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ABSTRACT
For decades, the high-performance computing (HPC) community
has focused on performance, where performance is defined as speed.
To achieve better performance per compute node, microproces-
sor vendors have not only doubled the number of transistors (and
speed) every 18-24 months, but they have also doubled the power
densities. Consequently, keeping a large-scale HPC systemfunc-
tioning properly requires continual cooling in a large machine room,
thus resulting in substantial operational costs. Furthermore, the in-
crease in power densities has led (in part) to a decrease in system
reliability, thus leading to lost productivity.

To address these problems, we propose a power-aware algorithm
that automatically and transparently adapts its voltage and frequency
settings to achieve significant power reduction and energy savings
with minimal impact on performance. Specifically, we leverage
a commodity technology called “dynamic voltage and frequency
scaling” to implement our power-aware algorithm in the run-time
system of commodity HPC systems.

1. MOTIVATION
The notion of power-aware (or low-power) computing isnot new,

particularly in the areas of embedded systems and mobile com-
puting [3, 4, 8, 9, 10, 13, 15, 17, 18, 19, 20, 23, 24, 26, 27, 28]
where reducing energy consumption is critical in extendingbattery
life. Laptops, for example, use simple power-aware algorithms that
are based only on CPU (i.e., processor) utilization [10], making
them ideal for interactive use. That is, if a laptop user is reading a
document for an extended period of time while running on battery
power, the laptop would automatically scale down the frequency
and supply voltage of the CPU in order to reduce power consump-
tion, as power consumption is proportional to the CPU frequency
and to the square of the CPU supply voltage. The commodity tech-
nology that enables the above scaling of frequency and voltage for
CPUs is calleddynamic voltage and frequency scaling (DVFS).1 In
�
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contrast, the notion of power awareness (or low power)is new to
the high-performance computing (HPC) community.

Why the above distinction? First, the computational charac-
teristics found in embedded systems and mobile computing, e.g.,
laptop, differ markedly from those found in HPC. As a result,the
power-aware algorithms that work well for the interactive use found
in laptops fail miserably with respect to scientific applications [11].
Second, power awareness is needed for different reasons. Inem-
bedded and mobile computing, power awareness is needed to ex-
tend battery life; whereas in HPC, it is needed to reduce the oper-
ational costs of powering and cooling HPC systems as well as to
improve reliability.

The issue of reliability in large-scale HPC systems is particularly
insidious. For example, Table 1 shows the current reliability of
leading-edge supercomputers [21]. With power densities doubling
every 18-24 months (Figure 1) and large-scale HPC systems con-

System CPUs Reliability

ASCI 8,192 MTBI: 6.5 hrs.
Q HW outage sources: storage, CPU , memory.
ASCI 8,192 MTBF: 5 hrs (’01) and 40 hrs (’03).
White HW outage sources: storage, CPU, 3rd-party HW.
PSC 3,016 MTBI: 9.7 hours.
Lemieux
Google 15,000 20 reboots/day; 2-3% machines replaced/year.

HW outage sources: storage, memory.

MTBF/I: mean time between failures/interrupts

Table 1: Reliability of Leading-Edge Supercomputers.
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Figure 1: Moore’s Law for Power Consumption.



Service Cost of One Hour
of Downtime

Brokerage Operations $6,450,000
Credit Card Authorization $2,600,000
eBay $225,000
Amazon.com $180,000
Package Shipping Services $150,000
Home Shopping Channel $113,000
Catalog Sales Center $90,000

Table 2: Estimated Costs of an Hour of System Downtime.

tinuing to increase in size, the amount of heat generated (and hence,
temperature) continues to rise. And as a rule of thumb, Arrenhius’
equation as applied to microelectronics notes that for every 10�C
(18�F) increase in temperature, the failure rate of a system doubles.

Our own informal empirical data, taken from late 2000 to early
2002, supports Arrenhius’ equation. In the winter, when thetem-
perature inside our warehouse-based work environment was around
70-75�F, our traditional cluster —Little Blue Penguin (LBP) —
failed approximately once a week; in the summer, when the tem-
perature increased to 85-90�F, the cluster failed twice a week.

Even more worrisome is how our computing environment af-
fected the results of the Linpack benchmark running on a very
dense, 18-node Beowulf cluster. After ten minutes of execution,
the cluster produced an answer outside the residual (i.e., asilent
error) when running in our dusty 85�F warehouse but produced
the correct answer when running in a 65�F machine-cooled room.
Clearly, the HPC community must worry about power and its effect
on reliability.

Furthermore, every hour that an HPC system is unavailable trans-
lates to lost business or lost productivity. This issue is ofextraor-
dinary importance for companies that rely on parallel-computing
resources for their business, as noted in Table 2 [1].

Therefore, to address the above issues, we started theSupercom-
puting in Small Spaces (SSS) project (http://sss.lanl.gov/) in 2001.
The first major instantiation of the SSS project was a 240-CPU
energy-efficient cluster calledGreen Destiny. This Linux-based
cluster possessed a footprint of only five square feet and sipped
as little as 3.2 kW of power (i.e., two hairdryers). It produced 101
Gflops on the Linpack benchmark, which was as fast as a 256-CPU
SGI Origin 2000, as shown at http://www.top500.org/list/2001/11/.
Despite its admirable performance at the time, many still felt that
Green Destiny sacrificed too much performance to achieve low
power consumption and high reliability, i.e., no unscheduled down-
time in its 24-month lifetime while running at 7,400 feet above sea
level in a dusty 85�F warehouse without any cooling, air filtration,
or air humidification.

To simultaneously address the performance issue as well as cre-
ate a general power-aware solution that works on any commodity
platform that supports DVFS, we propose a power-aware algorithm
called the

�
-adaptation algorithm, implement the algorithm in the

run-time system, and evaluate its performance on commodityHPC
platforms, both uniprocessor and multiprocessor. The end result is
a power-aware run-time (PART) system that transparently and au-
tomatically adapts CPU voltage and frequency in order to reduce
power consumption (and energy usage) while minimizing impact
on performance.

2. RELATED WORK
At the present time, there exists a handful of insightful case stud-

ies about the feasibility of employing DVFS to reduce the ther-
mal power envelope of a high-performance computing (HPC) node,
and thus, improve reliability, while minimizing impact on perfor-
mance [2, 6]. With this knowledge that DVFS can indeed be ef-
fective in HPC, the next step is to develop various approaches that
leverage DVFS. Such approaches include manual DVFS tuning [5,
7], compiler analysis with profiling [12], MPI library-based exten-
sions, or an adaptive run-time system [11].

Manual DVFS tuning often involves profiling of the execution
behavior of a program (or its structures) at all possible frequency-
voltage settings. It can be as simple as recording the execution time
of the program at each available CPU frequency, and then using the
profile to select the lowest frequency that satisfies the performance
constraint to execute the program. The feasibility studiesof [2, 6]
fall into this category.

However, this approach is very coarse-grained. For example,
Figure 2 shows the profile for three frequency-voltage combina-
tions on SPECtomcatv benchmark. With a 5% performance-
slowdown constraint in place, the figure indicates that there does
not exist any DVFS setting that simultaneously reduces energy con-
sumption and meets the 5% slowdown constraint. The 1.6GHz/1.3V
and 1.2GHz/1.1V settings produce 6% and 22% performance slow-
downs, respectively.
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Figure 2: The performance-power profiles oftomcatv.

A more sophisticated approach to manual DVFS tuning is to look
into the program structure of the code and profile each interesting
program sub-structure for its execution behavior. Fortomcatv
whose program structure is shown in Figure 3, this means profiling
the execution times of loop nests L1 to L9 at each CPU frequency
astomcatv executes a sequence of nested loops. Thetomcatv
benchmark spends most of its execution time executing loopsL2
to L8 iteratively, with the number of iterations controlledby the
variable ITACT in the code. In [5], Freeh et al. used this approach
to select the CPU frequency to run for each loop nest and MPI call.

Figure 4 shows the execution times of the most time-consuming
loops (i.e., L2, L5, L7, and L8) intomcatv. For readability, we
normalize all loop execution times with respect to the execution
time of theentire benchmark running at 2.0 GHz.2 The figure
indicates that with a 5% performance-slowdown constraint,there
exist many scheduling options. For example, we can execute loop
L2 at 1.6 GHz, resulting in a 3% slowdown; or we can execute
loops L5, L7, and L8 at 1.2GHz.

2That is, at the 2.0GHz/1.5V setting, 32% of the execution time is
spent in loop L2, 24% in L5, 18% each in L7 and L8, and 8% in
the remaining loops in total.



Figure 3: The program structure of SPEC benchmarktomcatv.
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Figure 4: The execution-time profile oftomcatv.

Though the above approach for manual DVFS tuning is straight-
forward, it can be quite tedious, especially as the number ofvalid
frequency-voltage settings increases and the program structure be-
comes more complex. Consequently, due to the complexity of
manual DVFS tuning for large-scale applications such as climate
modeling, automated profiling and subsequent profile analysis is
often desired. In [12], Hsu and Kremer propose such an imple-
mentation based on compiler techniques. In their implementation,
compiler techniques such as control-flow-graph analysis are used to
deal with the time overheads caused by setting the CPU frequency
and voltage as each such setting takes on the order of milliseconds.
Fortomcatv, their software chooses to slow down loops L6, L7,
and L8 to 1.2 GHz.

The problems with the aforementioned approaches are three-
fold. First, they are all essentially profile-based and generally re-
quire the source code to be modified. As a result, these approaches
are not completely transparent to the end user. Second, because
the profile information can be influenced by program input, these
approaches are input-dependent. Third, as noted in [12], the instru-
mentation of source code may alter the instruction access pattern,
and therefore, may produce profiles that are considerably different
from the execution behavior of the original code. So, in theory,
while these approaches might provide maximal benefit relative to
performance and power, they are of little use to end-user applica-
tions. Therefore, we believe that there exists a need for a transpar-
ent and self-adapting run-time system for power awareness.

The current approach towards an adaptive run-time system for
power awareness is based primarily on CPU utilization, e.g., cpus-
peed on laptops. For cpuspeed, when CPU utilization is below
some threshold, the CPU voltage and frequency are lowered to
conserve energy; when the CPU utilization exceeds some thresh-
old, the CPU voltage and frequency are raised to improve perfor-
mance. Although this simple approach is both application- and
input-independent, it is only effective for interactive use, e.g., lap-

top usage of Microsoft Office, and depends critically upon the choice
of the threshold values [10]. For scientific applications, its effec-
tiveness is abysmal as such applications do not have an abundance
of CPU idle time [11].

Other more sophisticated approaches based on CPU utilization
such as those in [25] only provide loose control over DVFS-induced
performance slowdown, e.g., 37% slowdown with only 12% system
energy savings for the SPECgo benchmark, because the CPU uti-
lization ratio by itself does not provide enough timing information.
Therefore, we conclude that there exists a need for a power-aware
run-time system that has tight performance-slowdown control and
can deliver considerable energy savings.

3. � -ADAPTATION ALGORITHM FOR A
POWER-AWARE RUN-TIME SYSTEM

Leveraging the DVFS mechanism, we propose an automatically-
adapting, power-aware algorithm that is transparent to end-user ap-
plications and can deliver considerable energy savings with tight
control over DVFS-induced performance slowdown. Performance
slowdown in this paper is defined as the increase in relative execu-
tion time with respect to the execution time when the programis
running at the peak CPU speed. A user can specify the maximum
allowed performance slowdown� (e.g.,� = 5%), and our algorithm
will schedule CPU frequencies and voltages in such a way thatthe
actual performance slowdown does not exceed� .

Our power-aware algorithm, which we call the
�

-adaptation al-
gorithm for reasons that will become apparent later, is an interval-
based scheduling algorithm, i.e., scheduling decisions are made
at the beginning of time intervals of the same length (e.g., every
second). Interval-based algorithms are generally easy to imple-
ment because they make use of existing “alarm clock” functionality
found in the operating system. By default, our power-aware algo-
rithm (and its software realization as part of the run-time system)
sets the interval length to be one second. However, the algorithm
allows a user to change this value per program execution. Thevalue
is denoted as� hereafter.

In contrast to previous approaches, we want to ensure that our
power-aware algorithm does not require any application-specific
information a priori, e.g., profiling information, and moregener-
ally, that it is transparent to end-user applications. Therefore, it
must implicitly gather such information, for example, by monitor-
ing the intensity level of off-chip accesses during each interval �
in order to make smart scheduling decisions. Intuitively, when the
intensity level of off-chip accesses is high, it indicates that pro-
gram execution is in a non-CPU-intensive phase, hence indicating
that this phase can execute at a lower CPU frequency (and voltage)
without affecting its performance.

While conceptually simple, this type of algorithm must over-
come the following obstacle in order to be effective: The quan-
tification of the intensity level of off-chip accesses needsto have a
direct correlation between CPU frequency changes and execution-



time impact; otherwise, the tight control of DVFS-induced perfor-
mance slowdown will be difficult to achieve. For example, one
might think that the high cache-miss rate is a suitable indicator that
program execution is in a non-CPU-intensive phase. But unless
we can predict how the execution time will be lengthened for ev-
ery lower CPU frequency that may be executed in this non-CPU-
intensive phase, the information of the high cache-miss rate will not
help in the selection of the appropriate CPU frequency to maintain
tight control of DVFS-induced performance slowdown.Therefore,
we need a model that associates the intensity level of off-chip ac-
cesses with respect to total execution time.

To overcome the above problem, we propose a model that is
based on the MIPS rate (i.e., millions of instructions per second)
which can correlate the execution-time impact with CPU frequency
changes:
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The leftmost term � �� �� ��� �� � represents the execution-time impact
of running at CPU frequency

�
in terms of the relative execution

time with respect to running at the peak CPU frequency
����

. The

rightmost term
� “ �� ��� � 
” �


 introduces a parameter, called
�

, that quantifies the intensity level of off-chip accesses. By defi-
nition,

� � 
 indicates that execution time doubles when the CPU
speed is halved, whereas

� � �
means that execution time remains

unchanged no matter what CPU speed will be used. Finally, the
middle term � �� � ��� �� �� �� � �� � provides a way to describe the observed
execution-time impact and will be used to adjust the value of

�
.

Ideally, if we knew the value of
�

a priori, we could use Equa-
tion (1) to select an appropriate CPU frequency to execute inthe
current interval such that the DVFS-induced performance slow-
down is tightly constrained. (The selection of this CPU frequency
will be presented later.) But because we want ensure that ourpower-
aware algorithm does not require any application-specific informa-
tion a priori,

�
is not known a priori. Therefore, the challenge for

our automatically-adapting, power-aware algorithm lies in the “on-
the-fly” estimation of

�
at run time, and hence, leads us to name

our power-aware algorithm as the
�

-adaptation algorithm.
To estimate

�
at run time, we use a regression method over Equa-

tion (1) and leverage the fact that most DVFS-enabled microproces-
sors support a limited set of CPU frequencies to perform the regres-
sion. That is, given� CPU frequencies

��� �    � �! �, we derive a
particular

�
value that will minimize the least-squared error:
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By equating the first differential of (2) to zero, we can derive
�

as
a function of the MIPS rates and CPU frequencies, as follows:
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Once we calculate the value of
�

using Equation (3), we can
plug the value into Equation (1) and calculate the lowest CPUfre-

quency
�

whose predicted performance slowdown
� “ �� ��� � 
”

does not exceed the maximum possible performance slowdown� .
Mathematically, this establishes the following relationship: � �
� “ �� ��� � 
”

. By solving this equation for
�

, we determine the

desired frequency
� )

that the CPU should run at:
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Conglomerating the aforesaid theory results in the
�

-adaptation
algorithm shown in Figure 5. In essence, this power-aware algo-
rithm wakes up every� seconds. The algorithm then calculates the
value of

�
using the most up-to-date information on the MIPS rate

based on Equation (3). Once
�

is derived, the algorithm computes
the CPU frequency

� )
for the interval based on Equation (4). Since

a DVFS-enabled microprocessor only supports a limited set of fre-
quencies, the computed frequency

� )
may need to be emulated in

some cases. (The emulation scheme is shown in Figure 6. The ratio- denotes the percentage of time to execute at frequency
�.

.) This
sequence of steps is repeated at the beginning of each subsequent
interval until the program executes to completion.

Hardware:

� frequencies
�� � �    � �! �.

Parameters:

� : the time-interval size (default 1 sec).

� : slowdown constraint (default 5%).

Algorithm:

Initialize mips(
�%), / � 
�    � �, by executing

the program at
�% for � seconds.

Repeat

1. Compute coefficient
�

.

� � P% � �� ���( � 
� �mips��� �� �
mips ��( � � 
�

P% � �� ���( � 
�'
2. Compute the desired frequency

� )
.
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3. Execute the current interval at
� )

.
4. Updatemips(

� )
).

Until the program is completed.

Figure 5:
�

-Adaptation Algorithm for a Power-Aware Run-
Time System.

To extend the
�

-adaptation algorithm from the uniprocessor en-
vironment that is implicitly assumed above to a multiprocessor en-
vironment, we simply replicate the algorithm onto each processor
and run each local copyasynchronously. We adopt this strategy for
the following reasons. First, the intensity level of off-chip accesses
is a per-processor metric. Second, a coordination-based power-
aware algorithm would need extra communication, and likely, syn-
chronization — both of which add to the overhead costs (in terms of
performance and energy) of running the power-aware algorithms.
And as we will see in Section 5.2, the

�
-adaptation algorithm run-

ning asynchronously on each processor is quite effective insaving
energy while minimizing impact on performance.

In summary, our
�

-adaptation algorithm is a power-aware and
interval-based algorithm that is parameterized by two user-tunable
variables: the maximum performance-slowdown constraint� and
the interval length� . The default values of which are 5% and one



3. Perform the following steps:

(a) Figure out
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Figure 6: Step 3 of
�

-Adaptation Algorithm.
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second, respectively. To facilitate an empirical evaluation of the ef-
fectiveness of this algorithm, we implement it in the run-time sys-
tem, thus creating a power-aware run-time (PART) system. Wethen
test the PART system on uniprocessor and multiprocessor platforms
using appropriate benchmark suites, as discussed in Section 4.

4. EVALUATION METHODOLOGY AND
EXPERIMENTAL SETUP

In this section, we describe the evaluation methodology andex-
perimental setup that we use to evaluate the effectiveness of our�

-adaptation scheduling algorithm.

4.1 Evaluation Methodology
To measure the execution time of a program, we use the global-

time query functions provided by the operating system. In this
paper, the execution time is referred to as the wall clock time of
program execution.

The energy consumption of a program execution is often mea-
sured via a power meter. In our experiments, the power meter is
connected to a power strip that passes electrical energy from the
wall power outlet to the system under test, as shown in Figure7.
The power meter periodically samples the instantaneous system
wattage, and thetotal system energy consumption is then calculated
as the integration of these wattages over time. Specifically, we use
a Yokogawa WT210 power meter whose sampling rate is 20�s per
sample and note that the power meter is also capable of performing
the aforementioned integration internally.

Unfortunately, evaluating DVFS scheduling algorithms based on
total system energy savings can be misleading since DVFS only af-
fects CPU energy consumption. Because the percentage of CPU
energy consumption, relative to the total system energy usage, can
vary widely from platform to platform, the evaluation results be-
come platform-dependent.

For example, consider two DVFS scheduling algorithms, each
of which is able to reduce the total system energy by 9%. Intu-
itively, the two algorithms might be considered equally effective.
However, what if one algorithm was evaluated on a HPC server
where the CPU accounts for 30% of the total system energy us-
age while the other algorithm was evaluated on a high-performance
laptop computer where the percentage increases to 60%? Backof
the envelope calculations3 show that the former algorithm reduces
CPU energy by 30% and the latter algorithm reduces CPU energy
by 15%. Clearly, the former algorithm is more effective thanthe
latter algorithm. This example illustrates that using the platform-
dependent, total system energy savings prohibits us from compar-
ing DVFS algorithms evaluated on different platforms. Therefore,
in this paper, we evaluate the effectiveness of our

�
-adaptation al-

gorithm based on CPU energy savings.
Unfortunately, direct measurements of CPU energy consumption

present technical challenges. A common but obtrusive method is to
place a shunt resistor in series with the microprocessor chip and its
input power supply. The power meter is connected to this shunt
resistor in order to measure the energy used by the microproces-
sor [22]. However, obtrusive methods based on shunt resistors are
argued to be less appropriate because shunt resistors interfere with
operation of the system under test and unsuitable when thereare
large variations in current [14].

In this paper, we use an unobtrusive method to estimate the CPU
energy consumption. We leverage a first-order power model for the
CPU [16] and divide the sampled system wattage from the power
meter into two parts:

���� �� � � � � �  � '  �
| {z }

the CPU power

� �	��

(5)

The first term in the system wattage (
����

) equation represents the
CPU power consumption and depends on the current voltage

�
and CPU frequency

�
.4 The second term (

�	��

) is independent

of voltage and frequency and captures the power consumptionof
system components that arenot driven by CPU clocks.

To estimate the CPU energy consumption for a given application-
input pair, we perform a least-squared regression on Equation (5)
with observation data derived from executing the application-input
pair at each possible frequency-voltage combination. Thissimple
approach turns out to be quite accurate when using the R-squared
metric. The R-squared metric indicates the relative predictive power
of a model; its range is between zero and one, inclusive. The closer
the R-squared metric is to one, the more predictive that Equation (5)
is. For all the benchmarks that we ran in this paper, R-squared is
very close to one. Therefore, we adopt this unobtrusive approach to
estimate CPU energy consumption in order to derive CPU energy
savings that the

�
-adaptation algorithm can deliver.

4.2 Systems Under Test
In this section, we detail the hardware and software that we used

for the performance evaluation of the
�

-adaptation algorithm in
our power-aware run-time (PART) system. We begin by present-
ing the configurations of the uniprocessor and multiprocessor hard-
ware platforms under test. Then, we describe the systems software
on these platforms, followed by information about our implemen-
tation of the

�
-adaptation algorithm. Finally, we list the set of se-

3For the first algorithm, the CPU energy savings is calculatedas��
�� � ���
; for the second algorithm, the savings is

����� � 
�� .
4The constant

�
in

�  � '  �
denotes the switched capacitance

which caused the energy to be consumed.
�

is application- and
input-dependent.



Figure 8: Celestica A8440.

�
(GHz)

�
0.8 0.9
1.6 1.3
1.8 1.4
2.0 1.5

Table 3: The Operating Points of Our Tested Computer Sys-
tems.

quential and parallel benchmarks that we used for the evaluation of
our

�
-adaptation algorithm.

The tested uniprocessor platform is based on an Asus K8V Deluxe
motherboard that is bundled with an AMD Athlon64 3200+ pro-
cessor (with 1-MB L2 cache) and 1-GB DDR-400 main memory.
The tested multiprocessor platforms include a cluster of four of the
above Athlon64-based compute nodes connected via Gigabit Ether-
net and another four-node quad-CPU cluster based on the Celestica
A8440 server. As shown in Figure 8, the Celestica A8440 server
is a 4U server with four AMD Opteron 846 processors (and also
1-MB L2 cache per processor) and 4-GB DDR-333 main memory.
This Opteron-based cluster is also connected via Gigabit Ethernet.

In our experiments, both Athlon64 3200+ and Opteron 846 pro-
cessors can execute from 800 MHz at 0.9 V to 2 GHz at 1.5 V.
Table 3 lists the four valid operating points (i.e., frequency-voltage
pairs) that our

�
-adaptation algorithm can set during program exe-

cution. In theory, an Athlon64 3200+ processor can support clock
frequencies from 800 MHz to 2 GHz at an increment of 200 MHz.
So, why are only four operating points used? In practice, theset
of CPU frequencies that can transition to each other directly (i.e.,
without intermediate frequencies) in an Athlon64 3200+ processor
is restricted. Since the time overhead for a direct frequency-voltage
transition is already on the order of milliseconds (as shownin Fig-
ure 9), we restrict ourselves to use only a subset of supported CPU
frequencies that have direct transitions to each other. Forother fre-
quencies, we emulate them using the algorithm in Figure 6.

The operating system on the tested hardware platforms is SuSE
Linux 2.6.7. This Linux distribution comes with GNU compil-
ers 3.3.3, a DVFS interface calledcpufreq, and a DVFS ker-
nel module calledpowernow-k8. Thecpufreq interface al-
lows our

�
-adaptation algorithm to set a desired CPU frequency

by writing the frequency to a particular/sys file. We did not use
thepowernow-k8 kernel module in the distribution; instead, we
use a version ofpowernow-k8 that is freely downloadable from
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Figure 9: The Latency of Each Operating-Point Change.

the AMD website and allows us to specify Table 3 in the module.
The end result is that whenever we write the target CPU frequency
through thecpufreq interface, the CPU voltage associated with
this frequency, as specified in Table 3, will also be set automatically
in kernel space.

Our prototype implementation of the
�

-adaptation algorithm is
has less than 500 lines of C code. The use of the implementation is
similar to the use of a Unixtime command. The implementation
will fork two threads, one for the execution of the target program
(as specified on the command line) and the other for the execution
of Figure 5. Thus, our performance evaluation includes the time
and energy overheads of running the

�
-adaptation algorithm on top

of the normal program execution.
With respect to the benchmarks, we used the SPEC CFP95 and

CPU2000 benchmarks for the uniprocessor platform and the lat-
est NAS-MPI benchmarks, version 3.2, for the multiprocessor plat-
forms. With the exception of SPEC CPU2000 benchmarks, all the
other benchmarks were compiled using the GNU compiler 3.3.3
with optimization level-O3. The CPU2000 benchmarks were com-
piled using the Intel compiler 8.1 with the optimization level -xW
-ip -O3. We used the Intel compiler, instead of the GNU com-
piler, because CPU2000 contains several FORTRAN-90 codes that
the GNU compiler does not yet support. For the MPI benchmarks,
LAM/MPI version 7.0.6 was used to run the benchmarks.

5. EXPERIMENTAL RESULTS
This section presents a performance evaluation of our

�
-adaptation

algorithm as it is implemented in our power-aware run-time (PART)
system. As implicitly noted earlier, we evaluate the PART system
in both uniprocessor and multiprocessor environments.

5.1 Uniprocessor Platform
We first compare the performance of our automatically-adapting�

-adaptation algorithm (that is running in our power-aware run-
time system) to the compiler-based approach presented in [12] when
running the SPEC CFP95 benchmarks. Although the CFP95 bench-
marks have been retired for five years, they allow us to compare
the results from our

�
-adaptation algorithm to previous case stud-

ies [11, 12]. We then evaluate the effectiveness of our power-aware
run-time (PART) system when running the SPEC CPU200 bench-
mark suite.

5.1.1 SPEC CFP95 Benchmarks
Figure 10 shows a comparison of the actual performance slow-

down between the run-time approach (denoted asbeta) and the
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Figure 10: The Actual Performance Slowdown of the
�

-
Adaptive Run-Time Approach versus the Compiler-Based Ap-
proach of Hsu et al.

compiler approach (denoted ashsu). Here we see that the ac-
tual performance slowdown induced by the compiler algorithm is
poorly regulated given that the maximum performance-slowdown
constraint was specified as 5%. In contrast, the

�
-adaptation algo-

rithm, which is the foundation of our power-aware run-time (PART)
system, regulates the actual performance slowdown much better.

Further investigation reveals that the benchmarks that cause the
compiler approach to induce unacceptable performance slowdown
(i.e.,mgrid, turb3d, andapsi) have CPU-bound execution be-
havior. This implies that the

�
-adaptation algorithm for our PART

system will perform more effectively on CPU-bound programsthan
the compiler approach will. Empirical results from a laptopcom-
puter [11] corroborate the above conclusion.

The effectiveness of our PART system is due to the validity of
Equation (1). If we apply the least-squared regression on the equa-
tion using theoverall execution time at various CPU frequencies for
CFP95, we will see that R-squared is close to one for each CFP95
benchmark. In other words, Equation (1) is a good performance-
prediction model for CFP95.

Relative to CPU energy reduction, previous studies such as [11,
12] report an average CPU energy reduction of 20% using the com-
piler approach on a laptop computer. In contrast, the average CPU
energy savings for our uniprocessor HPC server platform using our
automatically-adapting software is about 11%. The gap between
the two energy-saving values is due to the difference in L2 cache
size. For the laptop, the L2 cache size is only 256 KB whereas the
L2 cache size for the HPC server is four times larger at 1 MB. Con-
sequently, the intensity ofoff-chip accesses for the laptop is signif-
icantly higher than for the HPC server, thus providing substantially
more opportunities for energy savings for the laptop.

5.1.2 SPEC CPU2000 Benchmarks
Here we evaluate the effectiveness of our PART system across

the entire SPEC CPU200 benchmark suite. Figure 11 shows the ac-
tual performance slowdown and the CPU energy savings delivered
by the PART system. The transparent and automatically-adapting�

-adaptation algorithm in the PART system reduces the CPU en-
ergy consumption by 12% (on average) with only a 4% actual per-
formance slowdown for SPEC CFP2000; for SPEC CINT2000, the
two numbers are 9.5% and 4.8%, respectively. Because the av-
erage

�
values for CFP2000 and CINT2000 are 0.66 and 0.83,

respectively, this means that CINT2000 is more CPU-bound than
CFP2000, and therefore, has fewer opportunities for energysav-
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Figure 11: The Actual Performance Slowdown and CPU En-
ergy Savings of CPU2000 Benchmarks Using Our PART Sys-
tem.

ings due to the correspondingly fewer off-chip accesses.

5.2 Cluster Platform
In this section, we present experimental results on an Athlon64-

base cluster with four single-CPU nodes connected via Gigabit
Ethernet as well as an Opteron-based cluster with four quad-CPU
nodes connected via Gigabit Ethernet. For both clusters, the MPI
implementation is LAM/MPI, version 7.0.6, and the benchmarks of
choice is the latest NAS-MPI benchmarks, version 3.2.

For our four-node Athlon64 cluster, Figure 12(a) shows the aver-
age

�
value for each of the eight NAS-MPI benchmarks as well as

the associated R-squared metric for the class B workload. (Recall
that the larger the

�
, the more CPU-bound the benchmark.) The

�

value of the benchmarks spans from 0.33 (IS benchmark) to 1.00
(CG and EP benchmarks) with an average value around 0.57. Com-
pared to the SPEC CPU2000 benchmarks, the NAS-MPI bench-
marks are generally less CPU-bound, which means more opportu-
nities that can be exploited by the PART system for CPU energy
reduction under the same performance-slowdown constraint� .

Figure 12(b) shows the actual performance slowdown and CPU
energy savings of NAS-MPI for the class B workload. On average,
our PART system saves 14% CPU energy at 5% actual performance
slowdown. For the class C workload, the average savings is about
12% at the cost of 4% actual performance slowdown, as shown in
Figure 13.

For the Opteron-based cluster, Figure 14 shows that our PART
system was able to save CPU energy ranging from 8% to 25%,
with an average savings of 18%. The average actual performance
slowdown is 3%.
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Figure 12: NAS-MPI for Class B Workload on the Athlon64-
Based Cluster.
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Figure 13: NAS-MPI for Class C Workload on the Athlon64-
Based Cluster.
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6. CONCLUSION
Power awareness has increasingly become an important issuein

high-performance computing (HPC). In HPC, ignoring power con-
sumption as a design constraint results in a system with highop-
erational costs for power and cooling and can detrimentallyimpact
reliability, which translates into lost productivity.

To address the above issues, we present a power-aware solu-
tion that works on any commodity platform that supports dynamic
voltage and frequency scaling (DVFS). Specifically, we propose a
power-aware algorithm called the

�
-adaptation algorithm and pro-

totype an implementation of the algorithm as a power-aware run-
time (PART) system. The PART system transparently and auto-
matically adapts CPU voltage and frequency so as to reduce power
consumption (and energy usage) while minimizing impact on per-
formance. The performance evaluation on both uniprocessorand
multiprocessor platforms show that the system achieves itsdesign
goal. That is, the system can save CPU energy consumption by
as much as 20% for sequential benchmarks and 25% for parallel
benchmarks that we tested, at a cost of 3-5% performance degrada-
tion. Moreover, the performance degradation was tightly controlled
by our PART system for all the benchmarks.
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