
The Complexity of Quantifier Elimination and Cylindrical
Algebraic Decomposition

Christopher W. Brown
Department of Computer Science, Stop 9F

United States Naval Academy
Annapolis, MD 21402, USA
wcbrown@usna.edu

James H. Davenport
Department of Computer Science

University of Bath
Bath BA2 7AY, England

J.H.Davenport@bath.ac.uk

ABSTRACT
This paper has two parts. In the first part we give a sim-
ple and constructive proof that quantifier elimination in real
algebra is doubly exponential, even when there is only one
free variable and all polynomials in the quantified input are
linear. The general result is not new, but we hope the simple
and explicit nature of the proof makes it interesting. The
second part of the paper uses the construction of the first
part to prove some results on the effects of projection order
on CAD construction — roughly that there are CAD con-
struction problems for which one order produces a constant
number of cells and another produces a doubly exponential
number of cells, and that there are problems for which all
orders produce a doubly exponential number of cells. The
second of these results implies that there is a true singly
vs. doubly exponential gap between the worst-case running
times of several modern quantifier elimination algorithms
and CAD-based quantifier elimination when the number of
quantifier alternations is constant.

Categories and Subject Descriptors
G.4 [Mathematics of Computing]: Mathematical Soft-
ware—Algorithm design and analysis

General Terms
Algorithms, Theory

Keywords
cylindrical algebraic decomposition, quantifier elimination

1. INTRODUCTION
In [6], Davenport & Heintz prove that the worst-case run-

ning time for a real quantifier elimination algorithm is

Ω
“

22(r−2)/5
”

,

where r is the number of variables in the input formula1.
They do this by giving a family of quantified formulas, de-

1The version described in detail in the Davenport & Heintz

Copyright 2006 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored byan employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
ISSAC’07, July 29–August 1, 2007, Waterloo, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-743-8/07/0007 ...$5.00.

fined by a parameter n, with two free and 6n quantified
variables, for which any equivalent quantifier-free formula
requires 22n

symbols to write down densely. Weispfenning,
in [21], had already shown that quantifier elimination is in-
herently doubly exponential (even for linear inputs), but the
Davenport–Heintz construction had the advantage of being
elementary and constructive.

Section 3 of this paper presents a construction very similar
to the Davenport–Heintz construction and, similarly, uses it
to prove that real quantifier elimination is doubly exponen-
tial in the worst case. However, our results improve on theirs
in the following respects:

1. The quantified formulas of our construction are linear,
i.e. for every (in)equality f σ 0 (σ ∈ {=, 6=, <, >,≤,≥
}), the polynomial f has total degree one. Thus our
construction proves that linear quantifier elimination is
doubly exponential. The Davenport–Heintz construc-
tion requires non-linear polynomials.

2. We do not need to assume a dense representation of
polynomials to prove a doubly exponential bound.

3. We get a better bound, namely 22(r−1)/3

. Moreover,
the construction is simpler — it is easier to follow and
requires only one free variable.

The second point requires some elaboration. The dense rep-
resentation of a degree-n polynomial in x is a list of its n+1
coefficients, e.g. element li is the coefficient of xn−i. This
does not necessarily correspond to the data structures used
in quantifier elimination programs. Our doubly exponential
bound is valid even if we assume that atomic formulas are
of the form fe0

0 · . . . · f
ek
k σ 0, where the fi are sparse rep-

resentations of polynomials. This corresponds much more
closely to the data structure one would expect programs to
use.

The remainder of the paper applies the “linear Davenport–
Heintz” construction of Section 3 to prove some results on
the effect of projection order on Cylindrical Algebraic De-
composition (CAD) construction.

• We show that there are problems for which projection
order is “maximally important”, meaning that it can
make the difference between a constant number of cells
or a doubly exponential number of cells.

paper gives a slightly worse bound with (r − 2)/6 in the
second exponent rather than (r−2)/5, but is much simpler.
In the remainder of this paper, it we will always refer to the
simpler version of that construction.

• Then we show that there are problems for which all
projection orders are bad, i.e. that they all result in
CADs with a doubly exponential number of cells.

This second result has an interesting implication. There are
several modern quantifier elimination algorithms [16, 2, 1]
that are doubly exponential only in the number of quanti-
fier alternations (i.e. changes from ∃ to ∀ or vice versa).
We show that CAD-based quantifier elimination has dou-
bly exponential worst case running time even if there are
no quantifier alternations. Thus, there is a true singly ex-
ponential vs. doubly exponential gap between the running
times of these modern QE algorithms and QE by CAD, not
just a gap in the running time analyses. To our knowledge
this is a new result.

2. HEINTZ’S CONSTRUCTION
In [10], Heintz shows that quantifier elimination over al-

gebraically closed fields is doubly exponential. The basic
idea behind his proof is that the language of first-order logic
with equality allows one to write a concise expression for the
function fn(x) defined by the following recursion:

fn(x) = fn−1(fn−1(x))

where f0 is given explicitly. If f0(x) = x2, for example, this
recursion produces

fn(x) = x22n

.

A first-order formula with free variables x and y defines
the function y = f(x) if, for any value assigned to x, f(x) is
the only value for y satisfying the formula. Given formula
Φ0(x, y) defining some function f0(x), Heintz’s construction
builds a formula Φn with free variables xn and yn that de-
fines yn = fn(xn) via the following recursive rule:

Φn(xn, yn) :=

∃zn∀xn−1, yn−1

2

6

6

6

4

2

4

yn−1 = yn ∧ xn−1 = zn

∨
yn−1 = zn ∧ xn−1 = xn

3

5

⇒
Φn−1(xn−1, yn−1)

3

7

7

7

5

(1)

Essentially, this formula encodes the two relationships yn =
fn−1(zn) and zn = fn−1(xn) which, of course, imply yn =
fn−1 (fn−1(xn)). Assuming Φ0 is quantifier-free, Φn con-
tains two free and 3n quantified variables, and has bit-
length Θ(n lg n); Θ(n) symbols, but since variable symbols
require lg n bits, Θ(n lg n) bits. In fact, Heintz described
the construction slightly differently, using the scoping rules
for quantifiers to reduce the number of variable names to 6.
We get his construction by replacing each xi, yi and zi with
xi mod 2, yi mod 2 and zi mod 2. In this form, the bit-length of
the formula is Θ(n).

In [10], Heintz used his construction with Φ0 := y0 = xd
0

to produce a formula Φn(xn, yn) defining yn = xd2n

n . He
then argued that a quantifier-free equivalent to Φn(xn, 1),

which defines the d2n

th roots of unity, requires at least d2n

symbols when written densely. Davenport and Heintz [6]
modeled this complex construction (choosing d = 4) over
the reals, representing each complex variable with real vari-
ables for the real and imaginary parts. Thus, instead of one
free complex variable, they have two free real variables, and
in place of 3n quantified complex variables, they have 6n

1

1

−1

0

0

1

1

−1

0

0

1

1

−1

0

0

Figure 1: Plot of f0, as defined by (2), followed by
plots of the functions f1 and f2 defined by the recur-
sion (1).

quantified real variables. Their input contains one polyno-
mial of total degree four, and one polynomial of total degree
three; the rest are of total degree one. Moreover, two vari-
ables actually appear with exponents of three and four. It
requires some work in the real setting to relate the number
of isolated points in the solution set to the size of the result-
ing formula, but they prove that any quantifier-free formula

defining 22n+1

isolated points, written densely, requires at
least 22n

symbols to write.
In the following section, we give a construction for a fam-

ily of formulas over the reals based on Heintz’s construction,
which is similar to the Davenport–Heintz construction, and
which also shows real quantifier elimination to be doubly
exponential. However, this new construction has several ad-
vantages and offers some new insights.

3. A LINEAR CONSTRUCTION FOR THE
REALS

We now consider a particular construction for the first-
order theory of real algebra. We define our base function f0

as follows:

f0(x) =



2x for x ≤ 1/2
2− 2x for x > 1/2

(2)

and consider the functions fn, n > 0, defined from f0 by the
recursive rule (1). Figure 1 gives the graphs of f0, f1 and
f2.

Theorem 1. Let f
(k)
0 denote the k-fold composition of f0

with itself. For all x ∈ [0, 1− 1/2k], 1− f
(k)
0 (x) = f

(k)
0 (x +

1/2k). Note that applying this twice shows f
(k)
0 is periodic

in [0, 1] with period 1/2k−1.

Proof. We proceed by induction. The theorem is easily
verified for k = 1, 2, 3. Suppose the theorem hold for some

k ≥ 3. Since f
(3)
0 is periodic with period 1/4, f

(k+1)
0 (x) =

f
(k+1)
0 (x + 1/4), so it suffices to prove the k + 1 case holds

for 0 ≤ x ≤ 1/4. In this case

1− f
(k+1)
0 (x) = 1− f

(k)
0 (2x)

= f
(k)
0

`

2x + 1
2k

´

= f
(k+1)
0

`

x + 1
2k+1

´

.

Theorem 2. Given f0 as in (2), define fn for n > 0 by
the recursion (1). The graph of fn in [0, 1] is the polyline

connecting points p0, . . . , p22n where pk = (k/22n

, k mod 2).

Proof. Note that fn = f
(2n)
0 . For 0 ≤ x ≤ 1/22n

we

have fn(x) = 22n

x, since each application of f0 is on an
argument less than or equal to 1/2. Thus, the graph of
fn over that interval is the segment connecting (0, 0) and

(1/22n

, 1). By Theorem 1, fn(x) = 1 − fn(x − 1/22n

) in

the interval [1/22n

, 2/22n

], which means its graph over that

interval is the segment connecting (1/22n

, 1) and (2/22n

, 0).
The theorem then follows from the periodicity of fn.

We can define the function f0 given in (2) with the fol-
lowing formula: Φ0 := x0 ≤ 1/2 ∧ y0 = 2x0 ∨ x0 > 1/2 ∧
y0 = 2 − 2x0. Let Φn(xn, yn) be the formula defined by
Heintz’s construction with this Φ0. Note that the “length”
of Φn(xn, yn) is linear in n under any reasonable definition
of “length”.

Theorem 3. The formula Φn(xn, 1/2) defines the set


k

22n +
1

22n+1

˛

˛

˛

˛

k ∈ Z and 0 ≤ k < 22n
ff

.

Proof. Φn(xn, 1/2) defines the midpoints of the 22n

seg-
ments in the graph of fn on [0, 1]. It is clear from the defini-
tion of f0 that fn(x) < 0 outside of [0, 1], so no other points
are in the set defined by Φn(xn, 1/2).

4. QUANTIFIER ELIMINATION IS
DOUBLY EXPONENTIAL

Both [10] and [6] argue that quantifier elimination takes
doubly exponential time by producing problems whose solu-
tions are doubly exponential in length. We will follow suit,
and try to prove bounds on the length of a quantifier-free
formula defining Φn(xn, 1/2), i.e. defining

Sn =



2k − 1

22n+1

˛

˛

˛

˛

k ∈ Z ∧ 0 < k ≤ 22n
ff

.

Notice that the above makes it explicit that if Φn(N/D, 1/2),

where N/D is lowest terms, D = 22n+1.

Theorem 4. Let F (x) be a formula in which each atom
is of the form cLe1

1 ·L
e2
2 ·. . .·L

ek
k σ0, where the c is a non-zero

integer, the ei’s are positive integers, and each Li is a sparse
integer polynomial, i.e. of the form

Pt

j=1 cjx
dj , cj 6= 0 and

d1 > d2 > · · · > dt. If F (x) is equivalent to Φn(x, 1/2), then

the bit length of F (x) is at least 22n

(2n + 1).

Proof. Clearly, for each integer k ∈ [1, 22n

], there must
be at least one factor Li of one atomic formula that is zero
at x = (2k − 1)/22n+1. For a given Li, let k1, . . . , kr define

the r elements of Sn at which Li vanishes. Since 22n+1x −
(2kj−1) divides Li for each kj , the leading coefficient of Li is

divisible by
“

22n+1
”r

, and thus has bit-length at least r2n +

r. Summing over all factors of Li of all atomic formulas, we
will add at least 2n +1 bits for each of the 22n

points in Sn.
Thus, the bit-length of F is at least 22n

(2n + 1).
Theorem 4 is stronger than a doubly exponential bound on

any defining formula for Sn using a sparse polynomial rep-
resentation, since expanding an expression like (x2

1−1)(x4
2−

1) · · · (x2k

k − 1) increases its size exponentially. (Note, how-
ever, that the ei’s are a bit of a red herring, since there’s
no need to ever use any exponent other than one or two.)
Moreover, inequalities like f1f2 · · · fk < 0 when expanded
to an equivalent boolean combination of inequalities in the
fi’s individually can result in an exponential increase in size.
Therefore, some quantifier elimination programs — notably
Redlog [8] — use this product-of-sparse-polynomials repre-
sentation.2 Our doubly exponential bound applies to them,
none the less. The next theorem gives a doubly exponen-
tial bound for formulas that are allowed to use arbitrary
arithmetic expressions to define equalities and inequalities
in the output. This, however, means that exponentiation of
anything other than variables is not allowed.

Theorem 5. Let F (x) be a formula in which each atom
is of the form LσR, where L and R are expressions involving
∗,+,−,()s, integers, and powers of x. If F (x) is equivalent

to Φn(x, 1/2), then the bit length of F (x) is at least 22n

2n−1.

Proof. Consider the atomic formula LσR. Given an ex-
pression E, let l(E) be the bit-length of E. Let the expres-
sion P be the polynomial L − R written in fully expanded
sparse form.

Lemma 1. The largest coefficient in P has bit-length at
most 2 · l(LσR).

The proof of the previous theorem shows that when each
atomic formula Ai is normalized to the form fiσ0, where f
is in expanded form, the sum over each Ai of the bit-length
of the leading coefficient of fi is at least 22n

(2n + 1).
Let N be the number of atomic formulas in F . For each

Ai = LσR, let ri be the number of elements of Sn at which
L−R is zero. Since 2l(Ai) ≥ ri(2

n + 1), we have:

PN

i=1 2l(Ai) ≥ 22n

(2n + 1)

2
PN

i=1 l(Ai) ≥ 22n

(2n + 1)

l(F) > 22n

2n−1.

Proof. (Lemma 1). Let B be the bit-length of the atomic
formula LσR, i.e. l(LσR). The language allowed for ex-
pressing L and R maps directly onto expression trees with
leaf nodes that are either integers or powers of x. Interior
nodes are binary ∗, + or − operators, or unary − operators.
Consider an expression tree for L − R. Let n1, . . . , nr be
the binary + or − nodes in the tree. For a bit-sequence
s = s0, . . . , sr, we define the R(s), the restriction of the tree
based on s, to be the tree obtained by replacing left subtree
of ni with zero if si = 0, and the right subtree with zero
if si = 1. Clearly, the tree is equivalent to

P

s∈{0,1}r R(s).

2The partially factored representation is useful in many
other kinds of algebraic computation as well, since impor-
tant operations, like resultants, can be done more efficiently
in partially factored form than in expanded form.

Since R(s) is just a product, the bit-length of the coefficient
of the power-product it defines is at most the bit-length of
R(s) which, in turn, is at most the bit length of the atomic
formula LσR, i.e. B. Since there are 2r terms in the sum,
the largest coefficient in the expanded result is at most 2r2B .
Finally, there can be at most B +-operations, so the largest
coefficient is at most 22B , which has bit-length 2B.

It would be nice, of course, to be able to prove a doubly ex-
ponential bound even when exponentiation of arbitrary ex-
pressions is allowed. We have not been able to do this. What
about other representations? For example, what if equali-
ties/inequalities of the form fσ0 were allowed to be written
using “straight-line programs” to represent f? Straight-line
programs (SLPs) in this context are sequences of statements
of the form z ← x or z ← x op y, where z is a variable, x
and y are variables or rational number constants, and op is
either addition, subtraction or multiplication (see [13, 14]
for more general discussions of SLPs). It is relatively easy
to prove that such a “formula” would have size at least 2n,
but we do not know if this bound is tight. We note that for
Heintz’s complex quantifier elimination problem (whose so-

lution is x22n

= 1), a straight-line program of length O(2n)
does suffice.

Theorem 6. There is a straight-line program of length

O(2n) that computes x22n

− 1.

Proof. Heintz’s construction can be modelled with a
straight-line program, except that we need multiple copies
of each Φi, whereas Heintz’s construction is based on mak-
ing a single copy of each Φi do “double duty”. Let Ψ0(x; z)
be the program z ← x∗x, where z is the output variable and
x the input. We will give a recursive rule for constructing a
program Ψn(x; z), where z is the output variable and x the

input, that computes z = x22n

.

Ψn(x; z) := Ψn−1(x; y), Ψn−1(y; z)

Clearly, the program Ψn(x; z), z ← z−1 computes x22n

−1.
Since the program size doubles at each step, the size of Ψn

is O(2n).
We can follow the same approach with the Davenport–

Heintz construction, although we need to simultaneously
construct programs for the real and imaginary parts of the
complex exponentiations the construction models. Inter-
estingly, we cannot follow this approach with the “linear
Davenport–Heintz” construction from the previous section.
The reason is that our functions cannot be modeled by
straight-line programs because they rely on branching. The
point of the construction is that it uses boolean operators
and inequalities to define a non-polynomial (albeit piece-
wise polynomial) function. So while it is possible that there
are singly exponential length formulas defining Sn when
straight-line programs are used to define inequalities, it is
not possible to create such formulas simply by mimicking
the construction of the linear Davenport–Heintz quantifier
elimination problem.

One might consider looking at the additive complexities of
the polynomials in a formula as a metric. The additive com-
plexity of a polynomial p is the minimum number of binary
additions/subtractions needed in a straight-line program for

p. Risler [17] gives a bound of Ck2

on the number of real
roots of a univariate polynomial of additive complexity k,

where C ≤ 5. But neither this, nor the improved bound
given by Rojas [18] for rational roots gives a better bound
on the bit-length of a SLP-based formula than coefficient
size or degree arguments.

5. CAD AND PROJECTION ORDER
Cylindrical Algebraic Decomposition (CAD) is the basis of

a well-known approach to real quantifier elimination. While
its complexity has always appeared to be doubly exponential
in the number of variables (free and quantified, irrespective
of the number of quantifier alternations), and is proven to
be so later in this section, it has small enough constants
to be practical on real problems. It has several implemen-
tations, including an implementation in Mathematica. It
is the only known method that produces simple formulas
— e.g. without redundancy or unsatisfiable subformulas —
and the CAD data-structure can be used for far more than
just quantifier elimination (for instance the Mathematica
implementation is used for many things, including numeri-
cal integration and assumption facilities).

Variable ordering is an issue for all quantifier elimination
algorithms. Those that can eliminate blocks of variables at
a time are only concerned with the partial ordering induced
by quantifier alternations. CAD, by contrast, requires a to-
tal ordering of all variables, free and bound. Essentially, the
r problem variables are assigned to the axes of R

r, so that
the geometric operation of projection is tied to the elimina-
tion of a specific variable. It has long been observed that
CAD construction is quite sensitive to variable order, and
Dolzmann et al. [7] gave an empirically grounded greedy
algorithm for determining a good projection order. In this
section, we consider the theoretical limits on the importance
of variable order on CAD construction. We will assume a
general familiarity with algorithms for CAD construction.
The basic results are:

• There is a polynomial p in 3n + 3 variables such one
projection order results in a sign-invariant CAD for p
consisting of 3 cells in R

3n+3, while another projection
order results in a sign-invariant CAD for p consisting of
more than 22n

cells. Thus, the maximum theoretical
difference possible resulting from different projection
orders is, in fact, achievable.

• There is a set A of 3n2 linear polynomials in 3n + 1
variables such that any CAD in which the elements
of A are sign-invariant, regardless of projection order,
consists of at least 22n

cells. In other words, there are
some problems for which all orders are bad.

5.1 Problem in which projection order is max-
imally important

In this section, we present a polynomial p such that choice
of projection order plays a maximally important role in the
complexity of constructing a CAD for p.

Theorem 7. Define the polynomial p(x) as follows:
0

@

(yn−1 − 1/2)2

+
(xn−1 − zn)2

1

A

0

@

(yn−1 − zn)2

+
(xn−1 − xn)2

1

A xn+1

+
Pn−1

i=1

0

@

(yi−1 − yi)
2

+
(xi−1 − zi)

2

1

A

0

@

(yi−1 − zi)
2

+
(xi−1 − xi)

2

1

A xi+1

+

0

@

(y0 − 2x0)
2

+
(α2 + (x0 − 1/2))2

1

A

0

@

(y0 − 2 + 2x0)
2

+
(α2 − (x0 − 1/2))2

1

A x

+a

Consider the variable order

a, xn, zn, xn−1, yn−1, zn−1, . . . x1, y1, z1, x0, α, y0, x

where we eliminate variables from right to left, i.e. x first
and a last. Any sign-invariant CAD for p using the above
order consists of at least 22n

cells, while there is a sign-
invariant CAD using the reverse order that consists of three
cells in R

3n+3.

The proof of this theorem is in Section 6. The result does
not depend on any assumptions concerning how the CAD is
constructed. It depends only on the most fundamental part
of the concept of delineability — namely that if a polyno-
mial is delineable over a region, it is either nullified3 at every
point in the region, or at no point in the region. A weaker,
though much simpler, result along the same lines comes di-
rectly from the linear construction given in Section 3. It can
be shown that the set of polynomials in Φn(xn, 1/2) gives
rise to a CAD with doubly exponentially many cells for one
projection order, and only singly exponentially many cells
for another.

5.2 When all projection orders are bad
In this section, show that there are problems for which

all projection orders are “bad”, i.e. produce a doubly ex-
ponential number of cells, even if there are no quantifier
alternations.

Theorem 8. Given variables x1, . . . , x3n, define the fol-
lowing set of polynomials:

P =
[

i6=j

{xi − xj , xi − 2xj , xi − (2− 2xj), xj − 1/2} .

Any CAD (even if it is a partial CAD) in which the elements

of P are sign-invariant has at least 22n

cells.

Proof. This theorem follows trivially from the obser-
vation that no matter what order is chosen, all the poly-
nomials from the linear Davenport–Heintz construction for
Φn(xn, yn) are present in S. Moreover, whichever variable
xj is playing the role of the yn, xj − 1/2 is in P . Thus, the
set of projection factors in the last variable to be projected
will contain all the projection factors that result from CAD
construction for Φn(xn, 1/2), which means there will be at

least 22n

cells in R
1. Since there are already 22n

cells af-
ter the first lifting step, the use of partial CAD — which

3A polynomial p(x1, . . . , xk) is nullified at α ∈ R
i, i < k, if

p(α1, . . . , αi, xi+1, . . . , xk) is the zero polynomial.

may decide not to lift over certain cells — doesn’t affect the
bound.

It was shown in [6] that CAD construction is, in the worst
case, doubly exponential in the number of variables when the
projection order is fixed. The above theorem shows that the
result holds even when the projection order is completely
unconstrained. To our knowledge, this is new.

In terms of quantifier elimination, this result has an in-
teresting consequence. It shows that, given a quantified for-
mula containing all the elements of P , quantifier elimination

by CAD takes time (and space) Ω
“

22n
”

, regardless of the

number of alternations. However, if there are no alternations
then several more recent quantifier elimination algorithms
have running times that are singly exponential in n, [16, 1].
Renegar’s algorithm, for example, has a running time (bit

complexity) of 2O(n) on formulas formed from polynomials
in the set P with only one quantifier block (assuming the
formula has polynomial length in n). To our knowledge, this
is the first proof that the singly exponential vs. doubly ex-
ponential gap between these more modern QE methods and
QE by CAD is a gap in running time, and not just a gap in
the precisions of their respective running time analyses.

It has been observed that the problem with using CAD to
do quantifier elimination is that it does too much — that it
simultaneously solves all QE problems formed from the in-
put polynomials as long as they do not conflict with the vari-
able order used. The above theorem justifies this observa-
tion. The “problem” with CAD-based quantifier elimination
on an input formula containing the polynomials in P is that,
while solving the QE problem it was given, it will “solve”
the linear Davenport–Heintz problem that could have been
constructed from the same polynomials and variable order.
Thus it will do doubly exponential work.

6. PROOF OF THEOREM 7
This section provides a proof of Theorem 7.

Proof. If a is the first variable projected, then we have
an empty projection. thus, p is delineable over R

3n+2 using
this ordering, and the three cells we get upon lifting into
a-space correspond to p < 0, p = 0 and p > 0. In fact,
assuming that when choosing a sample point from the inter-
val (−∞,+∞) we always choose zero, and when choosing a
sample point from the positive (resp. negative) half-line we
always choose +1 (resp. −1), which any reasonable imple-
mentation will do, the sample points we get will be (0,−1),
(0, 0) and (0, +1).

However, if we follow the given order, we will show that
the definition of delineability requires us to have single-point
cells in the induced CAD of R

2 at each of the points (0, (2k−

1)/22n+1), where k is an integer in [1, 22n

]. The idea is that
we are forcing ourselves to solve the linear Davenport Heintz
problem in order to maintain delineability.

For polynomial p to be delineable, any point in R
3n+2 at

which p evaluates to a non-zero polynomial in R[x] must be
in a different cell than any point at which p evaluates to the
zero polynomial (p is said to be nullified at such points).
Note that “p evaluates to the zero polynomial” means that
each of its coefficients as a polynomial in x evaluates to
zero. These coefficients are essentially the components of
the linear Davenport–Heintz construction. Clearly,
`

(yi−1 − yi)
2 + (xi−1 − zi)

2
´ `

(yi−1 − zi)
2 + (xi−1 − xi)

2
´

is zero if and only if yi−1 = yi∧xi−1 = zi∨yi−1 = zi∧xi−1 =
xi. Similarly, there exists an α such that

0

@

(y0 − 2x0)
2

+
(α2 + (x0 − 1/2))2

1

A

0

@

(y0 − 2 + 2x0)
2

+
(α2 − (x0 − 1/2))2

1

A

is zero if and only if y0 = f0(x0), where f0 is defined by (2).
So it ought to be clear that the nullification of p is connected
to satisfying the linear Davenport–Heintz construction. The
remainder of this proof shows that for any CAD in which
p is sign-invariant, if the solutions to Φn(xn, 1/2) are not
single-point cells in the induced CAD of R

2 ∩ a = 0, then
Φn(xn, 1/2) is satisfied in some open interval, which is a
clear contradiction of our previous results.

Looking at Heintz’s construction (1), we see that the uni-
versal quantifiers are a bit of a trick. For all but two possible
values of (xn−1, yn−1),

2

4

yn−1 = yn ∧ xn−1 = zn

∨
yn−1 = zn ∧ xn−1 = xn

3

5⇒ Φn−1(xn−1, yn−1)

is satisfied trivially, because the left-hand side is false. So
the construction may be read as “there exists a zi such
that for both yi−1, xi−1 := yi, zi and yi−1, xi−1 := zi, xi,
Φi−1(xi−1, yi−1)”. Viewed this way, we almost have a purely
existential formula, and we almost have the concept of a wit-
ness when the formula is satisfiable. Normally, a witness is
an assignment of values to each existentially quantified vari-
able that satisfies the unquantified part of the formula. We
can extend this a bit to get a well-defined notion of witness
for this almost existentially quantified formula.

Let λ denote the empty string, and S denote the set of
binary strings of length less than n, i.e. {w ∈ {0, 1}∗ | |w| <
n}.

Definition 1. The function W : S −→ R is a witness
to Φi(a, b) if i = 0 and Φ0(a, b), or i > 0 and W (0s)
is a witness to Φi−1(W (λ), b) and W (1s) is a witness to
Φi−1(a,W (λ)).

With the function W , one could verify Φn(a, b). We will
finish our proof by constructing witnesses for the formulas
Φn((2k − 1)/22n+1, 1/2), and showing that if our theorem
were false, then for some k there would be witnesses for
Φn(α, 1/2) for all α close enough to (2k − 1)/22n+1.

Let αλ = (2k − 1)/22n+1, βλ = 1/2. Note that βλ =
fn(αλ). Let γλ = fn−1(αλ). For s ∈ S, given αs and βs

satisfying βs = fn−|s|(αs), let γs = fn−|s|−1(αs) and define

α0s = γs, β0s = βs, and
α1s = αs, β1s = γs.

Then the function W : S −→ R given by W (s) = γs is a

witness for Φn((2k − 1)/22n+1, 1/2).

Lemma 2. For all binary strings s, |s| ≤ n, αs 6= βs.
Note that this implies γs 6= αs and γs 6= βs. (Proof is given
later.)

Given k and s, let Ak,s be the point

a = 0,

xn = (2k − 1)/22n+1,
zn = γλ,
xn−1 = αs1 ,
yn−1 = βs1 ,
zn−1 = γs1 ,
...
x1 = αs1···sn−1 ,
y1 = βs1···sn−1 ,
z1 = γs1···sn−1 ,
x0 = αs1···sn ,

α =
p

αs1···sn − 1/2 if real, else
p

1/2 − αs1···sn

y0 = βs1···sn

Clearly, p is nullified at Ak,s, for all k and s. So at Ak,s either
the factor

`

(yi−1 − yi)
2 + (xi−1 − zi)

2
´

is zero or the factor
`

(yi−1 − zi)
2 + (xi−1 − xi)

2
´

is zero but, by Lemma 2, never
both. By the definition of delineability, p is nullified at every
point in the cell containing Ak,s. As we move around in that
cell, if we stay suitably close to Ak,s then for each i, 1 <
i ≤ n, the same factor of xi’s coefficient vanishes as vanishes
for Ak,s itself. Suppose (0, ω), where ω = (2k− 1)/22n+1, is
not in a single point cell in the induced CAD of R

2. Since
p is not nullified if a 6= 0, 0 is a single-point cell in the
induced CAD of R

1. Thus, for any ω′ suitably close to ω,
for each Ak,s there is a point A′

k,s in the same cell as Ak,s

that projects down onto (0, ω′). The z-coordinates of all
such A′

k,s comprise a witness for Φn(ω′, 1/2).

Proof. Lemma 2 The lemma is clearly true if |s| = 0.
If α0s = β0s then βs = γs. However, βs = fn−|s|−1(γs)
by definition, so γs = fn−|s|−1(γs). If α1s = β1s then
αs = γs. However, γs = fn−|s|−1(αs) by definition, so
γs = fn−|s|−1(γs). Either way, γs = fn−|s|−1(γs). It is
clear that the fixed points of fn−|s|−1 are 0, and a collection
of values with denominator not equal to a power of 2. None
of the αi or βi will be zero or have a denominator that is
not a power of 2.

7. CONCLUSION
In this paper we have presented a new, elementary and

explicit proof that the worst case for real quantifier elimi-
nation, even in the linear case, is doubly exponential in the
number of quantifier alternations. Using the construction
behind the proof, we have given a stronger lower bound on
the worst case running time for CAD construction, we have
shown that projection order in CAD construction can result
in a polynomial versus doubly exponential running time gap
on the same set of input polynomials, and we have shown
that there are sets of input polynomials for which CAD con-
struction is doubly exponential regardless of projection or-
der.

This last result justifies the assertion that “CAD does too
much” to be an efficient tool for quantifier elimination. We
should point out, however, that this does not mean that we
think that CAD is unimportant. First of all there is the
issue of whether the asymptotic cross-over points between
CAD and more modern QE algorithms actually occur in the
range of problems that are even close to accessible with cur-
rent machines: [11] argues that they are not. Moreover, the
real point is that one can and should do more with CAD.

One way this fits into the quantifier elimination problem
is by demanding simple quantifier-free equivalents. This is
something that CAD can do [12, 4, 5] that no other quanti-
fier elimination algorithm can. Additionally, many questions
can be answered by CAD directly much more efficiently than
by casting the problem as a QE problem and then solving
it with CAD. An example of this is determining the dimen-
sion of the set of solutions of some input formula, though
there are many more examples. The second author’s work on
simplification of expressions involving elementary functions
(see for example [3]) provides an example of an application
of CAD that could not be accomplished by QE alone.

As a final remark, it is perhaps worth mentioning that
the construction given here can also be used to prove that
“generic” quantifier elimination, even in its weakest inter-
pretation, is inherently doubly exponential. Quantifier elim-
ination can be done more quickly if a program is allowed to
give less than a complete, correct solution [19, 20, 9, 15].
What if we interpret this to mean that the solution need
only be correct up to a measure-zero subset of parameter
space — without requiring that we specify where such er-
rors may occur (note that this is weaker than the solutions
given by the cited methods). Consider the quantified for-
mula ∃ [Φn(xn, yn) ∧ yn ≥ 1/2], with Φn as defined in Sec-

tion 3. Its solution consists of the 22n

− 1 disjoint, closed
intervals in [0, 1] of the form

h

(2k + 1)/22n+1

, (2k + 3)/2n+1
i

which covers exactly half the unit interval. By reasoning
similar that in Section 4 a formula of length at least 22n

is required to represent this set — even generically. This
kind of reasoning is, we feel, an advantage of an elementary,
explicit proof like that of the doubly-exponential complexity
of quantifier elimination given in this paper.

8. REFERENCES
[1] Basu, S. New results on quantifier elimination over

real closed fields and applications to constraint
databases. Journal of the ACM 46, 4 (1999), 537–555.

[2] Basu, S., Pollack, R., and Roy, M.-F. On the
combinatorial and algebraic complexity of quantifier
elimination. J. ACM 43, 6 (1996), 1002–1045.

[3] Beaumont, J., Bradford, R., Davenport, J., and

Phisanbut, N. Adherence is better than adjacency.
In Proceedings ISSAC 2005 (2005), M. Kauers, Ed.,
pp. 37–44.

[4] Brown, C. W. Guaranteed solution formula
construction. In Proc. International Symposium on
Symbolic and Algebraic Computation (1999),
pp. 137–144.

[5] Brown, C. W. Simple CAD construction and its
applications. Journal of Symbolic Computation 31, 5
(May 2001), 521–547.

[6] Davenport, J. H., and Heintz, J. Real quantifier
elimination is doubly exponential. Journal of Symbolic
Computation 5 (1988), 29–35.

[7] Dolzmann, A., Seidl, A., and Sturm, T. Efficient
projection orders for CAD. In Proceedings of the 2004
International Symposium on Symbolic and Algebraic
Computation (ISSAC 2004) (Santander, Spain, July
2004), J. Gutierrez, Ed., ACM.

[8] Dolzmann, A., and Sturm, T. Redlog: Computer
algebra meets computer logic. ACM SIGSAM Bulletin
31, 2 (June 1997), 2–9.

[9] Dolzmann, A., Sturm, T., and Weispfenning, V.

A new approach for automatic theorem proving in real
geometry. Journal of Automated Reasoning 21, 3
(1998), 357–380.

[10] Heintz, J. Definability and fast quantifier elimination
in algebraically closed fields. Theoretical Computer
Science 24 (1983), 239–277.

[11] Hong, H. Comparison of several decision algorithms
for the existential theory of the reals. Tech. Rep.
91-41, Research Institute for Symbolic Computation
(RISC-Linz), 1991.

[12] Hong, H. Simple solution formula construction in
cylindrical algebraic decomposition based quantifier
elimination. In Proc. International Symposium on
Symbolic and Algebraic Computation (1992),
pp. 177–188.

[13] Ibarra, O. H., and Leininger, B. S. The
complexity of the equivalence problem for straight-line
programs. In STOC ’80: Proceedings of the twelfth
annual ACM symposium on Theory of computing
(New York, NY, USA, 1980), ACM Press,
pp. 273–280.

[14] Kaltofen, E. Greatest common divisors of
polynomials given by straight-line programs. J. ACM
35, 1 (1988), 231–264.

[15] Lazard, D., and Rouillier, F. Solving parametric
polynomial systems. Tech. rep., INRIA, October 2004.

[16] Renegar, J. On the computational complexity and
geometry of the first-order theory of the reals, parts
I-III. Journal of Symbolic Computation 13 (1992),
255–352.

[17] Risler, J.-J. Additive complexity and zeros of real
polynomials. SIAM J. Comput. 14, 1 (1985), 178–183.

[18] Rojas, J. M. Additive complexity and roots of
polynomials over number fields and p-adic fields. In
ANTS (2002), pp. 506–516.

[19] Seidl, A., and Sturm, T. A generic projection
operator for partial cylindrical algebraic
decomposition. In Proc. International Symposium on
Symbolic and Algebraic Computation (2003),
R. Sendra, Ed., pp. 240–247.

[20] Sturm, T. Real Quantifier Elimination in Geometry.
PhD thesis, Department of Mathematics and
Computer Science. University of Passau, Germany,
D-94030 Passau, Germany, December 1999.

[21] Weispfenning, V. The complexity of linear problems
in fields. J. Symb. Comput. 5, 1-2 (1988), 3–27.

