
51

Compilation for Compact Power-Gating
Controls

YI-PING YOU, CHUNG-WEN HUANG, and JENQ KUEN LEE

National Tsing Hua University

Power leakage constitutes an increasing fraction of the total power consumption in modern semi-

conductor technologies due to the continuing size reductions and increasing speeds of transistors.

Recent studies have attempted to reduce leakage power using integrated architecture and compiler

power-gating mechanisms. This approach involves compilers inserting instructions into programs

to shut down and wake up components, as appropriate. While early studies showed this approach

to be effective, there are concerns about the large amount of power-control instructions being added

to programs due to the increasing amount of components equipped with power-gating controls in

SoC design platforms. In this article we present a sink-n-hoist framework for a compiler to gen-

erate balanced scheduling of power-gating instructions. Our solution attempts to merge several

power-gating instructions into a single compound instruction, thereby reducing the amount of

power-gating instructions issued. We performed experiments by incorporating our compiler anal-

ysis and scheduling policies into SUIF compiler tools and by simulating the energy consumption

using Wattch toolkits. The experimental results demonstrate that our mechanisms are effective in

reducing the amount of power-gating instructions while further reducing leakage power compared

to previous methods.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers;
optimization

General Terms: Algorithms, Experimentation, Languages

Additional Key Words and Phrases: Compilers for low power, data-flow analysis, leakage-power

reduction, balanced scheduling, power-gating mechanisms

ACM Reference Format:
You, Y.-P, Huang, C.-W., and Lee, J. K. 2007. Compilation for compact power-gating controls.

ACM Trans. Des. Automat. Electron. Syst. 12, 4, Article 51 (September 2007), 26 pages. DOI =
10.1145/1278349.1278364 http://doi.acm.org/10.1145/1278349.1278364

This work was supported in part by the National Science Council Grants NSC 95-2220-E-007-001

and NSC 95-2220-E-007-002, the Ministry of Economic Affairs Grants 95-EC-17-A-01-S1-034 and

96-EC-17-A-01-S1-034, and ITRI under an ITRI/NTHU research grant.

Authors’ addresses: Y.-P. You, C.-W. Huang, J. K. Lee, (corresponding author), Department

of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan; email: {ypyou,

cwhuang}@pllab.cs.nthu.edu.tw; jklee@cs.nthu.edu.tw.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1084-4309/2007/09-ART51 $5.00 DOI 10.1145/1278349.1278364 http://doi.acm.org/

10.1145/1278349.1278364

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

51:2 • Y.-P. You et al.

1. INTRODUCTION

Minimizing power dissipation can be considered at algorithmic, architectural,
logic, and circuit levels [Chandrakasan et al. 1992]. Numerous studies in the
literature on low-power design have proposed various techniques for synthe-
sizing designs with reduced transitional activities. Recently, the prospect of
combining architecture design and software arrangement at the instruction
level has been addressed to help reduce power consumption [Bellas et al. 2000;
Chang and Pedram 1995; Horowitz et al. 1994; Lee et al. 2003; 1997; Su and
Despain 1995; Tiwari et al. 1998, 1997] For example, several types of software
rearrangement have been used to reduce the dynamic power, such as utilizing
the value locality of registers [Chang and Pedram 1995], swapping operands for
Booth multipliers [Lee et al. 1997], scheduling VLIW instructions to reduce the
power consumption on the instruction bus [Lee et al. 2003], gating the clock to
reduce workloads [Horowitz et al. 1994; Tiwari et al. 1998, 1997], utilizing cache
subbanking mechanisms [Su and Despain 1995], and an instruction cache for
loops [Bellas et al. 2000].

Leakage power is coming to represent a greater proportion of total power
dissipation as the feature size of semiconductor technology continues to reduce
as shown in Figure 1. It is predicted that leakage power will become comparable
to dynamic power within only a few generations [Doyle et al. 2002; Karnik et al.
2002; Kim et al. 2003; Semiconductor Industry 2004; Jones 2004]. Therefore,
power gating to reduce leakage power should be used in addition to clock gating,
which is only able to reduce the dynamic power [Kao and Chandrakasan 2000;
Butts and Sohi 2000; Hu et al. 2004]. Recent studies have attempted to reduce
leakage power using integrated architecture and compiler power-gating mech-
anisms [Dropsho et al. 2002; Yang et al. 2002; You et al. 2002, 2006; Rele et al.
2002; Zhang et al. 2003]. This approach involves compilers inserting instruc-
tions into programs to shut down and wake up components whenever appro-
priate, based on a data-flow analysis or profiling analysis. While early studies
showed this approach to be effective, there are concerns about the amount of
power-control instructions being added to programs with increasing numbers
of components being equipped with power-gating controls in system-on-a-chip
(SoC) design platforms for embedded systems. Note that architecture design-
ers can customize the processor with unique operation functions [Ip et al. 2002;
Gonzalez 2000; Tsutsui et al. 2002]. For example, one may have extensible in-
structions for modules of cryptography, 3D graphics, and motion estimation, as
well as variety of wireless communication modules, etc.

In this article we present a sink-n-hoist framework for a compiler to generate
balanced scheduling of power-gating instructions. Our framework attempts to
merge several power-gating instructions into a single compound instruction,
thereby reducing the amount of power-gating instructions issued. Note that
whilst power-gating instructions can significantly reduce leakage power, they
produce recovery penalties and increase the execution time and code size of pro-
grams. Figure 2 illustrates an example of power-gating control. The lefthand
panel of the figure shows two different components in use, the center panel
illustrates the current practice of attempting to issue power-on and power-off

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

Compilation for Compact Power-Gating Controls • 51:3

Fig. 1. Leakage power trend.

Fig. 2. Scenarios of power-gating controls (the shaded components are those in use).

instructions for these two hardware components separately, and the righthand
panel shows our scheme that attempts to merge these instructions. In this ar-
ticle we provide a cost model and software foundation to guide this process.
Our solution includes a set of data-flow equations for code motion of power-
gating instructions. Our work combines a theoretical foundation and step-by-
step framework for moving, grouping, and merging power-gating instructions.
We have performed experiments that incorporate our compiler analysis and
scheduling policies into SUIF compiler tools, and simulate the energy consump-
tion using Wattch toolkits [Brooks et al. 2000]. Experimental results obtained
using the DSPstone benchmark suite demonstrate that our mechanisms are
effective in reducing both the amount of power-gating instructions and the
power consumption relative to previous methods. Our sink-n-hoist framework
for merging power-gating instructions reduces the code size by an average of
47.8%, and also further reduces the energy consumption due to the block ver-
sion of power-gating instructions, giving better power and performance than
the pointwise power-gating instructions.

The remainder of this article is organized as follows. Section 2 describes
a machine architecture for the target platform, Section 3 overviews the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

51:4 • Y.-P. You et al.

Fig. 3. DEC Alpha 21264 architecture with power-gating support.

leakage-power reduction-framework, Section 4 presents our analysis and merg-
ing techniques for reducing the amount of power-gating instructions, Section 5
gives the experimental results of our study, Section 6 describes related work,
and Section 7 concludes.

2. MACHINE ARCHITECTURE

The architecture model in our design has an instruction set that supports power-
gating control at the component level. We focus on reducing the power consump-
tion of certain components by invoking power-gating technology. Power gating
is analogous to clock gating, except that devices are powered off by switching
off their supply voltage, rather than the clock. This can be implemented by
forcing transistors to be off or using MTCMOS (multithreshold voltage CMOS
technology) to increase the threshold voltage [Butts and Sohi 2000; Kao and
Chandrakasan 2000; Roy and Prasad 1992; Hu et al. 2004].

Figure 3 illustrates an example of our target machine architecture based on
a DEC Alpha 21264 processor with an instruction fetch, issue, and retire unit
(Ibox), a block of integer-function units (Ebox), a block of floating-point-function
units (Fbox), a memory reference unit (Mbox), and an external cache and sys-
tem interface unit (Cbox) [Compaq 1999]. In the adapted DEC Alpha 21264
architecture model, Ebox and Fbox were equipped with power-gated functions.
The power state of each unit is controlled by the 64-bit integer power-gating
control register (PGCR). In this case, 1 bit is used for the integer multiplier
unit and 3 for the floating-point function units. Setting the power-gating bit
to true powers on the corresponding module, and clearing the bit to 0 powers
off the corresponding module immediately in the following clock cycle. A new

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

Compilation for Compact Power-Gating Controls • 51:5

Fig. 4. The leakage-power-reduction framework.

instruction was implemented to control units with the power-gated function by
moving the appropriate value from a general-purpose register to the PGCR.
The integer ALU unit is always powered on, since it takes the responsibility for
moving data to the PGCR.

3. LEAKAGE-POWER-REDUCTION FRAMEWORK

This section presents the compiler framework for implementing power-gating
mechanisms to reduce leakage-power dissipation. We have previously pre-
sented a data-flow analysis framework, called component-activity data-flow
analysis (CADFA), to estimate the component activities on a microprocessor
within a given program [You et al. 2002, 2006]. The analysis collects the infor-
mation of the utilization of components at each point in the program. Power-
gating-instruction scheduling is then performed to determine whether, where,
and when power-gating controls should be employed so as to produce power
reduction. Finally, power-gating instructions are inserted into the program ac-
cordingly. In the current study, we present a sink-n-hoist framework, applied
in the phase immediately before power-gating instructions are inserted, to gen-
erate balanced scheduling of power-gating instructions. Our solution attempts
to merge several power-gating instructions into a single compound instruction.
Figure 4 presents the compiler flow of the leakage-power-reduction framework.
In the figure, steps I, II, and III are conventional [You et al. 2006, 2002], and
steps IV and V are proposed in this article to merge power-gating instruc-
tions. Steps I and II involve performing a component-activity data-flow analy-
sis, step III decides if and where power-gating instructions should be inserted,
step IV attempts to merge the power-gating instructions with our proposed
sink-n-hoist framework, and step V produces the power-gating instructions. A
motivating example of power-gating control in three floating-point units (ALU,
multiplier, and divider) with this framework is illustrated in Figure 5, where
each item shows the status of a component on a timeline, and a shaded item
represents one that it is in use. Three scenarios are considered: leftmost items
show the case without power-gating controls; middle items show the case when
steps I, II, III, and V in the framework are applied; and the rightmost items
show the case when all phases in the framework are applied. The number of
power-gating instructions inserted can be decreased from six to two when the
sink-n-hoist Analysis is applied.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

51:6 • Y.-P. You et al.

Fig. 5. An example of power-gating controls over floating-point (FP) units (shaded components

are those in use).

In Sections 3.1 and 3.2, we describe the methods in steps II and III, and then
steps IV and V with sink-n-hoist analysis for the code motion of power-gating
instructions in Section 4.

3.1 Component-Activity Data-Flow Analysis

The goal of CADFA is to determine the utilization of components at each point
in a program using a set of data-flow equations. We say a component activity
c is generated at a block b if a component is required for execution, repre-
sented by COMPONENTloc(b), and that it is killed if the component is released by
the request, represented by COMPONENTblk(b). The predicates of the data-flow
equations for collecting component-activity information are given as follows:

—COMPONENTloc(b) is a set of components that are required for the first cycle
of execution.

—COMPONENTblk(b) is a set of components that are released by the execution
at block b.

—COMPONENTin(b) is a set of components that are required for execution at the
beginning of block b.

COMPONENTin(b) =
⋃

p ∈ Pred(b)

COMPONENTout(p),

where Pred(b) is the set of predecessor program blocks of block b.

—COMPONENTout(b) is a set of components that are required for execution at
the end of block b.

COMPONENTout(b) = COMPONENTloc(b) ∪
(COMPONENTin(b) − COMPONENTblk(b))

COMPONENTout(b) can be interpreted as the information at the end of a state-
ment, being either generated within the statement or entering at the begin-
ning and not being killed as control flows through the statement.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

Compilation for Compact Power-Gating Controls • 51:7

— INACTIVITY(b) is a set of components that are not active at block b. In fact,
INACTIVITY(b) is the complementary set to COMPONENTout(b), that is,

INACTIVITY(b) = � − COMPONENTout(b),

where � is the universal set.

3.2 Power-Gating-Instruction Scheduling

Once the utilization information of components has been obtained, we can in-
sert power-gating instructions into programs at the appropriate points (i.e.,
beginning and end of an inactive block) to power off and on unused components
so as to reduce the leakage power. However, both shut-down and wake-up pro-
cedures are associated with an additional penalty, especially the latter due
to peak voltage requirements. The following equation represents a cost model
for deciding whether the insertion of power-gating instructions will provide
energy-consumption benefits.

Pleak(C) · ITVLidle > Eoff (C) + Eon(C) + Prleak(C) · ITVLidle,

where functions E and P return the value of energy and power consumption,
respectively; Eoff (C) and Eon(C) represent the energy consumption of issuing
a power-off and a power-on instruction for component C, respectively; Pleak(C)
represents the leakage power consumption of component C in a cycle; Prleak(C)
represents the leakage power consumption of component C in a reduced level
in a cycle;1 and ITVLidle is the length of the idle interval. Accordingly, we have
a break-even length of idle intervals for each component C, called BE-ITVLidle

C ,
that sustains the aforementioned inequality

BE−ITVLidle
C =

⌈
Eoff (C) + Eon(C)

Pleak(C) − Prleak(C)

⌉
.

Hence, the compiler must be aware that power-gating control of a certain com-
ponent C is employed only when the component exhibits a continuous idle in-
terval longer than BE−ITVLidle

C . Moreover, the latency associated with powering
a component on should also be considered.

The obtained component-activity information and cost model for deciding
whether power-gating instructions should be employed allow us to consider
scheduling mechanisms when inserting the power-gating instructions into
given programs. Since the time required to instigate power-gating controls
on components is influenced by conditional branches in programs, we pro-
pose the following set of scheduling policies with power-gating instructions:
Basic Blk Sched, MIN Path Sched, and AVG Path Sched. A naive mechanism
to control the power-gating instructions will set the on and off instructions at
each basic block according to the component activities gathered by the data-
flow equation. We call this scheme Basic Blk Sched. Another case to consider
is that of an inactive block containing conditional branches, since the lengths of

1An effective way to reduce leakage power is to power off a component with power-gating mecha-

nisms that shut down the component and make Prleak(C) zero, while other mechanisms may increase

the threshold voltage to cause a smaller Prleak(C). We model this factor as a variable, rather than

treating it as zero.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

51:8 • Y.-P. You et al.

the, say, two inactive blocks that follow the branch targets may be different. For
example, only one of the branchings may benefit from power gating, in which
case instigating power-gating control in one branch when the other is instead
taken may not reduce the power requirements. In other words, the path lengths
of the taken and not-taken paths of a branch may not be equal, and therefore
one may satisfy the cost model and the other may not. Hence, we propose a
MIN Path Sched policy to ensure that power-gating control is activated only
when the inactive lengths of both branching paths exceed the power-gating
threshold; that is, the minimum length of those paths reaches the criterion for
power gating. Finally, since the behavior of program branches depends on both
the structure of and the input data to programs, some branches may be followed
rarely, or even never. To accommodate this, we propose an eclectic policy, called
AVG Path Sched, to schedule power-gating instructions. AVG Path Sched re-
turns the average length of two branchings, rather than the minimum length.
These three scheduling policies have been described in detail previously [You
et al. 2002].

4. SINK-N-HOIST ANALYSIS

The main idea of sink-n-hoist analysis is to reduce the problem of excessive
addition of instructions with code-motion techniques. The approach attempts
to merge several power-gating instructions into one compound instruction by
“sinking” power-off instructions and “hoisting” power-on instructions; that is,
postponing the issuing of power-off instructions and bringing forward the issu-
ing of power-on. This will result mainly in improvements to code size, but also in
performance and energy via grouping effects. For instance, a power-off instruc-
tion can be postponed for several cycles to be merged with adjacent power-off
instructions. Nevertheless, a maximum number of cycles to be sunk or hoisted
should be set, since sinking or hoisting a power-gating instruction will increase
leakage dissipation. A cost model is given next to determine the feasibility. For
a component C, we have

E
off (C) + Prleak(C) · SINK−SLK >

Pleak(C) · SINK−SLK + Efet−dec−off (C)/N + Eexe−off (C),

where SINK−SLK is the number of cycles for which a power-off statement (or
instruction)2 is sunk, (i.e., the power-off statement is delayed for SINK−SLK
cycles), Efet−dec−off (C) returns that of fetching and decoding a power-off instruc-
tion, Eexe−off (C) returns that of executing a power-off instruction, and N is the
number of power-gated components. Note that the sum of Efet−dec−off (C) and
Eexe−off (C) is equal to Eoff (C). The righthand side of the inequality represents
energy consumed when the power-off statement is delayed for SINK−SLK cycles
and merged with other (N − 1) power-off statements, while the lefthand side
represents the energy consumed when the power-off statement is called imme-
diately after the end of an active interval. In consequence, we have a maximum
sinkable slack for each component C, called MAX−SINK−SLKC, that sustains the

2In the following context, “statement” and “instruction” are used interchangeably, since a statement

at the assembly code level means an instruction.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

Compilation for Compact Power-Gating Controls • 51:9

Fig. 6. Sink-n-hoist algorithm.

previous inequality.

MAX−SINK−SLKC =
⌊

(N − 1) · Efet−dec−off (C)

N · (Pleak(C) − Prleak(C))

⌋

Similarly, we have a maximum hoistable slack for each component.

MAX−HOIST−SLKC =
⌊

(N − 1) · Efet−dec−on(C)

N · (Pleak(C) − Prleak(C))

⌋

With such cost constraints as the basis, we now present a set of data-flow
equations to collect information for the code motion of power-gating instruc-
tions. Figure 6 shows the algorithm for sink-n-hoist analysis. The complete set
of equations used is presented in Figure 7. Sink-n-hoist analysis consists of
three main phases: (1) sinkable analysis and hoistable analysis, which com-
pute the information of possible positions for each power-gating instruction;
(2) grouping-off analysis, grouping-on analysis, and grouping-switch analysis,
which group together the power-gating instructions that can be merged; and
(3) power-gating-instruction placement, which determines appropriate positions
for power-gating instructions.

4.1 Sinkable Analysis and Grouping-Off Analysis

The predicates for collecting SINKABLE and GROUP−OFF information are given
as follows. The SINKABLE predicate gives that to collect the information required
to determine how far the power-off instructions of component activities can be
sunk, and the GROUP−OFF predicate gives that to partition power-off instruc-
tions into groups. We can then use this information to group them by selecting
the produced instructions:

—SINKABLEloc(b) is a set of power-off statements that occur within block b and
which can be safely moved to the end of the block. Each statement is associ-
ated with an integer number SINK−SLKb

C, which is the slack time for compo-
nent C for indicating how many cycles the power-off statement can be sunk
at block b. The initial value of SINK−SLKb

C is set as MAX−SINK−SLKC.

—SINKABLEblk(b) is a set of power-off statements that cannot be safely moved
from the start to the end of bock b; that is, a set of power-off statements whose
associated SINK−SLKb

C value is zero.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

51:10 • Y.-P. You et al.

Fig. 7. Component-activity data-flow analysis and sink-n-hoist analysis equations.

—SINKABLEin(b) is a set of power-off statements that can be safely moved to the
beginning of block b.

SINKABLEin(b) =
⋂

p∈Pred(b)

SINKABLEout(p)

The value of SINK−SLKb
C would be the minimum one among the predecessors

of block b if the values of SINK−SLK
p
C for each p are inconsistent with each

other, where p is a predecessor of block b. This means that the sinkable
slack from one predecessor would be reduced if other predecessors have a
smaller sinkable slack. This implements the consideration that a power-off
statement should not be sunk to a position that may cause a reverse effect.
Moreover, the value of each SINK−SLKb

C is decreased by one in accordance
with the following definition.

SINK−SLKb
C = MINp∈Pred(b)(SINK−SLK

p
C) − 1

—SINKABLEout(b) is a set of power-off statements that can be safely moved to
the end of block b.

SINKABLEout(b) = SINKABLEloc(b) ∪ (SINKABLEin(b) − SINKABLEblk(b))

The value of SINK−SLKb
C is given from that of the associated SINK−SLKb

C in
SINKABLEloc(b) if there exists a power-off-C statement in SINK−ABLEloc(b);

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

Compilation for Compact Power-Gating Controls • 51:11

otherwise, it is given from the one in SINKABLEin(b). In fact, SINKABLEout(b)
presents the set of power-off statements (whether sunk or not) that can be
issued at block b.

We now give the data-flow equations for GROUP−OFF, whose main concept is
to partition power-off instructions into groups in which the possible positions
of each such instruction (information that can be derived from SINKABLEout)
overlaps with at least one of those of the other instructions. In other words, it
clusters together power-off instructions that might be merged. The predicates
for computing GROUP−OFF are as follows:

—GROUP−OFFloc(b) is a set with at most one element (i.e., a singleton or empty
set) in which the element (if it exists) is an integer representing a group
number that never appears in other sets of GROUP−OFFloc. Block b belongs
to the group it enumerates and is the beginning block of a set of successive
blocks if GROUP−OFFloc(b) is not empty. The GROUP−OFFloc(b) set is not empty
only when

SINKABLEout(b) �= ∅ and
⋃

p∈Pred(b)

SINKABLEout(p) = ∅.

A simple way to ensure that all numbers in the sets of GROUP−OFFloc of all
blocks are unique is to assign each element to the value of an integer counter,
and increment the counter once an element is assigned.

—GROUP−OFFblk(b) is a universal set of integers, namely �, or an empty set.
The set is not empty (i.e., flagged to be a set with an � value) only when

SINKABLEout(b) = ∅ and
⋃

p∈Pred(b)

SINKABLEout(p) �= ∅.

In all other cases, it will be an empty set.

—GROUP−OFFin(b) is an integer singleton (a group number) that can be as-
signed to the start of block b or an empty set.

GROUP−OFFin(b) =
{ {MINp∈Pred(b)(�(GROUP−OFFout(p)))}

∅, if MINp∈Pred(b)(�(GROUP−OFFout(p))) = ∞,

where � returns the value of the element of its parameter and returns in-
finity if the parameter is an empty set. In addition, all GROUP−OFFout sets
of its predecessors in the same group can be replaced by GROUP−OFFin(b)
if the GROUP−OFFout set of the predecessor of b is not empty. This provides
opportunity for further grouping.

—GROUP−OFFout(b) is an integer singleton (a group number) that can be as-
signed to the end of block b or an empty set.

GROUP−OFFout(b) = GROUP−OFFloc(b) ∪
(GROUP−OFFin(b) − GROUP−OFFblk(b))

In fact, the element in GROUP−OFFout(b) gives the group number to which
block b belongs.

We now give a running example to illustrate how the analysis works. Suppose
that two components, A and B, are considered for analyses. Given a control-flow

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

51:12 • Y.-P. You et al.

Fig. 8. An example of sinking power-off statements, where the left and right halves of a block

correspond to the activity of components A and B, respectively (shaded components are those in

use).

graph as shown in Figure 8(a), where each block in the graph contains only a
statement, we can determine where power-gating statements should be located
by performing steps I, II, III, and V in Figure 4. This includes CADFA and
power-gating-instruction scheduling.

In this example, it is found that components A and B should be pow-
ered off at blocks Bm+2 and Bn+2, and at blocks Bm+5, Bn+3, and Bn+5,
respectively. To reduce the amount of power-gating instructions issued, we ap-
ply sinkable analysis. By the definition of SINKABLEloc(b), a set of power-off state-
ments that occur within block b, we have SINKABLEloc(Bm+2) = {PowerOff A(4)},
SINKABLEloc(Bm+5) = {PowerOff B(2)}, SINKABLEloc(Bn+2) = {PowerOff A(4)},
SINKABLEloc(Bn+3) = {PowerOff B(2)}, and SINKABLEloc(Bn+5) = {PowerOff B(2)},
where the numbers in parentheses indicate the value of the associ-
ated SINK−SLKC (in fact, the values come from MAX−SINK−SLKA and
MAX−SINK−SLKB), and SINKABLEloc for the other blocks is an empty set.
To simplify representation, the word “PowerOff” is removed and the value
of the associated SINK−SLKC is superscripted (e.g., SINKABLEloc(Bm+2) = {A4}).
Table I gives the computation results of SINKABLEblk(b), SINKABLEin(b), and

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

Compilation for Compact Power-Gating Controls • 51:13

Table I. SINKABLE Predicates for the Example in Figure 8

Block SINKABLEloc(b) SINKABLEblk(b) SINKABLEin(b) SINKABLEout(b)

Bm+1

Bm+2 {A4‡} {A4}
Bm+3 {A3} {A3}
Bm+4 {A2} {A2}
Bm+5 {B2} {A1} {A1, B2}
Bm+6 {A} {A0, B1} {B1}
Bm+7 {B} {B0}
. . .

Bn+1

Bn+2 {A4} {A4}
Bn+3 {B2} {A3} {A3, B2}
Bn+4 {A3} {A3}
Bn+5 {B2} {A2} {A2, B2}
Bn+6 {A1, B1} {A1, B1}
Bn+7 {A, B} {A0, B0}
‡The superscript represents the value of the associated SINK−SLKb

C .

Table II. GROUP−OFF Predicates for the Example in Figure 8

Block GROUP−OFFloc(b) GROUP−OFFblk(b) GROUP−OFFin(b) GROUP−OFFout(b)

Bm+1

Bm+2 {1} {1}
Bm+3 {1} {1}
Bm+4 {1} {1}
Bm+5 {1} {1}
Bm+6 {1} {1}
Bm+7 � {1}
. . .

Bn+1

Bn+2 {2} {2}
Bn+3 {2} {2}
Bn+4 {2} {2}
Bn+5 {2} {2}
Bn+6 {2} {2}
Bn+7 � {2}

SINKABLEout(b) for each block. Note that all elements without a designated
value in this table represent empty sets. Actually, SINKABLEout(b) indicates
the set of power-off statements that can be issued at block b without energy
penalties if the statements could be merged with other statements. In other
words, the power-off statements of component A can be issued at blocks
Bm+2 to Bm+5 and blocks Bn+2 to Bn+6. We then compute GROUP−OFFloc(b),
GROUP−OFFblk(b), GROUP−OFFin(b), and GROUP−OFFout(b) for each block so
as to group those blocks in which the power-off statements of the component
that appears in this group should be issued exactly once. Table II gives the
grouping results: Blocks Bm+2 to Bm+6 belong to group 1 and blocks Bn+2 to
Bn+6 belong to group 2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

51:14 • Y.-P. You et al.

4.2 Hoistable and Grouping-On Analysis

Hoistable and grouping-on analyses are similar to sinkable and grouping-off
analyses, except that hoistable analysis is a backward data-flow analysis. Sim-
ilarly, we can define a set of predicates for collecting HOISTABLE and GROUP−ON
information as follows:

—HOISTABLEloc(b) is a set of power-on statements that occur within block b and
which can be safely moved to the start of the block. Each statement is associ-
ated with an integer number HOIST−SLKb

C, which is the slack time for compo-
nent C that indicates how many cycles the power-on statement can be hoisted
at block b. The initial value of HOIST−SLKb

C is set as MAX−HOIST−SLKC.

—HOISTABLEblk(b) is a set of power-on statements that cannot be safely moved
from the end to start of bock b; that is, the set of power-on statements whose
value of the associated HOIST−SLKb

C is zero.

—HOISTABLEout(b) is a set of power-on statements that can be safely moved to
the end of block b.

HOISTABLEout(b) =
⋂

s∈Succ(b)

HOISTABLEin(s)

The value of HOIST−SLKb
C would be the minimum among those successors of

block b if the values of HOIST−SLKs
C for each s are inconsistent with each other,

where s is a successor of block b. This means that the hoistable slack from one
successor would be reduced if other successors have a smaller hoistable slack.
This implements the consideration that a power-on statement should not be
hoisted to a position that may cause a reverse effect. Moreover, the value
of each HOIST−SLKb

C is decreased by one in accordance with the following
definition.

HOIST-SLKb
C = MINs∈Succ(b)(HOIST-SLKs

C) − 1

—HOISTABLEin(b) is a set of power-on statements that can be safely moved to
the start of block b.

HOISTABLEin(b) = HOISTABLEloc(b) ∪
(HOISTABLEout(b) − HOISTABLEblk(b))

The value of HOIST−SLKb
C is given from the value of the associated

HOIST−SLKb
C in HOISTABLEloc(b) if there exists a power-on-C statement in

HOISTABLEloc(b); otherwise, it is given from the one in HOISTABLEout(b). In
fact, HOISTABLEin(b) presents the set of power-on statements (hoisted or not)
that can be issued at block b.

—GROUP−ONloc(b) is a set with at most one element (i.e., a singleton or empty
set) in which the element (if it exists) is an integer representing a group
number and never appears in other sets of GROUP−ONloc. Block b belongs
to the group it enumerates and is the beginning block of a set of successive
blocks if GROUP−ONloc(b) is not empty. The GROUP−ONloc(b) set is not empty
only when

HOISTABLEin(b) �= ∅ and
⋃

p∈Pred (b)

HOISTABLEin(p) = ∅.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

Compilation for Compact Power-Gating Controls • 51:15

A simple way to ensure that all numbers (in the sets of GROUP−ONloc of all
blocks) are unique is to assign each element to the value of an integer counter,
and increment the counter once an element is assigned.

—GROUP−ONblk(b) is a universal set of integers, namely �, or an empty set.
Block b is one (or the only) of the end blocks of a set of successive blocks if
GROUP−ONblk(b) is not empty, which is the case when

HOISTABLEin(b) = ∅ and
⋃

p∈Pred (b)

HOISTABLEin(p) �= ∅.

—GROUP−ONin(b) is an integer singleton (a group number) that can be assigned
to the start of block b or to an empty set.

GROUP−ONin(b) =
{ {MINp∈Pred(b)(�(GROUP−ONout(p)))}

∅, if MINp∈Pred(b)(�(GROUP−ONout(p))) = ∞
In addition, we can replace all of the GROUP−ONout set of its predecessors by
GROUP−ONin(b) if the GROUP−ONout set of the predecessor of b is not empty.
Note that this provides opportunity for further grouping.

—GROUP−ONout(b) is an integer singleton (a group number) that can be as-
signed to the end of block b or to an empty set.

GROUP−ONout(b) = GROUP−ONloc(b) ∪
(GROUP−ONin(b) − GROUP−ONblk(b))

In fact, the element in GROUP−ONout(b) gives the group number to which
block b belongs.

4.3 Grouping-Switch Analysis

In order to collect more grouping information for later analysis, we introduce
grouping-switch analysis, which groups together all power-on and power-off
instructions that might be merged. The analysis is similar to grouping-off
and grouping-on analyses. The predicates for computing GROUP−SWH are as
follows:

—GROUP−SWHloc(b) is a set with at most one element (i.e., a singleton or empty
set) in which the element (if it exists) is an integer representing a group
number and never appears in other sets of GROUP−SWHloc. Block b belongs
to the group it enumerates and is the beginning block of a set of successive
blocks if GROUP−SWHloc(b) is not empty. The GROUP−SWHloc(b) set is not
empty only when

SINKABLEout(b) �= ∅ and
⋃

p∈Pred(b)

SINKABLEout(p) = ∅

or

HOISTABLEin(b) �= ∅ and
⋃

p∈Pred(b)

HOISTABLEin(p) = ∅.

A simple way to ensure that all numbers in the sets of GROUP−SWHloc of all
blocks are unique is to assign each element to the value of an integer counter,
and increment the counter once an element is assigned.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

51:16 • Y.-P. You et al.

—GROUP−SWHblk(b) is a universal set of integers, namely �, or an empty set.
Block b is one (or the only) of the end blocks of a set of successive blocks if
GROUP−SWHblk(b) is not empty, which is the case when

SINKABLEout(b) = ∅ and
⋃

p∈Pred(b)

SINKABLEout(p) �= ∅

and

HOISTABLEin(b) = ∅ and
⋃

p∈Pred(b)

HOISTABLEin(p) �= ∅.

—GROUP−SWHin(b) is an integer singleton (a group number) that can be as-
signed to the start of block b or to an empty set.

GROUP−SWHin(b) =
{ {MINp∈Pred(b)(�(GROUP−SWHout(p)))}

∅, if MINp∈Pred(b)(�(GROUP−SWHout(p))) = ∞
In addition, we can also replace all of the GROUP−SWHout set of its predeces-
sors by GROUP−ONin(b) if the GROUP−SWHout set of the predecessor of b is
not empty. Note that this provides opportunity for further grouping.

—GROUP−SWHout(b) is an integer singleton (a group number) that can be as-
signed to the end of block b or to an empty set.

GROUP−SWHout(b) = GROUP−SWHloc(b) ∪
(GROUP−SWHin(b) − GROUP−SWHblk(b))

In fact, the element in GROUP−SWHout(b) gives the group number to which
block b belongs.

4.4 Power-Gating-Instruction Placement

We use information from the SINKABLEout, HOISTABLEin, GROUP−OFFout,
GROUP−ONout, and GROUP−SWHout predicates described in Sections 4.1, 4.2,
and 4.3 to determine how to place power-gating instructions, that is, whether
power-gating instructions should be combined or issued separately.

Figure 9 outlines an algorithm for placing power-gating instructions in a
group-by-group manner. It first determines all possible policies for issuing
power-gating instructions; a legitimate policy is one in which all power-gating
instructions are issued at block b in which SINKABLEout(b) or HOISTABLEin(b) is
not empty, and where each type of power-gating instruction appearing within
a group must be issued exactly once only. It then uses an energy-cost model
(including leakage energy, the energy associated with issuing power-off instruc-
tions, etc.) to determine which policy results in the lowest energy consumption.
The algorithm for power-gating-instruction placement is basically a method of
exhaustion, yet can be regarded as a simple and valid method. Towards the
actual time spent in our experiments the process only contributes a very small
fraction: less than 0.6% of our proposed framework.

In the following, we elaborate the idea by continuing the example presented
in Section 4.1. An energy-cost model is established with the information of
SINKABLEout and GROUP−OFFout, and evaluated for each case of issuing power-
off-instruction policies under the guideline that power-off instructions must be

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

Compilation for Compact Power-Gating Controls • 51:17

Fig. 9. Power-gating-instruction placement.

issued at the block in which SINKABLEout is not empty, and each type of power-
gating instruction appearing within a group must be issued exactly once only.
For example, the policy could be “powering off A at Bm+2 and powering off B at
Bm+5” or “powering off A and B at Bm+2’ in group 1”. The policy with minimum
energy cost as evaluated by the model is chosen, since this should give the lowest
power consumption. Finally, power-off instructions are inserted at appropriated
points, as shown in Figure 8(b): The power-off statements within each group
are merged.

5. EXPERIMENTAL RESULTS

5.1 Platform

We used a DEC-Alpha-compatible architecture with the power-gating controls
and instruction sets as described in Figure 3 as the target architecture for
our experiments. The proposed leakage-power-reduction framework was
incorporated into the compiler tool with SUIF [Stanford Compiler Group 1995]
and Machine-SUIF [Smith 1998], and evaluated by the Wattch simulator
with a 0.10-μm process parameter and a 1.9-V supply voltage [Brooks et al.
2000]. Table III summaries the baseline configuration of the simulator in our
experiment. By default, the simulator performed out-of-order executions. We
used the “-issue:inorder” option in the configuration so that instructions would
be executed in order for ensuring the correctness of power-gating controls.
Nevertheless, our approach can also be applied to out-of-order issue machines
if the additional hardware supports proposed in You et al. [2006] are employed.
The benchmarks used in our experiments were from the floating-point version

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

51:18 • Y.-P. You et al.

Table III. Baseline Processor Configuration

Parameter Value

Clock 600 MHz

Process parameters 0.10 μm, 1.9 V

Instruction issuing In-order

Decode width 8 instructions/cycle

Issue width 8 instructions/cycle

Commit width 8 instructions/cycle

RUU size 128

LSQ size 64

Functional units 4 integer ALUs

1 integer multiply/divide unit

4 FP ALUs

1 FP multiply/divide unit

Register files 32 64-bit integer registers

32 64-bit FP registers

1 64-bit power-gating control register

Fig. 10. Compilation and simulation framework.

of the DSPstone benchmark suite [Zivojnovic et al. 1994]. The average IPC
(instructions per cycle) of the benchmarks is 0.36 with the configuration in
Table III.

Figure 10 illustrates the phases in the compilation and simulation frame-
work. We incorporated the low-power optimization phase just before code gen-
eration; that is, after all traditional performance optimizations are performed.
Hence, the additional phase has little or no influence on performance; it only in-
serts power-gating instructions and thus barely affects execution behavior. The
implementation was based on SUIF2 and the Control Flow Graph (CFG) and
Machine libraries from Machine-SUIF. Programs were first transformed from
high-SUIF to low-SUIF format with SUIF, and then translated to the machine-
level or instruction-level CFG form with Machine-SUIF. The proposed four

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

Compilation for Compact Power-Gating Controls • 51:19

Fig. 11. Compile-time breakdown.

components of the low-power optimization phase (implemented as a Machine-
SUIF pass) were then performed, and finally, the compiler generated DEC Al-
pha assembly codes with power-gating controls. We also examined the break-
down of the overall compile time, as shown in Figure 11. It is observed that the
proposed approach, CADFA with sink-n-hoist, contributes an average of 19.2%
of overall compile time.

In addition, the power-gating mechanism is absent in the original DEC Al-
pha processor, and thus there are no power-gating instructions in its instruction
set. We therefore treated power-gating instructions as a set of special instruc-
tions so that they are recognized by the DEC Alpha assembler and linker: “stl
$24, negative offset($31)”, where negative offset is a negative integer that is
used for indicating the functional unit to be powered on or off. The instruction
stores the value of register $24 into the memory address below zero, which is
an invalid memory address ($31 is a constant zero register) and should never
be generated by standard compilers. To prevent processors from accessing the
invalid memory addresses, we made a small modification in Wattch: When the
instruction decoder deciphers such instructions, it extracts the power-gating in-
formation and converts it to an NOP (no-operation) instruction. Furthermore,
since Wattch does not model leakage at the component level per se, we assumed
that leakage power contributes 10% of the total power consumption. Further-
more, we assumed that wake-up operations of power-gating controls have a
3-cycle latency [Hu et al. 2004] and that it took 4 and 10 times the leakage
energy per cycle to power a component off and on, respectively. The energy
consumption of fetching and decoding a power-gating instruction was assumed
to be 2 times the leakage power. Also, the baseline data was provided by the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

51:20 • Y.-P. You et al.

Fig. 12. Code size growth.

power estimation of Wattch cc3 with a clock-gating mechanism, which gates
the clocks of those unused resources in multiported hardware to reduce the
dynamic power; however, leakage power is still exuded.

5.2 Results and Discussion

The results from three types of experiment are compared: (1) no power-gating
mechanism (baseline); (2) CADFA as from a previous work [You et al. 2006,
2002] in which only steps I, II, and III of Figure 4 were performed; and (3) sink-
n-hoist analysis involving all phases in Figure 4. In addition, three policies
for power-gating-instruction scheduling were proposed in step III of Figure 4
to deal with conditional branches in programs. Without loss of generality, we
used the Min Path Sched policy to schedule power-gating instructions in this
experiment.

Figures 12–14 give the compilation and simulation results of two approaches:
CADFA and CADFA with sink-n-hoist when the integer multiplier, floating-
point adder, and floating-point multiplier are considered for power gating, and
the comparison baseline in these figures is the one without power-gating con-
trols. Figure 12 presents the code-size growth due to power-gating instructions,
which shows that sink-n-hoist reduces the code size by about 47.8% on aver-
age (from 60.3% to 25.4%) compared with the method without the sink-n-hoist
framework, namely, CADFA. Moreover, our scheme also further reduces to-
tal energy consumption compared to that without the sink-n-hoist framework,
which is due to the block version of the power-gating instructions giving better
power and performance characteristics than the pointwise version. Figure 13

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

Compilation for Compact Power-Gating Controls • 51:21

Fig. 13. Normalized total energy consumption.

Fig. 14. Performance degradation.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

51:22 • Y.-P. You et al.

illustrates the normalized energy breakdown with conventional, CADFA, and
CADFA with sink-n-hoist compilation strategies. The energy consumption was
measured by 5 categories: the dynamic energy dissipated by clock circuits and
that by the whole processor except for clock circuits, the leakage energy dis-
sipated by power-gatable units and that by the whole processor except for
power-gatable units, and the overhead energy consumption due to extra power-
gating instructions. The overhead includes not only the energy dissipated by
power-gating instructions themselves, but also the negative impact of memory,
buses, etc. The average impact of using CADFA and CADFA with sink-n-hoist
are 0.98% and 0.20%, respectively, in which about 20% of the energy is con-
tributed to power-gating operations and the other 80% to dissipation in the
caches, fetch and decode units, buses, etc. Figure 13 shows that our scheme
reduces average power by 11.9% compared with the conventional method. Note
that the average reduction in total energy does not seem high, but this is at-
tributable to the fact that only 3 types of functional units (the integer multiplier,
floating-point adder, and multiplier) are under power-gating control in this ex-
periment. In fact, the CADFA method has already achieved average energy
reductions in combined dynamic and leakage power of 70.4% and 72.6% for
the adder and multiplier, respectively [You et al. 2006, 2002]. Figure 13 also
shows that our scheme is superior to CADFA in terms of energy reduction,
which is also due to the block version of power-gating instructions improv-
ing power consumption more than the pointwise. In addition, we also compile
the breakdown of the execution cycle in terms of function unit activities. It
is observed that for the integer multiplier, floating-point adder, and floating-
point multiplier, 76.4%, 76.2%, and 77.0% of idle cycles, respectively, were
controlled with the power-gating mechanism by CADFA with the sink-n-hoist
approach.

Figure 14 shows that the performance impact of power-gating mechanisms
is less than 5% for most of the benchmarks for both CADFA and CADFA with
sink-n-hoist. The only exceptions are fir2dim and matrix, which are due to
the fact that the number of power-gating instructions placed within loops are
much greater than for the other benchmarks. Therefore, fir2dim and matrix
execute more power-gating operations, and thus consume more execution cy-
cles. The performance degradation is reduced by an average of about 64.81%
over the CADFA method. Our method exhibits an advantage over the one with-
out the sink-n-hoist framework due to reduction in number of power-gating
instructions. Note that the performance penalty is less than the increase in
number of instructions, since most instructions are added outside the loop ker-
nel. Nevertheless, the reduction in number of power-gating instructions still
yields a performance advantage.

In addition, Figure 15 gives the normalized energy breakdown in four cat-
egories (dynamic energy by the whole processor, leakage energy dissipated
by power-gatable units, leakage energy dissipated by the whole processor ex-
cept the power-gatable units, and for overhead energy consumption due to
extra power-gating instructions) with different configurations of the leakage
contribution (from 10% to 90%). It shows that our technique is effective in
helping leakage control at/beyond new technology generations. Generally, the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

Compilation for Compact Power-Gating Controls • 51:23

Fig. 15. Normalized energy consumption with different leakage contributions.

effectiveness of our approach becomes greater as leakage contribution rises.
However, this trend stabilizes when the leakage contribution becomes greater
than 70% due to the dominating leakage and growing impact on overheads in
memory, bus, and other uncontrolled units with respect to power gating. Recall
that we only attempt to do power-gating control on units of the integer mul-
tiplier, floating-point adder, and floating-point multiplier in this experiment
setup.

6. RELATED WORK

Recent studies have attempted to reduce leakage power using integrated archi-
tecture and compiler power-gating mechanisms [Dropsho et al. 2002; Rele et al.
2002; You et al. 2006, 2002; Zhang et al. 2004, 2003]. Dropsho et al. [2002] pro-
posed an analytical energy model for architecture-level analysis, and described
the benefits of employing a dual-threshold-voltage technique to reduce sub-
threshold leakage current in the integer functional units of a processor. They
also proposed a simple architecture design, called gradual sleep, to reduce the
overhead of activating the sleep mode for smaller idle periods. The work of Rele
et al. [2002] is based on a profiling approach to identify those blocks in which
functional units are expected to be idle (based on the execution frequencies of
each basic block), and then inserting off and on instructions at entry and exit

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

51:24 • Y.-P. You et al.

points of such blocks, respectively. You et al. [2002] proposed a more formal
compiler methodology that uses a data-flow analysis approach to collect the
information of activities of each functional unit at each point of a program, in-
serting power-gating instructions by using a scheduling algorithm to deal with
the uncertainty of idle periods due to conditional branches. They also proposed
an architecture to make power-gating controls applicable to out-of-order issue
processors [You et al. 2006]. Aside from controlling leakage energy of functional
units, Zhang et al. [2004] presented a compiler-directed approach that inserts
power mode instructions for cache lines to control leakage energy consumed in
the instruction cache.

The previously described approaches have shown that leakage power can be
effectively suppressed with help from compilers. However, there are concerns
about the amount of power-control instructions being added to programs as
increasing numbers of components are equipped with power-gating controls in
SoC design platforms. Whilst power-gating instructions can significantly reduce
leakage power, they produce recovery penalties and increase the execution time
and code size of programs. Our sink-n-hoist framework for a compiler solution
attempts to merge several power-gating instructions into a single compound
instruction so as to reduce the amount of power-gating instructions.

7. CONCLUSION

In summary, our experiments have demonstrated that the sink-n-hoist analysis
framework proposed in this article improves code size, energy consumption, and
performance. It reduces the overall energy consumption and code size growth by
an average of about 0.9% and 47.8% , respectively, compared with the CADFA
scheme without our sink-n-hoist approach, and impacts performance by an av-
erage of less than 1%. As the compiler phase is done one phase after another,
our framework provides a sound theoretical foundation capable of working with
other improvements, such as adding more slackness for low power. We are cur-
rently in the process of incorporating more components (such as cryptography
modules) into our architecture and simulator. We expect that our scheme will
be even more beneficial as more extensible modules are equipped with power-
gating controls in SoC design platforms.

ACKNOWLEDGMENTS

The work was supported in part by the National Science Council (under grant
numbers. NSC 95-2220-E-007-001 and NSC 95-2220-E-007-002), the Ministry
of Economic Affairs (under grant numbers 95-EC-17-A-01-S1-034 and 96-EC-
17-A-01-S1-034), and ITRI (under an ITRI/NTHU research grant). We are also
grateful to the National Center for High-performance Computing for computer
time and facilities.

REFERENCES

BELLAS, N., HAJJ, I. N., AND POLYCHRONOPOULOS, C. D. 2000. Architectural and compiler techniques

for energy reduction in high-performance microprocessors. IEEE Trans. on Very Large Scale
Integr. Syst. 8, 3 (Jun.), 317–326.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

Compilation for Compact Power-Gating Controls • 51:25

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level

power analysis and optimizations. In Proceedings of the International Symposium on Computer
Architecture (Vancouver, Canada), 83–94.

BUTTS, J. A. AND SOHI, G. S. 2000. A static power model for architects. In Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture (Monterey, CA), 191–201.

CHANDRAKASAN, A. P., SHENG, S., AND BRODERSEN, R. W. 1992. Low-Power CMOS digital design.

IEEE J. Solid-State Circ. 27, 4, 473–484.

CHANG, J.-M. AND PEDRAM, M. 1995. Register allocation and binding for low power. In Proceedings
of the Design Automaton Conference (San Francisco, CA), 29–35.

COMPAQ COMPUTER CORP. 1999. Alpha 21264 Microprocessor Hardware Reference Manual.
DOYLE, B., ARGHAVANI, R., BARLAGE, D., DATTA, S., DOCZY, M., KAVALIEROS, J., MURTHY, A., AND CHAU, R.

2002. Transistor elements for 30 nm physical gate lengths and beyond. Intel Technol. J. 6, 2

(May), 42–54.

DROPSHO, S., KURSUN, V., ALBONESI, D. H., DWARKADAS, S., AND FRIEDMAN, E. G. 2002. Managing

static leakage energy in microprocessor functional units. In Proceedings of the 35th International
Symposium on Microarchitecture (MICRO) (Istanbul, Turkey), 321–332.

FEREMANS, C., LABBé, M., AND LAPORTE, G. 2003. Generalized network design problems. Eur. J.
Oper. Res. 148, 1–13.

GONZALEZ, R. E. 2000. Xtensa: A configurable and extensible processor. IEEE Micro. 20, 2, 60–70.

HOROWITZ, M., INDERMAUR, T., AND GONZALEZ, R. 1994. Low-Power digital design. In Proceedings
of the IEEE Symposium on Low Power Electronics (San Diego, CA), 8–11.

HU, Z., BUYUKTOSUNOGLU, A., SRINIVASAN, V., ZYUBAN, V., JACOBSON, H., AND BOSE, P. 2004. Mi-

croarchitectural techniques for power gating of execution units. In Proceedings of the Interna-
tional Symposium on Low Power Electronics and Design (ISLPED) (Newport Beach, CA), 32–

37.

IP, H., LOW, J., CHEUNG, P. Y. K., CONSTANTINIDES, G. A., LUK, W., SENG, S. P., AND METZGEN, P. 2002.

Strassen’s matrix multiplication for customisable processors. In Proceedings of the IEEE Inter-
national Conference on Field-Programmable Technology (FPT) (Hong Kong), 453–456.

JONES, R. 2004. Modeling and design techniques reduce 90 nm power. EE Times. http://www.

eetimes.com/showArticle.jhtml?articleID=26806450.

KAO, J. T. AND CHANDRAKASAN, A. P. 2000. Dual-Threshold voltage techniques for low-power digital

circuits. IEEE J. Solid-State Circ. 35, 7, 1009–1018.

KARNIK, T., BORKAR, S., AND DE, V. 2002. Sub-90nm technologies—Challenges and opportunities

for CAD. In Proceedings of the International Conference on Computer-Aided Design (ICCAD) (San

Jose, CA), 203–206.

KIM, N. S., AUSTIN, T., BLAAUW, D., MUDGE, T., FLAUTNER, K., HU, J. S., IRWIN, M. J., KANDEMIR, M., AND

NARAYANAN, V. 2003. Leakage current: Moore’s law meets static power. IEEE Comput. 36, 12,

68–75.

KOSTER, A. M., VAN HOESEL, S. P., AND KOLEN, A. W. 1998. The partial constraint satisfaction

problem: Facets and lifting theorems. Oper. Res. Lett. 23, 89–97.

LEE, C., LEE, J. K., HWANG, T.-T., AND TSAI, S.-C. 2003. Compiler optimizations on VLIW instruction

scheduling for low power. ACM Trans. Des. Autom. Electron. Syst. 8, 2, 252–268.

LEE, M. T.-C., TIWARI, V., MALIK, S., AND FUJITA, M. 1997. Power analysis and minimization tech-

niques for embedded DSP software. IEEE Trans. Very Large Scale Integr. Syst. 5, 1 (Mar.), 123–

133.

RELE, S., PANDE, S., ONDER, S., AND GUPTA, R. 2002. Optimizing static power dissipation by func-

tional units in superscalar processors. In Proceedings of the 11th International Conference on
Compiler Construction (CC) (Grenoble, France), 261–275.

ROY, K. AND PRASAD, S. C. 1992. SYCLOP: Synthesis of CMOS logic for low power applications. In

Proceedings of the IEEE International Conference on Computer Design (Cambridge, MA), 464–

467.

SEMICONDUCTOR INDUSTRY ASSOC. 2004. International technology roadmap for semiconductors.

SMITH, M. D. 1998. The SUIF Machine Library. Division of of Engineering and Applied Science,

Harvard University.

STANFORD COMPILER GROUP. 1995. The SUIF Library. Stanford Compiler Group, Stanford

University.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

51:26 • Y.-P. You et al.

SU, C.-L. AND DESPAIN, A. M. 1995. Cache designs for energy efficiency. In Proceedings of the 28th
Annual Hawaii International Conference on System Sciences (Los Angeles, CA), 306–315.

TIWARI, V., SINGH, D., RAJGOPAL, S., MEHTA, G., PATEL, R., AND BAEZ, F. 1998. Reducing power in high-

performance microprocessors. In Proceedings of the Design Automaton Conference (San Francisco,

CA), 732–737.

TIWARI, V., DONNELLY, R., MALIK, S., AND GONZALEZ, R. 1997. Dynamic power management for

microprocessors: A case study. In Proceedings of the International Conference on VLSI Design
(Hyderabad, India), 185–192.

TSUTSUI, H., MASUZAKI, T., IZUMI, T., ONOYE, T., AND NAKAMURA, Y. 2002. High speed JPEG2000

encoder by configurable processor. In Proceedings of the IEEE Asia Pacific Conference on Circuits
and Systems (APCCAS) (Singapore), 45–50.

YANG, H., GOVINDARAJAN, R., GAO, G. R., CAI, G., AND HU, Z. 2002. Exploiting schedule slacks for rate-

optimal power-minimum software pipelining. In Proceedings of the 3rd Workshop on Compilers
and Operating Systems for Low Power (COLP) (Charlottesville, VA).

YOU, Y.-P., LEE, C., AND LEE, J. K. 2006. Compilers for leakage power reduction. ACM Trans. Des.
Autom. of Electron. Syst. 11, 1 (Jan.), 147–164.

YOU, Y.-P., LEE, C., AND LEE, J. K. 2002. Compiler analysis and supports for leakage power re-

duction on microprocessors. In Proceedings of the International Workshop on Languages and
Compilers for Parallel Computing (LCPC) (Washington, DC), 63–73. Lecture Notes in Computer

Science, vol. 2481, Springer.

ZHANG, W., HU, J. S., DEGALAHAL, V., KANDEMIR, M., VIJAYKRISHNAN, N., AND IRWIN, M. J. 2004. Reduc-

ing instruction cache energy consumption using a compiler-based strategy. ACM Trans. Architect.
Code Optimi. 1, 1 (Mar.), 3–33.

ZHANG, W., KANDEMIR, M. T., VIJAYKRISHNAN, N., IRWIN, M. J., AND DE, V. 2003. Compiler support for

reducing leakage energy consumption. In Proceedings of the 6th Design Automation and Test in
Europe Conference (DATE) (Messe Munich, Germany), 1146–1147.

ZIVOJNOVIC, V., MARTINEZ, J., SCHLAGER, C., AND MEYR, H. 1994. DSPstone: A DSP-Oriented bench-

marking methodology. In Proceedings of the International Conference on Signal Processing and
Technology (ICSPAT) (Dallas, TX), 715–720.

Received October 2006; revised May 2007; accepted May 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 51, Pub. date: Sept. 2007.

