\

Grimage: markerless 3D interactions

Jérémie Allard, Menier Clément, Bruno Raffin, Edmond Boyer, Francois Faure

» To cite this version:

Jérémie Allard, Menier Clément, Bruno Raffin, Edmond Boyer, Frangois Faure. Grimage: markerless
3D interactions. ACM SIGGRAPH 2007 emerging technologies, Aug 2007, San Diego, California,
United States. pp.Article No. 9, 10.1145/1278280.1278290 . inria-00516153

HAL 1d: inria-00516153
https://inria.hal.science/inria-00516153

Submitted on 9 Sep 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00516153
https://hal.archives-ouvertes.fr

Grimage: Markerless 3D Interactions

Clément Menier
INPG

Jérémie Allard *
Sim Group - MGH/CIMIT

Bruno Raffin ¥

Edmond Boyer ¥ Francois Faure 1
INRIA UJF UJF

Figure 1: The Grimage experience.

Abstract

Grimage glues multi-camera 3D modeling, physical simulation and
parallel execution for a new immersive experience. Put your hands
or any object into the interaction space. It is instantaneously mod-
eled in 3D and injected into a virtual world populated with solid
and soft objects. Push them, catch them and squeeze them.

CR Categories: 1.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics 1.4.5 [Image Processing and Com-
puter Vision]: Reconstruction

Keywords: Markerless 3D Modeling; 3D Interactions; Soft Ob-
jects Simulation; Multi-cameras; PC Cluster

1 Introduction

The goal of the project is to associate computer vision, physical
simulation and parallelism to move one step towards the next gen-
eration of virtual reality applications. We aim at extracting the max-
imum information from a set of calibrated cameras, avoiding mark-
ers not to be intrusive. On the simulation side the goal is to enable
building large simulations involving complex various objects. Hav-
ing access to parallelism, we can reach interactive executions for
I/O and computation intensive applications.

Markerless multi-camera based 3D modeling is seldom used in vir-
tual reality. However, getting a 3D surface or volume of the objects
or users present in the interaction space can be a very useful data
to improve interaction. In particular, it enables to compute colli-

*e-mail: jeremie.allard @codrt.fr
fe-mail: clement.menier @imag.fr
fe-mail: bruno.raffin@imag.fr
$e-mail: edmond.boyer @inrialpes.fr
fe-mail: francois.faure @imag.fr

sions not only with the few positions that classical marker based
3D trackers give, but with the full object.

When rendering the model, texturing makes a significant difference.
The raw 3D model of an object or person is difficult to identify.
Once textured, recognizing it becomes almost immediate. Tex-
tured 3D modeling can be used in mixed reality environments or
for multi-site collaborations. For instance several persons, phys-
ically located at different sites, could meet in a virtual room and
bring objects with them. Having lifelike 3D models (shape, color
and dynamics behavior) significantly improves the sense of pres-
ence.

3D models can also be used for computing interactions, a funda-
mental aspect of virtual environments. Once the real world objects
have been modeled, they can be inserted into a simulation popu-
lated with pure virtual objects. The only particularity of real objects
is that their state cannot be modified by the simulation (as long as
no haptic system is used).

Developing applications that include numerous animated objects of
different natures, like rigid, mass-spring, deformable or fluid ob-
jects is a challenging problem. It requires advanced algorithms
and a software infrastructure for coupling these algorithms with the
right balance between integration and modularity. Our project re-
lies on such a simulation framework, called SOFA. Associating 3D
modeling and physically-based simulations leads to intuitive and
rich interactions.

Getting such an application parallelized and running on multiple
CPUs is a challenging and essential work, as interactions can only
be effective in a real-time context. This parallelization effort is a
way to get access today to the I/O and computing power that will
be available tomorrow into commodity computers. To tackle with
the complexity of the resulting application, we developed a middle-
ware library dedicated to interactive applications called FlowVR.
It enforces code modularity, leveraging software engineering issues
while enabling high performance executions on distributed and par-
allel architectures. We also take advantage of the parallelism offer
by last generation GPUs, running part of SOFA computations with
the NVIDIA Cuda library.

Various applications could benefit from the technology we present.
Telepresence through a textured 3D model would ease interaction
between people from different locations that meet in a common vir-
tual space (a social community, a workplace, a game, a learning and

training environment, etc.).

Complex real-time physical simulations are a major challenge for
applications like surgery planing, training on assembly tasks, or
training for critical situation management (earthquake, fire, air-
plane/boat/car accidents, etc.). Injecting the 3D model into the sim-
ulation could for instance enable to detect collisions with the full
body when testing the ergonomic of a new airplane (for mainte-
nance teams, flying crew or passengers) on a virtual model.

2 Context

Camera based markerless interactions were pioneered by
Krueger & al. [1985] that used one camera. Multiple cameras
were used latter by Kanade & al. [1997]. Their system, called
Virtualized Reality, uses 49 cameras where video streams are
first stored on disks before being post-processed to compute a 3D
model for each frame. Real time interaction were therefore not
possible. Other off-line systems were also developed [Hilton and
Starck 2004], with the goal of improving the quality of the 3D
models.

Other initiatives focused on real-time 3D modeling but with a lim-
ited number of cameras (less than 5) [Cheung et al. 2000]. Fol-
lowing such approach approach Hasenfratz & al. [2004] proposed
some simple 3D interactions.

For a larger number of cameras, Borovikov & al. [2003] present a
distributed solution for post-processing the images stored on a dis-
tributed data base. Wu & al. [2006] propose a full parallel system,
from acquisition to 3D modeling. But they rely on an algorithm
with a cubic complexity in the precision of the 3D model, limiting
the scalability.

Other initiatives focus on free viewpoint video, where the goal is to
give a distant viewer the ability to chose an arbitrary viewpoint on
the scene. Applications first target telepresence and 3D TV rather
than interaction with virtual objects [Goldliicke and Magnor 2003;
Matusik and Pfister 2004; Gross et al. 2003; Carranza et al. 2003].
Different 3D modeling algorithms and parallelization approaches
are proposed, some of them relying on GPUs [Li et al. 2003; Li
et al. 2004].

To our knowledge, our project is the first to associate multi-camera
3D modeling and physical simulations for markerless 3D interac-
tions.

3 User Experience

The platform we present is a small scale of the Grimage platform
located at INRIA Rhne-Alpes. It gathers a set of cameras surround-
ing an acquisition space, a PC cluster for computations, and a multi-
display rendering. Instead of having a large acquisition space en-
abling the 3D modeling of the user full body, it is limited to a 1 m>
space at a table height (Fig. 1). To interact, the user just has to put
is hand or any other part of its body in the interaction space. He
can also put in this interaction space other objects, like his favorite
Siggraph goody. He sees all these elements of the real world mod-
eled in 3D and textured on a display located behind the interaction
space. He also sees the virtual objects populating the virtual world.
Once 3D modeled, the real elements just become, from the sim-
ulation point of view, virtual solid objects that are not sensible to
external forces. All these objects, the 3D modeled ones as well as
the virtual ones (solid or soft) can interact with each other according
to the constraints they are submitted to.

MvVideo Blinky Parallel EPVH SOFA FlowV/R Render
(Monitoring) (Acquisition) (3D Modeling) (Simulation) (Rendering)

%VR (Middleware)

Figure 2: The main software components the Grimage platform
relies on.

’T

Rendering Rendering Rendering

1-
Il I N

Figure 3: The processing pipe-line from camera acquisition to
rendering. Components can be distributed on different computing
nodes. 3D Modeling and simulation are internally parallelized.

4 Technical Innovations

The project is built upon a software suite we developed over the
last 4 years (Fig. 2). Its components are assembled into a process-
ing pipe-line (Fig. 3). Each one incorporates various scientific and
technological innovations detailed bellow.

4.1 Video Acquisition and Camera Control

Getting quality data from a set of cameras highly depends on the
parameter settings. For assisting the user into this process we de-
veloped several tools. These tools are technologically innovative in
the sense that they target sets of cameras driven by a PC cluster.

The Blinky software library enables real-time acquisition of images
for multiple cameras spread over a PC cluster. It also enables to
change the camera parameters (shutter speed, aperture, zoom...).

MV Video is a graphical user interface to remotely control the ac-
quisition, synchronization and display of video streams from mul-
tiple cameras distributed on a PC cluster. The software displays the
video streams from all cameras simultaneously in reduced resolu-
tion for monitoring, and it enables to control all camera parameters
(e.g. gain, shutter speed, focus, white balance).

For 3D modeling each image is processed by a background subtrac-
tion algorithm. The background does not have to be uniform as it is

learned during an initialization phase.

4.2 3D Modeling

From the video streams, we compute a 3D model of the objects be-
ing present into the acquisition space. We compute the visual hull
of the objects by reconstructing their shape from the silhouettes ex-
tracted from the video streams. Geometrically, the visual hull is the
intersection of the viewing cones, the generalized cones whose apex
are the cameras’ projective centers and whose cross-sections coin-
cide with the scene silhouettes. When considering piecewise-linear
image contours for silhouettes, the visual hull becomes a regular
polyhedron. The algorithm we use, called Exact Polyhedral Visual
Hull algorithm [Franco and Boyer 2003], computes the complete
and exact visual hull polyhedron with regard to silhouette inputs.

To achieve real time 3D modeling, we developed a parallel version
of the exact polyhedral visual hull algorithm. It relies on a 3 step
pipe-line, each step being itself parallelized [Franco et al. 2004].
This approach enables to reach high frequencies with a low latency.

The 3D model is then sent to 2 components: simulation and ren-
dering. When sent to rendering, it is textured, from the same set of
images that was used to compute the silhouettes. The exact polyhe-
dral visual hull algorithm guarantees the 3D model can be projected
back to the original silhouette with no error, a property that leads to
a better quality texture mapping.

4.3 Simulation

The virtual objects as well as the real ones, once modeled, are
animated by the SOFA simulation software. SOFA is a new
open source framework primarily targeted at medical simulation re-
search [Allard et al. 2007].

Its architecture relies on several innovative concepts, in particular
the notion of multi-model representation. In SOFA, most simu-
lation components (deformable models, collision models, instru-
ments, etc.) can have several representations, connected together
through a mechanism called mapping. Each representation is opti-
mized for a particular task such as mechanical computations, col-
lision detection or visualization. This clear separation between
the functional aspects of the simulation components allows flexi-
ble modeling based on a reduced set of models. At a finer level of
granularity, the physical models (i.e. any model that behaves ac-
cording to the laws of physics) are decomposed into a set of basic
components such as topology, degrees of freedom, internal force
fields and constraints acting on the degrees of freedom.

Another key aspect of SOFA is the use of a scene-graph to organize
and process the models and components while clearly separating
the computation tasks for their possibly parallel scheduling. This
data structure, inspired by well-known rendering scene-graphs, is
new in physically-based animation. Beside classical traversal ac-
tions such as rendering or bounding-box computations, physical
actions such as force accumulation or state vector operations are
triggered by components dedicated to physical animation. This al-
lows us to easily design differential equation solvers suitable for
single objects as well as complex systems made of different kinds
of interacting physical bodies (rigid bodies, deformable solids, flu-
ids). The demo presented with this paper applies implicit time inte-
gration with iterative solution. The maximum number of iterations
is tuned to limit the computation time. This creates a trade-off be-
tween accuracy and computation time that allows us to meet the
real-time constraint without sacrifying stability.

A parallel version of SOFA on GPU using the NVIDIA Cuda li-
brary has been developed. It enables to significantly speed-up some

computations.

4.4 Rendering

Data to be rendered, either provided by SOFA or from the 3D mod-
eling algorithm are distributed to dedicated rendering nodes, en-
abling multiple display rendering.

For that purpose, we use FlowVR Render [Allard and Raffin
2005]. Existing parallel or remote rendering solutions rely on
communicating pixels, OpenGL commands, scene-graph changes
or application-specific data. We rely on an intermediate solution
based on a set of independent graphics primitives that use hard-
ware shaders to specify their visual appearance. Compared to an
OpenGL based approach, it reduces the complexity of the model
by eliminating most fixed function parameters while giving access
to the latest functionalities of graphics cards. It also suppresses
the OpenGL state machine that creates data dependencies making
primitive re-scheduling difficult.

Using a retained-mode communication protocol transmitting
changes between each frame, combined with the possibility to use
shaders to implement interactive data processing operations instead
of sending final colors and geometry, we are able to optimize the
network load. High level information such as bounding volumes
is used to setup advanced schemes where primitives are issued in
parallel, routed according to their visibility, merged and re-ordered
when received for rendering. Different optimization algorithms can
be efficiently implemented, saving network bandwidth or reducing
texture switches for instance.

4.5 Coupling and Distribution

Coupling the different software components involved into this
project and distributing them on the nodes of a PC cluster for reach-
ing real-time executions is performed through the FlowVR middle-
ware [Allard et al. 2004; Allard and Raffin 2006].

FlowVR enforces a modular programming that leverages software
engineering issues while enabling high performance executions on
distributed and parallel architectures. Flow VR relies on a data-flow
and component oriented programming approach that has been suc-
cessfully used for other scientific visualization tools. Developing a
FlowVR application is a two step process. First, modules are devel-
oped. Modules encapsulate a piece of code, imported from an exist-
ing application or developed from scratch. The code can be multi-
threaded or parallel, as FlowVR enables parallel code coupling. In
a second step, modules are mapped on the target architecture and
assembled into a network to define how data are exchanged. This
network can make use of advanced features, from bounding-box
based routing operations to complex message filtering or synchro-
nization operations.

The FlowVR run-time engine runs a daemon on each node of the
cluster. This daemon is in charge of synchronization and data ex-
change between modules. They hide all networking aspects to mod-
ules, making module programming easier. Each daemon manages
a shared memory segment. Messages handled by modules are di-
rectly written and read from this memory segment. If data exchange
is local to a node, it only consists in a pointer exchange, while
the daemon takes care of transferring data through the network for
inter-node communications.

5 Conclusion

Grimage associates 3 main components:

e A multi-camera 3D modeling environment based on the Exact
Polyhedral Visual Hull algorithm. It enables markerless full
body interactions.

e The SOFA framework for real-time simulations. It allows to
build complex but modular models using a scene-graph de-
scription. SOFA is used to compute the interactions between
real and virtual objects.

e The FlowVR middleware dedicated to distributed interactive
applications. Its data flow and component oriented model en-
forces the application modularity while enabling efficient exe-
cutions on PC clusters. FlowVR is used to assemble all com-
ponents of the application, distribute an run them on a PC
cluster to reach a real-time performance.

The result is a platform where users can experiment intuitive and
rich 3D interactions with various solid and soft virtual objects.

Future work will focus on exploring the different forms of inter-
actions Grimage enables, on integrating new and improved algo-
rithms, and on consolidating and extending the software architec-
ture, a critical aspect to overcome the complexity of the application.

6 Credits

Thanks to all people that participated to the development of the vari-
ous components of this project: Nicolas Turro, INRIA, Florian Gef-
fray, INRIA, David Knossow, INRIA, Everton Hermann, INRIA,
Jean-Frangois Cuniberto, INRIA, Fredéric Devernay, INRIA, Remi
Ronfard, INRIA, Herv Mathieu, INRIA, Stéphane Cotin, CIMIT,
Pierre-Jean Bensoussan, INRIA, Frangois Poyer, INRIA, Christian
Duriez, INRIA, Hervé Delingette, INRIA, Laurent Grisoni, INRIA.

This work was supported by our institutions: INRIA, U-Grenoble,
the Laboratoire d’Informatique de Grenoble (LIG), the Laboratoire
Jean Kuntzmann (LJK), and MGH/CIMIT.

These works have been partly funded by the RNTL project
Geobench, the ACI Cyber-II, the ACI Ocetre, the ARA DALIA,
the European project Holonics and the European project Odyseus

References

ALLARD, J., AND RAFFIN, B. 2005. A Shader-Based Parallel
Rendering Framework. In IEEE Visualization Conference.

ALLARD, J., AND RAFFIN, B. 2006. Distributed Physical Based
Simulations for Large VR Applications. In IEEE Virtual Reality
Conference.

ALLARD, J., GOURANTON, V., LECOINTRE, L., LIMET, S.,
MELIN, E., RAFFIN, B., AND ROBERT, S. 2004. FlowVR:
a Middleware for Large Scale Virtual Reality Applications. In
Euro-Par 2004 Parallel Processing: 10th International Euro-Par
Conference, 497-505. http://flowvr.sf.net.

ALLARD, J., COTIN, S., FAURE, F., BENSOUSSAN, P.-J.,
POYER, F., DURIEZ, C., DELINGETTE, H., AND GRISONI,
L. 2007. SOFA: an Open Source Framework for Medi-
cal Simulation. In Medicine Meets Virtual Reality (MMVR).
http://www.sofa-framework.org.

Borovikov, E., SUSSMAN, A., AND DAvIs, L. 2003. A High
Performance Multi-Perspective Vision Studio. In 17th Annual
ACM International Conference on Supercomputing, San Fran-
cisco (USA).

CARRANZA, J., THEOBALT, C., MAGNOR, M., AND SEIDEL, H.
2003. Freeviewpoint video of human actors. In Proceedings of
ACM SIGGRAPH 03, 569-5717.

CHEUNG, G., KANADE, T., BOUGUET, J.-Y., AND HOLLER, M.
2000. A real time system for robust 3d voxel reconstruction of
human motions. In Computer Vision and Pattern Recognition
00, vol. 11, 714 — 720.

FRANCO, J., AND BOYER, E. 2003. Exact Polyhedral Visual
Hulls. In Proceedings of BMVC2003.

FRANCO, J.-S., MENIER, C., BOYER, E., AND RAFFIN, B. 2004.
A Distributed Approach for Real Time 3D Modeling. In Pro-
ceedings of the IEEE Workshop on Real Time 3D Sensors and
Their Use.

GOLDLUCKE, B., AND MAGNOR, M. 2003. Real-Time Micro-
facet Billboarding for Free-Viewpoint Video Rendering. Proc.
IEEE International Conference on Image Processing (ICIP’03),
Barcelona, Spain (September), 713-716.

GROSS, M., WUERMLIN, S., NAEF, M., LAMBORAY, E.,
SPAGNO, C., KUNZ, A., KOLLER-MEIER, E., SVOBODA, T.,
GooL, L. V., S. LANG, K. S., MOERE, A. V., AND STAADT,
0. 2003. Blue-C: A Spatially Immersive Display and 3D Video
Portal for Telepresence. In Proceedings of ACM SIGGRAPH 03.

HASENFRATZ, J.-M., LAPIERRE, M., AND SILLION, F. 2004.
A real-time system for full body interaction with virtual worlds.
147-156.

HILTON, A., AND STARCK, J. 2004. Multiple view reconstruction
of people. In 3DPVT ’04: Proceedings of the 3D Data Process-
ing, Visualization, and Transmission, 2nd International Sympo-
sium on (3DPVT’04), IEEE Computer Society, Washington, DC,
USA, 357-364.

KANADE, T., RANDER, P., AND NARAYANAN, P. 1997. Virtu-
alized Reality: Constructing Virtual Worlds from Real Scenes.
IEEE Multimedia, Immersive Telepresence 4, 1 (January), 34—
47.

KRUEGER, M. W., GIONFRIDDO, T., AND HINRICHSEN, K.
1985. Videoplace — an artificial reality. In CHI ’85: Proceed-
ings of the SIGCHI conference on Human factors in computing
systems, ACM Press, 35-40.

LI, M., MAGNOR, M., AND SEIDEL, H.-P. 2003. Hardware-
Accelerated Visual Hull Reconstruction and Rendering. In Pro-
ceedings of Graphics Interface’2003.

L1, M., MAGNOR, M., AND SEIDEL, H.-P. 2004. A hybrid
hardware-accelerated algorithm for high quality rendering of vi-
sual hulls. In GI ’04: Proceedings of the 2004 conference on
Graphics interface, Canadian Human-Computer Communica-
tions Society, School of Computer Science, University of Wa-
terloo, Waterloo, Ontario, Canada, 41-48.

MATUSIK, W., AND PFISTER, H. 2004. 3D TV: A Scalable Sys-
tem for Real-Time Acquisition, Transmission, and Autostereo-
scopic Display of Dynamic Scenes. In Proceedings of ACM SIG-
GRAPH 04.

Wu, X., TAKIZAWA, O., AND MATSUYAMA, T. 2006. Parallel
Pipeline Volume Intersection for Real-Time 3D Shape Recon-
struction on a PC Cluster. In Proceedings of the Fourth IEEE In-
ternational Conference on Computer Vision Systems (ICVS’06),
IEEE Computer Society, Washington, DC, USA.

