network software.
http://www.bayesia.com/.

I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and
G. F. Cooper. The ALARM monitoring system: A
case study with two probabilistic inference techniques
for belief networks,. Proceedings of the Second
European Conference on Artificial Intelligence in
Medical Care, Springer-Verlag, Berlin., pages
247-256, 1989.

BNJ. Bayesian network tools in Java.
http://bnj.sourceforge.net/.

R. R. Bouckaert. Probabilistic network construction
using the minimum description length principle.
Lecture Notes in Computer Science, 747:41-48, 1993.
R. R. Bouckaert. Bayesian Belief Networks: From
Construction to Inference. PhD thesis, University of
Utrecht, 1995.

W. Buntine. Operations for learning with graphical
models. Journal of Artificial Intelligence Research,
2:159-225, 1994.

D. Chickering. Learning Bayesian networks is
NP-Complete. In Proceedings of AI and Statistics,
1995.

D. Chickering, D. Heckerman, and C. Meek.
Large-sample learning of Bayesian networks is
NP-Hard. J. Mach. Learn. Res., 5:1287-1330, 2004.
C. Chow and C. Liu. Approximating discrete
probability distributions with dependence trees. IEEE
transactions on Information Theory, 14:462-467, 1968.
G. Cooper and E. Herskovits. A Bayesian method for
the induction of probabilistic networks from data.
Machine Learning, 9:309-347, 1992.

R. G. Cowell, S. L. Lauritzen, A. P. David, and D. J.
Spiegelhalter. Probabilistic Networks and Expert
Systems. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1999.

L. de Campos and J. Huete. On the use of
independence relationships for learning simplified
belief networks. International Journal of Intelligent
Systems, 12:495-522, 1997.

N. Friedman and M. Goldszmidt. Learning Bayesian
networks with local structure. Proceedings of the 12th
Conference on Uncertainty in Artificial Intelligence,
pages 252-262, 1996.

N. Friedman, I. Nachman, and D. Peér. Learning
Bayesian network structure from massive datasets:
The ”sparse candidate” algorithm. In Uncertainty in
Artificial Intelligence, pages 206—215, 1999.

J. Habrant. Structure learning of Bayesian networks
from databases by genetic algorithms-application to
time series prediction in finance. In ICFEIS, pages
225-231, 1999.

1271

(16]

29]

D. Heckerman, D. Geiger, and D. Chickering.
Learning Bayesian networks: The combination of
knowledge and statistical data. In KDD Workshop,
pages 8596, 1994.

M. Koivisto and K. Sood. Exact bayesian structure
discovery in Bayesian networks, 2004.

P. Larranaga, C. Kuijpers, and R. Murga. Learning
Bayesian network structures by searching for the best
ordering with genetic algorithms. IEEE Transactions
on System, Man and Cybernetics, 26:487-493, 1996.
P. Larranaga and Y. Yurramendi. Structure learning
approaches in causal probabilistic networks, 1998.

S. L. Lauritzen and D. J. Spiegelhalter. Local
computations with probabilities on graphical
structures and their application to expert systems.
Journal of the Royal Statistical Society, 50(2):157-224,
1988.

Netica. Netica Bayesian network software from
Norsys. http://www.norsys.com.

A. J. Novobilski. The random selection and
manipulation of legally encoded Bayesian networks in
genetic algorithms. In IC-AI, pages 438-443, 2003.

G. Provan and M. Singh. Learning Bayesian networks
using feature selection. 1995.

R. Robinson. Counting labeled acyclic digraphs. New
Directions in the Theory of Graphs, In Frank Harary,
editor . Academic Press, New York, pages 239-273,
1973.

P. Spirtes, C. Glymour, and R. Scheines. Causation,
Prediction and Search. Lecture Notes in Statistics,
New York: Springer Verlag, 81, 1993.

M. Teyssier and D. Koller. Ordering-based search: A
simple and effective algorithm for learning Bayesian
networks. In Proceedings of the 21th Annual
Conference on Uncertainty in Artificial Intelligence,
pages 584-59, Arlington, Virginia, 2005. AUAI Press.
S. van Dijk, D. Thierens, and L. C. van der Gaag.
Building a GA from design principles for learning
Bayesian networks. In GECCO, pages 886-897, 2003.
D. Whitley. The GENITOR algorithm and selection
pressure: Why rank-based allocation of reproductive
trials is best. In J. D. Schaffer, editor, Proceedings of
the Third International Conference on Genetic
Algorithms, San Mateo, CA, 1989. Morgan Kaufman.
M. L. Wong, S. Y. Lee, and K. S. Leung. A hybrid
data mining approach to discover Bayesian networks
using evolutionary programming. In GECCO ’02:
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 214-222, San
Francisco, CA, USA, 2002. Morgan Kaufmann
Publishers Inc.

0. Woodberry, A. Nicholson, K. Korb, and C. Pollino.
Parameterising Bayesian networks. In Australian
Conference on Artificial Intelligence, pages 1101-1107,
2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

