UC Berkeley
UC Berkeley Previously Published Works

Title
Productivity and performance using partitioned global address space languages

Permalink
https://escholarship.org/uc/item/3mrl1z9fg

Authors

Yelick, Katherine
Bonachea, Dan
Chen, Wei-Yu

Publication Date
2007-07-27

DOI
10.1145/1278177.1278183

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3mr1z9f8
https://escholarship.org/uc/item/3mr1z9f8#author
https://escholarship.org
http://www.cdlib.org/

Productivity and Performance Using Partitioned Global
Address Space Languages

Katherine Yelick'?, Dan Bonachea'?, Wei-Yu Chen'2, Phillip Colellaz,
Kaushik Datta'?, Jason Duell*?, Susan L. Graham!, Paul Hargrove'?,
Paul Hilfinger', Parry Husbands'2, Costin lancu?, Amir Kamil*,
Rajesh Nishtala!, Jimmy Su', Michael Welcome?, and Tong Wen?

University of California at Berkeley*
Lawrence Berkeley National Laboratory?

titanium-group@cs.berkeley.edu, upc@lbl.gov

ABSTRACT

Partitioned Global Address Space (PGAS) languages com-
bine the programming convenience of shared memory with
the locality and performance control of message passing.
One such language, Unified Parallel C (UPC) is an exten-
sion of ISO C defined by a consortium that boasts multiple
proprietary and open source compilers. Another PGAS lan-
guage, Titanium, is a dialect of JavaT™ designed for high
performance scientific computation. In this paper we de-
scribe some of the highlights of two related projects, the
Titanium project centered at U.C. Berkeley and the UPC
project centered at Lawrence Berkeley National Laboratory.
Both compilers use a source-to-source strategy that trans-
lates the parallel languages to C with calls to a communi-
cation layer called GASNet. The result is portable high-
performance compilers that run on a large variety of shared
and distributed memory multiprocessors. Both projects com-
bine compiler, runtime, and application efforts to demon-
strate some of the performance and productivity advantages
to these languages.

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Language Classifica-
tions—Concurrent, distributed, and parallel languages; E.1
[Data Structures]: Distributed data structures

General Terms

Languages, Performance, Human Factors

Keywords

UPC, Titanium, PGAS, Partitioned Global Address Space,
GASNet, One-Sided Communication, NAS Parallel Bench-

marks
1. INTRODUCTION

Copyright 2006 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.

PASCO’07, July 27-28, 2007, London, Ontario, Canada.

Copyright 2007 ACM 978-1-59593-741-4/07/0007 ...$5.00.

Partitioned global address space (PGAS) languages offer
programming abstractions similar to shared memory, but
with control over data layout that is critical to high per-
formance and scalability. The most common PGAS lan-
guages include Unified Parallel C (UPC) [34], Titanium (a
scientific computing dialect of Java) [17], and Co-Array For-
tran (CAF) [27]. In this paper we describe our experience
with the first two languages, UPC and Titanium. Compared
to approaches in which programmers use two-sided message
passing, these languages offer significant advantages in pro-
ductivity and, perhaps more surprisingly, real performance
advantages due to their use of faster one-sided communica-
tion. We describe some of these benefits by studying mi-
crobenchmarks and applications written in both languages.

Prerequisites for any successful parallel programming lan-
guage include ubiquity across parallel machines and interop-
erability with other languages and libraries. We have devel-
oped portable compilers for both UPC and Titanium based
on source-to-source translation and the use of a lightweight
communication layer called GASNet. Both languages run
on most high end machines as well as laptops, desktops,
and generic clusters; they can interoperate with Fortran, C,
C++, and MPI, so that programmers interested in experi-
menting with these languages can write part of their code in
a PGAS language without rewriting the entire application.

There are several commercial and open-source compilers
available for UPC [5, 11, 15, 19, 26]. In this paper we used
the Berkeley UPC compiler [5], which translates UPC to
ISO-compliant C using a compiler based on the Open64 in-
frastructure [28]. The Titanium compiler [33] uses a similar
source-to-source model, translating the extended Java lan-
guage to C. There is no Java Virtual Machine in the execu-
tion of Titanium, and therefore some Java features such as
dynamic class loading are not supported. In both cases the
translators perform serial and parallel optimizations that we
have described previously [9, 18, 32, 35|, although the lan-
guages also have sufficient support to allow for many kinds of
hand-tuning. On a shared memory machine, accesses to the
global address space translate into conventional load/store
instructions, while on distributed memory machines, they
translate into calls to the GASNet layer [6].

This paper gives an overview of the PGAS model and the
two languages (section 2), the performance implications of

one-sided communication (section 3), hand-optimized bench-
marks (section 4), some of our application experience (sec-
tion 5), and optimization techniques developed in the two
compilers (section 6). We end with a summary of the ongo-
ing and future plans for PGAS languages.

2. UPC AND TITANIUM

In a partitioned global address space model, a thread run-
ning on one processor can directly read or write the memory
associated with another. This supports the construction of
large shared data structures, such as sets, trees, matrices and
other array-based and pointer-based data structures. The
term global address space is used instead of shared memory
to distinguish the semantic notion that the collective mem-
ory of a set of threads is addressable by each (global ad-
dress space) from the hardware implementation technique in
which several processors can address a shared memory and
locally cache its contents. Implementations of a global ad-
dress space language may run on shared-memory hardware
or software that caches remote values, but the languages are
designed to encourage programmers to associate parts of a
distributed data structure with each thread and assume that
accesses to other parts are more expensive.

The upper half of Figure 1 shows a picture of the global
address space. Each thread has a space for private local
memory and some partition of the shared space to which it
has affinity. Variables in the shared space are accessible to
other threads through pointers and distributed arrays. Both
UPC and Titanium distinguish local and global pointers: lo-
cal pointers can only reference data within the same memory
partition, whereas global pointers can refer to data in an-
other partition. Local pointers are generally representable as
a simple memory address. On machines without hardware
support for a global address space, global pointers require
additional information to encode which thread identifier has
affinity to the data and an extra test for locality when the
pointer is dereferenced. This test is negligible when the data
is remote, but can be significant for truly local data.

The lower half of Figure 1 shows some example UPC vari-
able declarations that are also represented in the picture.
A private object may only be accessed by its correspond-
ing thread, whereas all threads can read or write any object
in the shared address space. The UPC code contains two
scalar integers, one private (mine) and one shared (ours),
as well as two shared arrays, one cyclically mapped (x) and
one blocked (y). The local pointer, loc, may only refer to
variables in the local partition, but they can be in either
private or shared space. The global pointer, glob, may refer
to remote or local variables. Titanium’s type system has
the same local vs. global distinction on pointers (i.e., refer-
ences), although it lacks the distributed array declarations
provided by UPC. The two languages also differ on the de-
fault reference type, which is local in UPC and global in
Titanium. In both languages, the partitioning of the shared
space into regions with logical affinity to threads allows pro-
grammers to explicitly control data layout, which is then
used by the runtime system to map threads and their asso-
ciated data to processors: on a distributed memory machine,
the local memory of a processor holds both the thread’s pri-
vate data and the shared data with affinity to that thread.

Each PGAS language design attempts to respect the lan-
guage philosophy of their underlying sequential language.

Thread, Thread,
ours:

| x{01xn] |
Shared

Lyopyin Mz
| loc: + | loc: /‘—l_//

|glob: | |glob:

Thread, ,

x(1]x[n+1] |

x[n-1],x[2n-1]

y[2n-2],y[2n-1]

=
[mine: |

Private

|mine: | |mine: |

#define n THREADS

shared int ours;

int mine;

shared double x[2*n];
shared [2] double y[2*n];
double *loc;

double shared *glob;

Figure 1: Partitioned Global Address Space and a
UPC code fragment showing variable declarations.

UPC is the lower-level language and retains from C the abil-
ity to use pointers to access arrays, with full address arith-
metic and the exposed memory layout that this implies. Ti-
tanium maintains Java’s type-safety features, and extends
then with numerous high-level features designed to improve
productivity and performance for scientific parallel applica-
tions. What distinguishes the class of PGAS languages from
others is the global address space and its partitioning into
chunks that can be mapped to local memory on clusters or
distributed memory supercomputers.

UPC and Titanium both use a Single Program Multiple
Data (SPMD) programming model of parallelism in which
the number of threads is fixed at program startup time and
is equal to the number of logical memory partitions. Not
all PGAS languages use this static parallelism model—the
DARPA HPCS languages, for example, combine dynamic
multithreading with the partitioned global address space [1,
7, 38], and data-parallel languages use a global address space
with array layout statements that provide a flavor of memory
partitioning [16, 31].

3. PGAS AND ONE-SIDED COMMUNICA-
TION

PGAS languages rely on one-sided communication: a
thread directly accesses remote memory without involving
the application program on the remote node. On many sys-
tems, it is natural to implement these semantics with Re-
mote Direct Memory Accesses (RDMA): the remote CPU
is not involved in the transfer, but instead the network in-
terface directly responds to remote requests for data. One-
sided communication avoids the overhead of message and
tag matching, decouples data transfer from interprocess syn-
chronization, and also allows transfers to be reordered, since
a data transfer encodes information about where the data
should be placed in memory, rather than relying on the or-
der of receive operations in a remote program. The picture
on the left-hand side of Figure 2 shows the basic difference

in one-sided vs. two-sided messages. A two-sided message
contains a message identifier that must be matched with a
receive operation on the remote side to find the location
in memory where the data should go; a one-sided message
directly encodes the remote address.

two-sided message host
[message id I data payload }—' CPU

network
interface

memory

one-sided put message
[address I data payload

—

Figure 2: Picture of one-sided vs. two-sided trans-
fer.

The Titanium and Berkeley UPC compilers translate to
C with calls to a runtime layer that implements the par-
allelism features of the languages. Communication in both
cases goes through GASNet [6, 14], which provides portable,
high-performance, one-sided communication in the form of
put and get operations for small and large messages, strided
and indexed data, and blocking and nonblocking semantics.
GASNet is built on an extensible core based on the concept
of Active Messages, which is used to support remote lock-
ing and various runtime operations such as data packing.
Basic put and get primitives can be implemented as sim-
ple Active Message calls, but typically use special hardware
support for shared memory or RDMA operations. GASNet
has optimized network-specific implementations for the Cray
XT networks (Portals), IBM SP network (LAPI), Myrinet
(GM), InfiniBand, Quadrics (elan3/4), SGI Altix (shmem),
and Cray X1 (shmem). To ensure portability (although not
recommended for performance), there are also implementa-
tions of GASNet for Ethernet and MPI.

Our research using GASNet has shown that the one-sided
model has basic performance advantages for latency and
bandwidth over two-sided communication. Figure 3 com-
pares the latency and bandwidth of GASNet and MPI. The
top graph shows that GASNet has consistently lower latency
across several networks. In addition, the bottom graphs dis-
play bandwidth that is at least as high as MPI’s, with a
significant advantage noticeable at the 4KB message size.
This shows that many networked cluster systems are bet-
ter suited to the kind of one-sided communication found
in UPC and Titanium than to MPI’s two-sided message-
passing model. The performance results demonstrate that
the GASNet communication layer matches or exceeds the
performance of MPI message-passing in all cases, notably
providing a significant improvement in small message round-
trip latencies and medium-sized message bandwidths. The
primary explanation for the performance gap is fundamental
to the communication semantics: GASNet’s put/get prim-
itives were specifically designed to map very closely to the
RDMA and distributed shared-memory capabilities of mod-
ern interconnects.

4. HAND-OPTIMIZED BENCHMARKS

The performance benefits of one-sided communication are
not limited to microbenchmarks. In a case study of a 3D
FFT computation [4] (one of the NAS benchmarks [2]),
which is notoriously limited by bisection-bandwidth due to

a global transpose, we found that the ability to overlap com-
munication with computation allows for a more effective use
of the network and memory systems. Comparing multiple
implementations of the benchmark in UPC and MPI (both
using the same serial FFT code for normalization), the best
UPC implementation was able to profitably send smaller
messages than the best MPI version and thereby achieve
more effective, finer-grained overlap, thanks to the superior
small message bandwidth. The three implementations were:
1) a chunk algorithm that packs data from multiple planes
to send only a single message in each direction per processor
pair; 2) a slab algorithm, which sends contiguous data in a
given plane as soon as the local FFTs on a set of rows des-
tined for the same remote thread are complete; 3) a pencil
algorithm that sends each row individually after the FFT on
that row is complete.

1100

I Chunk (NAS FT with FFTW) .5 Tflops
[Best MPI (always slabs) \T)
t [Best UPC (always pencils) |

1000

©
=}
S

@
S
3

~

=]

S}
T

o
S
=3
T
I

MFlops per Thread
8 8 8 &
g8 8 8 8

:

.
1}
S

o

Myrinet Infiniband Elan3 Elan3 Elan4 Elan4

#procs 64 256 256 512 256 512
Figure 4: Comparison of 3D FFT performance

across several machines using a bulk-synchronous
MPI implementation that minimizes message counts
but precludes overlap, an MPI code that uses over-
lap, and a UPC code that uses finer-grained overlap
and smaller messages.

Figure 4 shows the results of the FFT study on several ma-
chines with networks that support RDMA. The FFT compu-
tation involves local FFTs, followed by a transpose, followed
by more local FFTs. The first bar is the traditional bulk-
synchronous algorithm in which the transpose is performed
in a separate phase. It has no overlap of communication
with computation, but minimizes the number of messages.
The second bar is the best MPI performance we obtained
with all three algorithms, which is the slab algorithm in
all cases. The third is the best UPC performance we ob-
tain, again over all three algorithms, which in this case is
the pencil algorithm for this set of machines and problem
sizes. The UPC implementation outperforms the MPI im-
plementation on all of these machines; MPI could not run
the small-message pencil algorithm as effectively as the slab
implementation or the UPC pencil version because the per-
message cost of the small MPI messages is too high. The
UPC code obtains some of its advantages from overlap, and
some from sending smaller messages, which are a more nat-
ural fit to the data structures used in the computations.

The performance advantage from one-sided communica-
tion is not evident in all applications, although performance
is generally comparable to that of MPI code. Figure 5 shows
the performance for two other NAS Parallel Benchmarks,

Roundtrip Latency for 8-byte Transfers
24.2
25
O MPI ping-pong —‘ 22.1
m B Titanium/GASNet put+sync j
320 185
2
>
%) 14.6
15 -|
S 135
g
2101 8 s 95
= 6.6 6.6
c
35 45
14
0
Alpha Itanium2 x86 G5 Opteron SP
Elan3 Elan4 Myrinet InfiniBand InfiniBand ~ Federation
Flood Bandwidth for 4KB Transfers Flood Bandwidth for 2MB Transfers
1009 (500 (900) (250) (900) (900) (1600) _100% - (300) (900) (250) (900) (900) (1600)
Q 223 Q) 225 228 795 799 13041490
3 90% 1 763 @ 90% 7 5y 255
714
=gow| 281 702 679 = 80%
c —_
g 70% 1 190 152 ; 70% A 610
0 60% - D 50% -
é 50% - 420 750 —ECB 50% 1
; 40% ; 40% -
T 30% - T 30% A
< 20% - = 20% -
2 8 10%
04 - — b
$ 10% 5 O° OMPIm Titanium / GASNet
0% 0 0% : : ; ;
Alpha Itanium2 x86 G5 Opteron SpP Alpha Itanium2 x86 G5 Opteron SP
Elan3 Elan4 Myrinet InfiniBand InfiniBand Federation Elan3 Elan4 Myrinet InfiniBand InfiniBand Federation

Figure 3: Performance of GASNet and MPI. The top graph shows round-trip latency for an 8-byte raw
MPI message-passing ping-pong (best case over MPI_Send/MPI Recv or MPI ISend/MPI IRecv) against
a GASNet blocking put operation (which blocks for the round-trip acknowledgment). The bottom graphs
show the bandwidth for 4KB messages (left) and 2MB message (right) as a percentage of hardware peak
for a unidirectional message flood of the given size, and no unexpected MPI messages. Hardware peaks are
computed as the minimum of the I/O bus bandwidth and link speed, and are shown in parentheses, while
the bar labels show the absolute value in MB/s (M B = 22° bytes).

Conjugate Gradient (CG) and Multigrid (MG). The plots
show speedup, normalized to the best performance at the
smallest processor count. (The problem sizes shown here are
for class D, the largest class defined by NAS, and are too
large to run on smaller processor counts.) The NAS MG
benchmark shows very close performance between Titanium
and Fortran with MPI; there is a noticeable gap in the CG
performance, due in part to the lack of collective communi-
cation support (e.g., reductions) for thread subsets. More
details are available in [12].

5. APPLICATIONS

In addition to the benchmarks described in section 4, the
Titanium and UPC teams have both benefited from appli-
cation development in their languages, sometimes decoupled
from the team, but in most cases as an integrated part of
the compiler and language development effort. In Tita-
nium, the application experience includes five of the NAS
Benchmarks: Conjugate Gradient (CG), Multigrid (MG),
3D FFT (FT), Integer Sort (IS) and Embarrassingly Paral-
lel (EP) kernels [2]. In addition, Yau developed a distributed

matrix library that supports blocked-cyclic layouts and im-
plemented Cannon’s Matrix Multiplication algorithm and
Cholesky and LU factorization (without pivoting). Balls and
Colella built a 2D version of their Method of Local Correc-
tions algorithm for solving the Poisson equation for constant
coefficients over an infinite domain (PPS) [3]. Bonachea,
Chapman and Putnam built a Microarray Optimal Oligo
Selection Engine for selecting optimal oligonucleotide se-
quences from an entire genome of simple organisms, to be
used in microarray design. Our most ambitious efforts have
been application frameworks for Adaptive Mesh Refinement
(AMR) algorithms [36, 37] and Immersed Boundary (IB)
method simulations. Specific application of these frame-
works are an AMR elliptic solver (AMR-Poisson) and a heart
simulation using the IB method. In both cases, these ap-
plication efforts have taken a few years and were preceded
by implementations of Titanium codes for specific problem
instances, e.g., older AMR Poisson [29], AMR gas dynam-
ics [24], and IB for 1D immersed structures [25, 39]. In
addition, several smaller benchmarks were used in evaluat-
ing the compiler, such as dense and sparse matrix-vector
multiplication (demv and spmv), a simple Monte Carlo cal-

CG Class D Speedup - G5/InfiniBand
400 ~

—&— Fortran w/MPI
—a— Titanium
| | =G~ Linear Speedup

350

w

o

o
L

N
a
o
\
9]

Speedup
(Best 64 Proc: 1606 sec)
N
o
=]

150 —
e
100 =
v
50
0 T T T T T |
0 50 100 150 200 250 300
Processors

Speedup

MG Class D Speedup - G5/InfiniBand
140 -

—&— Fortran w/MPI ©
~120 ——&— Titanium -
] —G- Linear Speedup -7
& - /
1n100 -
™M _z
2} Z
.. 80
1%}

o /
1=
8 60
2 a
-
@ 40 =
]
a /

20

2
0 T T T T T T |
0 20 40 60 80 100 120 140
Processors

Figure 5: Comparison of Titanium and Fortran/MPI performance on a G5/Infiniband cluster for the NAS

CG (left) and MG (right) benchmarks.

culation of pi (pi), and a Red-Black Gauss-Seidel relaxation
code on a structured mesh (gsrb).

The Titanium implementation of the framework for fi-
nite difference discretization on block-structured adaptive
meshes followed the design of Chombo, an AMR library
written in C++ and Fortran with MPI [10]. Adaptive Mesh
Refinement algorithms are challenging to implement due to
the irregularity introduced by local mesh refinement. In ad-
dition to the regular operations one may find in ordinary
finite difference calculations, this class of applications typ-
ically involves irregular (hierarchical, pointer-based) data
structures, input-dependent computational load which eas-
ily requires domain-specific and dynamic load balancing, as
well as fine-grained communications and irregular operations
for updating grid boundaries in the adaptive mesh hierar-
chy. Chombo was designed to ameliorate the programming
difficulties posed by AMR algorithms particularly for tradi-
tional Fortran programmers to whom AMR data structures
are unfamiliar. Compared with Chombo, the Titanium im-
plementation is much more compact [40]. Although no hand
optimizations have been done to optimize the communica-
tions which are expressed at the logical level and therefore
may result in fine-grained messages, we have shown that
matching performance and scalability can be achieved by
Titanium through automatic optimizations at the compiler
and runtime level.

As part of the Berkeley UPC effort there have also been
several in-house application efforts. The group developed
versions of the NAS MG, CG, and FT benchmarks. Hus-
bands developed a Delaunay Triangulation code in UPC,
which uses a divide-and-conquer algorithm and a form of
object-caching to improve locality. Welcome developed a
multi-block code for computational fluid dynamics (CFD),
specifically a gas dynamics code that partitions the space
into variable sized blocks. Husbands also developed dense
LU and sparse Cholesky factorization codes, both using a
lightweight multithreading layer on top of UPC’s threads.
Tancu implemented a version of the Barnes-Hut algorithm
(Barnes), which uses a tree-structure algorithm to solve the
n-body problem. The UPC group also uses several bench-
marks developed by others: Gups performs random read/
modify/write accesses to a large distributed array; Mcop

solves the matrix chain multiplication problem; Sobel per-
forms edge detection with Sobel operators (3x3 filters) [13];
and Psearch performs parallel unbalanced tree search [30].

Because latency hiding through non-blocking communica-
tion is an important component of many of our optimized
codes, we have been exploring alternative methods of man-
aging outstanding communications and their dependent op-
erations. One such method is multithreading [20, 22]. Here,
processors are oversubscribed with threads and they context
switch on long latency operations. In addition, the threads
are free to perform any computation as soon as the data is
ready.

We used this idea to implement a new dense LU factor-
ization code, similar in functionality to the well-known High
Performance Linpack (HPL) code. The standard Gaussian
Elimination algorithm is decomposed into its major opera-
tions and these became the threads. In our work, we iden-
tified a number of challenges to performance and correct-
ness. Chief among them were memory use and scheduling.
Because multiple threads are running on a processor, their
memory footprint must be controlled in order to prevent re-
source exhaustion. In addition, the execution schedule must
be tuned so that parallel progress is made.

The code performed comparably to the MPI HPL imple-
mentation, obtaining over 2 TFlop/s on 512 Itanium 2 pro-
cessors with a Quadrics network. It also was implemented
in about 1/5th the size of the HPL code while only needing
a small number of tuning parameters.

6. COMPILATION TECHNOLOGY

The NAS benchmark results shown above and by oth-
ers in both UPC [13] and Titanium [12] have shown that
the performance is comparable to MPI when the applica-
tions are hand-optimized to perform communication aggre-
gation, pipelined communication, and overlap of communi-
cation with computation. When there are differences, the
PGAS languages generally have faster communication, while
there are still cases where computational kernels written
in Fortran outperform C [40]. To address the serial per-
formance issue, both languages allow calls to highly opti-
mized serial code written in other languages. In these hand-
optimized applications, no sophisticated compiler transfor-

32 O Coalesce
'3 | m SplitPhase
25| B Address

%) T | T 0 T | T 2] | T [| © 1] | T
THHHEHBEHEHHBHERE
> = > = > = > = > _
SIS|E|S|S|E|S|IS|E|S|s|E|S|5|&
(o4 E|C E|CO E|O E|©O =
Sobel Psearch Mcop Gups Barnes

speedup (unopt/opt)

25
2 B Manual
W Automatic
15

=
I

o
o
|

o
I

BT CFD

CG

FT IS MG SP GUPS

Figure 6: Speedups from optimizing UPC programs with fine-grained accesses (left, using 4 processors) and
automatic overlap of bulk put/get operations (right, using 64 processors).

mations are necessary. The translation to C is relatively
straightforward in UPC; it is somewhat more complicated in
Titanium due to the lowering of Java style object-oriented
code to C, but still quite tractable. The implementation
challenges are mainly in the runtime libraries and include
how to best use the communication primitives, how to map
each of the variable types to an appropriate memory space
on the machine, how to represent global pointers, and how
to create and initialize the necessary threads. Our experi-
ence is therefore quite different from that of implementors
of data-parallel languages like HPF [16] or automatic paral-
lelizing compilers, where sophisticated transformations are
a prerequisite to good performance.

The role of compiler analyses and optimizations in PGAS
languages is to improve productivity by allowing program-
mers to write simpler code with fewer hand optimizations.
Both the Titanium and Berkeley UPC teams have done ex-
tensive work in this area, demonstrating that the use of
automatic optimizations can approach the performance of
hand-optimized programs for some applications. The Berke-
ley UPC compiler has support for optimizing programs with
fine-grained remote accesses, e.g., individual word reads and
writes as well as automatic overlap of bulk operations. The
left-hand side of Figure 6 shows the speedups obtained from
optimizations on several UPC codes with fine-grained ac-
cesses. The optimizations include overlapping communica-
tion (split-phase), combining contiguous accesses (coalesce)
and redundancy elimination in pointer manipulation (ad-
dress). The right-hand side of Figure 6 shows the results
of automatic overlap on several UPC applications involv-
ing bulk put and get operations, comparing the optimiza-
tions of hand-optimized code to automatic optimizations
performed by the compiler and runtime. These optimiza-
tions rely on the UPC relaxed memory model, which roughly
says that while each thread will always observe its own mem-
ory operations executing in order (local dependencies are
preserved), it may observe another thread’s memory oper-
ations happening out of order, unless the programmer ex-
plicitly labels the memory operations as strict. UPC has
constructs for fine-grained control over the strict/relaxed
semantics, although most UPC programs use only relaxed
access combined with the UPC synchronization primitives
(barriers and locks), which also act as strict consistency
points. We have described the optimizations, required anal-

yses, and details about the performance results elsewhere [8,
35].

Titanium inherits the strong typing of Java, which pro-
vides a wealth of static information useful in program anal-
ysis. In addition, the Titanium optimizer benefits from two
properties of the parallel control flow of the program:

1. The barrier synchronizations in Titanium are required
to be textually aligned, meaning that all threads must
reach the same textual instance of a barrier before
others can proceed (a requirement which is conserva-
tively enforced by the compiler through static check-
ing). This property divides programs into indepen-
dent phases. Each textual instance of a barrier defines
a phase, which includes all the expressions that can
run after the barrier but before any other barrier. All
threads must be in the same phase, which implies that
no two phases can run concurrently.

2. To allow static enforcement of textual barrier align-
ment, Titanium introduces the concept of single-
qualification—the single type qualifier guarantees that
the qualified value is coherently replicated across all
SPMD threads in the program. Since a single-valued
expression must take the same sequence of observed
values on all processes, all processes must take the
same sequence of branches of a conditional guarded
by such an expression. If such a conditional is only ex-
ecuted at most once in each phase, then the different
branches cannot run concurrently.

The Titanium compiler performs analysis to determine
what sections of code may operate concurrently and a novel
multi-level pointer analysis to determine whether pointers
marked as global are actually referring only to local data
or to data within a set of processors that physically share
memory. These analyses can be used to detect races, con-
vert more expensive global pointers into local ones, and over-
lap communication with computation while preserving the
illusion that statements execute in order, i.e., providing se-
quential consistency, which is equivalent to making all of the
variable accesses strict in the UPC sense [21].

Pointers in Titanium can be declared as local or global,
but are global by default. The default is chosen to make
the shared accesses in Titanium closer to those of Java and

Locality and Sharing Qualification Inference

100

90

80

70 1

B Locals - constraint-based
B Locals - 2-Level Alias

B Locals - 3-Level Alias

O Sharing - constraint-based
@ Sharing - 2-level Alias

60 q

50 1

40

% of Declarations

30

20 4

10 4

3d-fft amr- amr-gas gsrb lu-fact
poisson

pi pps sample- demv spmv
sort

Benchmark

Figure 7: References in several Titanium benchmarks that are labeled as local (in the first three bars) or

private (in the last two).

simplify porting of Java code into Titanium. This generality
comes at a cost, however, since global pointers are less space-
and time-efficient than local pointers. Manually inserting lo-
cal qualifiers into user code can be tedious and error-prone.
Furthermore, since we wanted to use Java’s standard library
implementations directly, we could not perform local quali-
fication there.

The Titanium optimizer includes a local qualification in-
ference (LQI) that automatically determines a conservative
set of pointers that can be safely converted to local. Using
a constraint-based inference, it automatically propagates lo-
cality information gleaned from allocation statements and
programmer annotations through the application code [23].
Local qualification enables several important optimizations
in the implementation of pointer representation, dereferenc-
ing, and array accesses. These optimizations reduce serial
overheads associated with global pointers and enable more
effective optimization and code-generation by the backend
C compiler. For example, speedups of over 2x for NAS CG
and 4x for NAS MG were obtained through LQI on an 8-
processor cluster [40].

A more recent multi-level pointer analysis also supports
conversion of global to local references and identification of
private references, which are useful in detecting data races
and in preserving sequential consistency while performing
communication optimizations. Figure 7 shows the percent-
age of references in several applications that were automat-
ically labeled as local or private (non-shared). The analy-
sis is hierarchical, and can restrict pointers to being private
within a shared memory node or within a thread. The graph
compares the hierarchical pointer analysis to one based on
constraints.

The Titanium compiler has support for the inspector/ ez-
ecutor framework [32] to optimize irregular remote accesses
of the form a[b[i]] that appear in a loop. The array ac-
cess pattern is computed in an initial inspector loop. All the

required elements are prefetched into a local buffer. The ex-
ecutor loop then uses the prefetched elements for the actual
computation. Different methods of communication can be
used for prefetching data into a local buffer, including:

1. Pack method: only communicates the needed elements
without duplicates. The needed elements are packed
into a buffer before sending them to the processor that
needs the data.

2. Bound method: a bounding box that contains the
needed elements is retrieved.

3. Bulk method: the entire array is retrieved.

Figure 8 shows the performance of a Titanium implemen-
tation of sparse matrix-vector multiplication compared to
that of a popular MPI library, Aztec. The choice of com-
munication method depends on both the matrix structures
and the machine characteristics, so the compiler uses a per-
formance model of the machine parameters and determines
which communication method is best based on the matrix
structure that affects each thread pair. The Titanium code
outperforms the Aztec code because of the lightweight com-
munication layer and because the Titanium compiler will
sometimes select different communication strategies between
different processor pairs, a technique that would be tedious
in application code.

7. CONCLUSIONS AND FUTURE WORK

The PGAS languages provide a single parallel program-
ming abstraction that is useful for both shared-memory mul-
tiprocessors and for clusters. The languages give control over
data layout (critical on clusters) while providing a global ad-
dress space in which to build large shared structures. The
languages do not require new compiler technology to allow
for high performance; even without sophisticated optimiza-
tions, the performance of compiled UPC and Titanium is

Sparse Matrix-Vector Multiply on Itanium/Myrinet
Speedup of Titanium over Aztec Library

1.6

15 m B a0l iha > mom W

13 H
12 H

speedu

B L E e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

matrix number

‘ @ average speedup @ maximum speedup ‘

Figure 8: Performance of sparse matrix-vector mul-
tiplication in Titanium using dynamic optimizations
compared to the Aztec library written in C. The Ti-
tanium data was collected over different processor
configurations for 1-16 processors. The average and
maximum speedups shown are drawn from this data.

competitive with that of MPI. In addition, there are some
kernels (notably the FFT) on which the one-sided communi-
cation model of the PGAS languages yields a significant per-
formance advantage. The one-sided model decouples syn-
chronization (message receipt) from data transfer, and al-
lows for lower latency for small (single-word) messages and
higher bandwidth for mid-range (4KB) messages. We con-
tinue to explore these issues with language extensions and
compiler optimizations, to aid users in maximizing the char-
acteristics of their networks and only paying for features like
per-message synchronization when it is needed.

Although sophisticated compilers are not a prerequisite
to language success, both teams have invested in compiler
analyses and optimizations as a way of getting better perfor-
mance out of code that is written without significant hand-
optimization. Automating overlap of communication with
computation, aggregating small transfers into larger ones,
converting global pointers to local ones, and use of dynamic
optimizations for irregular codes are all optimizations that
have been used in one or both of the compilers and have
shown tremendous benefits for some of the benchmarks.

The SPMD model used in both languages results in effi-
cient use of processors, since the application programmer is
directly responsible for mapping the application-level paral-
lelism to the physical machine resources. Furthermore, the
one-to-one mapping between memory domains and threads
makes the language runtime straightforward. If an applica-
tion demands dynamic load balancing or relocation of data
(as in the Delaunay triangulation), the application program-
mer is responsible for implementing these features on top of
the fixed SPMD threads. Our experience with the matrix
factorization codes in UPC shows that the PGAS model can
also be used in an event-driven style that avoids the cost of
global synchronization points and allows for better overlap
of communication and computation. However, it also reveals
subtle resource management issues since unconstrained use
of dynamic threads can easily swamp a fixed set of physical
resources. We are continuing to explore ways of mixing dy-
namic threads into the PGAS model while retaining the kind
of control over layout and scheduling that has proven use-
ful to obtaining high performance for many current PGAS
applications.

8. REFERENCES

[1] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W.
Maessen, S. Ryu, G. Steele, and S. Tobin-Hochstadt.
The Fortress language specification. Available from
http://research.sun.com/projects/plrg/.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, D. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The NAS Parallel Benchmarks. The
International Journal of Supercomputer Applications,
5(3):63-73, Fall 1991.

[3] G. T. Balls and P. Colella. A finite difference domain
decomposition method using local corrections for the
solution of poisson’s equation. In Journal of
Computational Physics, Volume 180, Issue 1, pp.
25-583, July 2002.

[4] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick.
Optimizing bandwidth limited problems using
one-sided communication and overlap. In 20th
International Parallel and Distributed Processing
Symposium (IPDPS), 2006.

[5] The Berkeley UPC Compiler, 2002.
http://upc.1lbl.gov.

[6] D. Bonachea. GASNet specification. Technical Report
CSD-02-1207, University of California, Berkeley,
October 2002.

[7] Chapel: The Cascade high productivity language.
http://chapel.cs.washington.edu/.

[8] W. Chen, C. Iancu, and K. Yelick. Automatic
nonblocking communication for partitioned global
address space programs. In Proceedings of the
International Conference on Supercomputing (ICS),
2007.

[9] W. Chen, A. Krishnamurthy, and K. Yelick.
Polynomial-time algorithms for enforcing sequential
consistency in SPMD programs with arrays. In 16th
International Workshop on Languages and Compilers
for Parallel Computing (LCPC), 2003.

[10] The Chombo website.
http://seesar.lbl.gov/ANAG/software.html.

[11] Cray C/C++ reference manual.
http://www.cray.com/craydoc/manuals/
004-2179-003/htm1-004-2179-003/.

[12] K. Datta, D. Bonachea, and K. Yelick. Titanium
performance and potential: an NPB experimental
study. In The 18th International Workshop on
Languages and Compilers for Parallel Computing,
October 2005.

[13] T. El-Ghazawi and F. Cantonnet. UPC performance
and potential: A NPB experimental study. In
Supercomputing2002 (SC2002), November 2002.

[14] GASNet home page.
http://gasnet.cs.berkeley.edu.

[15] Hewlett-Packard Company. HP UPC Version 2.0 for
Tru64 UNIX. http://h30097.www3.hp.com/upc/.

[16] High Performance Fortran Forum. High Performance
Fortran Language Specification.

http://dacnet.rice.edu/Depts/ CRPC/HPFF /versions/hpf2 /hpf-

v20, Jan.
1997.
[17] P. Hilfinger, D. Bonachea, D. Gay, S. Graham,

[18]

[22]

[23]

[24]

B. Liblit, G. Pike, and K. Yelick. Titanium language
reference manual. Tech Report UCB/CSD-01-1163,
U.C. Berkeley, November 2001.

C. Iancu, P. Husbands, and W. Chen. Message strip
mining heuristics for high speed networks. In Proc. 6th
International Meeting on High Performance
Computing for Computational Science (VECPAR),
2004.

Intrepid Technology, Inc. GCC/UPC Compiler.
http://www.intrepid.com/upc/.

L. V. Kale and S. Krishnan. CHARM++ : A portable
concurrent object oriented system based on C++.
ACM SIGPLAN Notes, 28(10):91-108, 1993.

A. Kamil, J. Su, and K. Yelick. Making sequential
consistency practical in Titanium. In SC ’05:
Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, November 2005.

C. Leiserson and R. Blumofe. Space-efficient
scheduling of multithreaded computations. SIAM
Journal on Computing, 27(1):202—-229, 1998.

B. Liblit and A. Aiken. Type systems for distributed
data structures. In the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL), January 2000.

P. McCorquodale and P. Colella. Implementation of a
multilevel algorithm for gas dynamics in a
high-performance Java dialect. In International
Parallel Computational Fluid Dynamics Conference
(CFD’99), 1999.

S. Merchant. Analysis of a contractile torus simulation
in Titanium. Masters Report, Computer Science
Division, University of California Berkeley, August
2003.

MuPC portable UPC runtime system.
http://www.upc.mtu.edu/.

R. Numrich and J. Reid. Co-array fortran for parallel
programming. In ACM Fortran Forum 17, 2, 1-31.,
1998.

Open64 compiler tools.
http://open64.sourceforge.net.

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

37]

(38]

(39]

(40]

G. Pike, L. Semenzato, P. Colella, and P. N. Hilfinger.
Parallel 3D adaptive mesh refinement in Titanium. In
9th SIAM Conference on Parallel Processing for
Scientific Computing, San Antonio, Texas, March
1999.

J. Prins, J. Huan, W. Pugh, et al. UPC
implementation of an unbalanced tree search
benchmark. Technical Report 03-034, Department of
Computer Science, University of North Carolina, 2003.
L. Snyder. The ZPL Programmer’s Guide. MIT Press,
1999.

J. Su and K. Yelick. Automatic support for irregular
computations in a high-level language. In 19th
International Parallel and Distributed Processing
Symposium (IPDPS), 2005.

Titanium home page.
http://titanium.cs.berkeley.edu.

UPC language specifications, v1.2. Technical Report
LBNL-59208, Berkeley National Lab, 2005.

W.Chen, C. Iancu, and K. Yelick. Communication
Optimizations for Fine-Grained UPC Applications. In
14th International Conference on Parallel
Architectures and Compilation TechniquesPACT, 2005.
T. Wen and P. Colella. Adaptive Mesh Refinement in
Titanium. In 19th International Parallel and
Distributed Processing Symposium (IPDPS), 2005.

T. Wen, P. Colella, J. Su, and K. Yelick. An adaptive
mesh refinement benchmark for modern parallel
programming languages. Submitted to
Supercomputing 2007.

The X10 programming language.
http://www.research.ibm.com/x10.

S. M. Yau. Experiences in using Titanium for
simulation of immersed boundary biological systems.
Masters Report, Computer Science Division,
University of California Berkeley, May 2002.

K. Yelick, P. Hilfinger, S. Graham, D. Bonachea,

J. Su, A. Kamil, K. Datta, P. Colella, and T. Wen.
Parallel languages and compilers: Perspective from
the Titanium experience. The International Journal of
High Performance Computing Applications, 21(2),
2007.

