
A n Ef fec t ive G u i d a n c e S t r a t e g y for

A b s t r a c t i o n - G u i d e d S i m u l a t i o n

by

Flavio M . de Paula

M.Sc. in Electrical Engineering, Universidade Federal de Minas Gerais, 1999

B.Sc. in Electrical Engineering, Universidade Federal de Minas Gerais 1996

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Piaster of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

T H E U N I V E R S I T Y OF B R I T I S H C O L U M B I A

April 2007

© Flavio M . de Paula, 2007

Abstract

Despite major advances in formal verification, simulation continues to be the dom­

inant workhorse for functional verification. Abstraction-guided simulation has long

been a promising framework for leveraging the power of formal techniques to help

simulation reach difficult target states (assertion violations or coverage targets):

model checking a smaller, abstracted version of the design avoids complexity blow­

up, yet computes approximate distances from any state of the actual design to the

target; these approximate distances are used during random simulation to guide the

simulator. Unfortunately, the promise has.yet to be realized, as the performance

of previous work has been unreliable — sometimes great, sometimes poor. The

problem is the guidance strategy.

In this thesis, we first develop a platform to enable flexible exploration of

abstraction-guided simulation — different guidance heuristics and formal tools are

easily inserted — while providing the capacity, speed, and Verilog compatibility of a

leading industry-standard (logic-simulation) tool, Synopsys VCS. Then, we start by

exploring some greedy heuristics and find that they tend to perform poorly, adding

too much search overhead for limited ability to escape dead ends (local optima).

Based on these experiments, we propose a new guidance strategy, which pursues a

more global search and is better able to avoid getting stuck. Experimental results

show that our new guidance strategy is highly effective in most cases that are hard

for random simulation and beyond the capacity of formal verification.

ii

Contents

Abstract ii

Contents ; iii

List of Tables v

List of Figures vi

Acknowledgments viii

Dedication ix

Chapter 1 Introduction 1

1.1 Motivation and Philosophy 1

1.2 Background and Related Work 2

1.2.1 Dynamic Verification 2

1.2.2 Model Checking 4

1.2.3 Abstraction 8

1.2.4 Abstraction Guided Simulation 11

Chapter 2 Building a Research Platform 14

Chapter 3 Guided-Search Strategies 17

3.1 Bounded Local Search Experiments 17

iii

3.1.1 Varying Search Breadth 19

3.1.2 Varying Search Depth 21

3.1.3 GUIDO's SimSearch 22

3.1.4 Hard Gains, Easy Losses 24

3.2 A New Guidance Strategy 25

Chapter 4 Experimental Evaluation 30

4.1 Analysis Methodology 30

4.2 The Test Set 32

4.3 Case Study on a Separate Design . 35

Chapter 5 Conclusion and Future Work 38

Bibliography 40

iv

List o f Tables

.4.1 Test Set: Formal Verification Trials 34

4.2 Test Set: Random vs. Guided Simulation Time 34

4.3 Case Study: Random vs. Guided Simulation Time 36

v

List of Figures

1.1 Time-to-Market Cost • • • • 4

1.2 Model Checking AG^p via backward reachability computation . . . 7

1.3 Conservative Abstraction '. . . 9

1.4 Predicate-Abstraction Example 10

1.5 Abstraction-Guided Simulation 12

1.6 Dead-End States 13

2.1 Ever lost Architecture 15

2.2 Everlost Plaftorm: Abstraction-Guided Simulation Flow 16

3.1 Simple Local-Neighborhood Heuristic 18

3.2 First Design Under Verification 19

3.3 . Mean Simulation Time for Varying Search Breadth . . . • 20

3.4 Mean Simulation Time for Varying Search Depth 21

3.5 Mean Simulation Time Varying Search Depth with Breadth of 3 . . 22

3.6 Mean Simulation Time for SimSearch 24

3.7 Simulation Trace using Depth of 100 and Breadth of 1 25

3.8 Simulation Trace using SimSearch with Depth 100 and Breadth 16 . 26

3.9 Simulation Trace using New Guidance Heuristic 28

3.10 Enlargement of Part of Fig. 3.9, part 1 29

3.11 Enlargement of Part of Fig. 3.9, part 2 29

vi

4.1 Test Set: Design Under Verification 33

4.2 Case Study on Ethernet MAC 10/100 Mbps 35

vii

Acknowledgments

I would like to acknowledge Alan J. Hu for his support and guidance. I would

also like to acknowledge: my graduate professors, especially, Anne Condon and

David Kirkpatrick, for kindly guiding me as I entered into the world of the theory

of computation; and, my fellow colleagues in the Integration Systems Laboratory,

Xiushan Feng and Domagoj Babic, for the priceless theoretical conversations we

had.

viii

I dedicate this thesis to you.. .

ix

Chapter 1

In t roduc t ion

1.1 M o t i v a t i o n a n d P h i l o s o p h y

Abstraction-Guided Simulation (AGS) is a verification technique that combines

model checking and dynamic verification (simulation). A formal definition of AGS

will be given in later sections. For now, consider the task of verifying a design ac­

cording to its specification. AGS divides this task into two phases: first, a model

checking phase, in which AGS checks an abstract version of the design under verifi­

cation (DUV) and generates a coarse map leading to the specification goal; second,

a dynamic verification phase, in which AGS guides the DUV's simulation towards

the specification goal by heuristically choosing transitions based on the coarse map.

AGS has drawn a lot of attention from the hardware verification community.

AGS is appealing because the model checking phase considers only an. abstract

version of the DUV, and in doing so, it is not so much affected by the DUV's size.

It is no surprise with this appeal that several researchers have proposed their own

AGS schemes, (e.g. [19, 34, 14, 33, 22, 17, 13, 30, 26, 29]). However, results are

often worse than with other techniques like (directed) pseudo-random simulation.

The reasons for this inconsistency are twofold: the abstraction techniques used do

not always generate good abstract models (precise maps), and the proposed guidance

heuristics perform poorly with these imprecise maps.

1

The problem is dead-end states. A dead-end state is a state from which no

progress is made towards a specification goal because imprecise abstractions create

transitions that do not exist in the concrete model. Dead-end states create challenges

to AGS for three reasons: a priori, there is no way to know where dead ends are

located in the search space; it is hard to know whether the current simulation state

is a dead end or not; and if a dead end is found, it is hard to know whether a dead

end will be re-visited pr not.

This thesis focuses on finding guidance heuristics that demonstrate consistent

and effective results by properly handling dead-end states. To achieve this goal, the

research is divided into several stages: first, to develop a research platform capable of

supporting industrial designs; second, to investigate and to draw conclusions about

common search algorithms; third, to investigate a recently proposed advanced search

algorithm [30]; and finally, to propose my own guidance heuristic and to demonstrate

its effectiveness.

1.2 B a c k g r o u n d a n d R e l a t e d W o r k

This section presents background on hardware verification techniques. While pre­

senting these techniques in the order in which they were developed, I will discuss

their advantages, disadvantages, and related work.

1.2.1 Dynamic Verification

Dynamic verification1 (DV) is a technique that uses logic simulation to check the

behaviors of a design-under-verification (DUV). The role of a logic simulator is

to simulate input stimuli to the DUV and to compute the DUV's next state and

outputs. Therefore, dynamic verification involves coordinating the input stimuli

generation and checking the DUV's response against the DUV's expected behavior.
1Also known as "simulation" in the integrated circuit industry.

2

DV has been one of the most used verification techniques for hardware de­

signs. Several reasons contribute to this success. I classify these reasons into two

groups: direct and indirect. The direct reasons are related specifically to the dy­

namic verification technique, whereas in the indirect group, we have social and

historical reasons. The direct reasons for DV's success are its ease-of-use, its speed,

and its scalability. In dynamic verification, each simulation run has only one exe­

cution trace, which is a sequence of input stimuli, the DUV's state transitions, and

the output changes. DV is easy to use because we need to consider only an indi­

vidual trace at a time while debugging the DUV. Also, each simulation run requires

the tracking of only a small number of states (compared to the entire state space),

making simulation fast and more independent of the DUV's size.

The indirect reasons for the success of dynamic verification are its mature

technology and strong tool support. Dynamic verification is as old as integrated

circuits (ICs). Because of this long history, it is common in academic departments

of computer science and engineering to have DV courses for undergraduate students.

At the same time, electronic design automation (EDA) companies like Synopsys Inc.,

Cadence Design Systems Inc., and Mentor Graphics Corporation have been at the

forefront of dynamic verification with their tools [31, 6, 24], and EDA companies

have already established a solid relationship with IC companies. Therefore, the large

support coming from academia coupled with those commercial tools have immensely

contributed to DV's success.

Today's design complexity, however, is pushing dynamic verification to its

limit. The problem is that the number of possible behaviors of the DUV grow ex­

ponentially with the DUV's size. Therefore, this growth requires an ever-increasing

number of simulation cycles to examine the long and non-trivial DUV behaviors.

Also, because dynamic verification analyzes only a single simulation trace each run,

a great number of simulation runs may be required to provide assurance that the

DUV is free of bugs. Even then, several bugs may slip into the silicon. Once a bug

3

50

o

40

30

o -J
£ 20

10

50% . Product Ship Product
Development Cost 9% 6 months
Cost Overrun Too High Late

Source: McKinsey and Co. [11]

Figure 1.1: Time-to-Market Cost

is found in the silicon,, it usually means the IC needs to be fabricate'd again (re-

spin). This results in two extra costs: the re-spin itself and the cost of the increased

time-to-market. Figure 1.1 shows the profit losses due to delayed production [11].

Therefore, we need a more thorough and conclusive verification technique to find

bugs before they slip into the silicon. Model checking is one example of such a

verification technique and will be described in the next section.

1.2.2 Model Checking

Model checking [7, 28] is a formal 2 verification technique. In contrast with dynamic

verification, model checking exhaustively searches the state space. Given sufficient

resources (memory and cpu time), model checking will always conclude whether the

system satisfies its specification or not.

2 In the sense of mathematical formalism, rather than just applying test stimuli.

4

The model checking verification flow consists of three major steps: modeling,

specification, and verification. The modeling step is a translation of the system into

a formal model, capturing the properties of the design. In model checking, a Kripke

structure is a typical formal model used to describe the system. A Kripke structure

is a nondeterministic finite state machine given by the 4-tuple: M = {S, So, R, L},

where

• S is the finite set of states,

• So the set of initial states,

• C 5 x 5 is a total transition relation,

• £ : S H 2AP, is a function that labels each state with a set of atomic propo­

sitions, AP, that are true in that state.

The specification step uses some logical formalism (e.g. CTL or LTL [8, 27])

to capture the system's properties. In this thesis, we are interested only in safety

properties. Intuitively, a safety property states that something bad never happens

in the system (e.g. deadlock, division by zero). In CTL, safety properties are usually

encoded as AG->p — for all paths and in every state in those paths, p is false —

where p is a propositional formula, denoting the bad event. Although focusing only

on safety properties seems restrictive, we are still able to capture many important

design properties.

Finally, the verification step consists of a methodical search of the state space

for a state violating the specification. Recall that we are using a Kripke structure

to model our design. Therefore, we need to traverse the Kripke structure to ver­

ify whether it is a model of the CTL formula AG->p. Backward reachability is a

standard mechanism used in model checking to verify such formulas. We compute

backward reachability by successive pre-image (defined below) operations. For ex­

ample, consider a set Po, which satisfies p, i.e., the set of bad states. The pre-image

of the state Po is the set of states that can reach Po hi one step. We then compute

5

the pre-image of this new set of states and iterate. Eventually, this computation

reaches a fixed-point, having computed all the states that can reach PQ. Formally,

the pre-image operator is given by

Prelmg(S) = { s £ S\3s' • s' e S A R(s, s' ')} (1.1)

and, the backward reachability computation is given by

•̂ o — Po

FI Fo U PreImg(Fo)

F2
Fx U Prelmg(Fi)

In practice, for efficiency, model checking tools implement two termination

conditions while checking safety properties: first, the computation reaches a fixed-

point that does not include any initial state, i.e., the model checking tool shows

that the set of bad states are unreachable from the set of initial states; second,

the successive pre-images include an initial state, at which point, the model check­

ing tool asserts that it is possible to reach the set of bad states and generates a

counterexample. We illustrate these two scenarios in Fig. 1.2.

Counterexample generation is one of the important features of model check­

ing. A counterexample is an error trace demonstrating how the model can reach

a bad state from an initial state. Consider the model-checking tool found that an

error trace exists; that the model-checking tool computed n backward reachability

iterations, and that the result of each Prelmg call, Pi, P2, • • •, Pn, is available. The

model-checking tool will generate the counterexample by:

1. choosing an initial state from Pn f l 5o ;

2. computing its image (dual of the pre-image operator);

6

Figure 1.2: Model Checking AG->p via backward reachability computation. So is
the set of initial state; T is the set of target states in which p is. true. Termination
conditions: (a) Successive pre-images reach a fixed-point without including any
initial state; (b) Successive pre-images reach an initial state.

7

3. intersecting the resulting set from step (2) with the set Pn-i]

4. choosing a state from this intersection set and repeating steps (2)-(4) until

n = 0.

The main disadvantage of model checking is its complexity. The state space

of meaningful systems is enormous and computers have only a fraction of the mem­

ory space needed for model checking such systems. This problem, called the state

explosion problem, has been an active area of research. The most prominent tech­

niques used to lessen the state explosion problem have relied on saving memory by

using different representations [5], bounding the search [2, 3], and creating simpler

models via abstraction [21]. I will discuss abstraction techniques in the next section,

since the model checking of abstract models is an essential part of this thesis.

1.2.3 Abstraction

Abstraction reduces complex systems to simpler models while still preserving im­

portant behaviors of the original system. Then model checking tools can use this

simpler model (abstract model) to verify properties of the original design.

In this thesis, we focus on conservative abstraction. A conservative abstrac­

tion is such that if a property holds (model checking proved the property to be true)

on the abstract model, the property also holds on the original design. However, if a

property fails in the abstract model, we cannot assert, without further inspection,

that the property also fails on the original design. ,

Consider two models M = {S,S0,R} and MA = {SA, Sg, RA}, where S

and SA are the sets of states; So and SA, the sets of initial states; and R C

S x S and RA C SA x SA, the transition relations. Also, consider a : S —> SA,

the abstraction function that maps states from the model M to states in the

model MA. We say that model MA is a conservative abstraction of model M if

SA — {ao|3so € 5*0 • ao = a(so)}; if every, transition s —> s' € R can be simulated

8

? 2

;u()

m
H

Figure 1.3: Conservative Abstraction. Concrete model M, its abstract model A,
and respective transitions. The function a(-) is the abstraction function.

by a transition a —> a! 6 RA, such that a(s) = a and a(s') = a'. Formally, the

abstract transition relation RA is given by

RA
 = {(a, a ') | 3s, s ' € S . R(s, s') A

a (s) = a A a (s ') = f l ' } ,. (1.2)

In Fig.1.3, we illustrate the effects of conservative abstraction. Observe that,

in the concrete model, M, we have transitions S i —> S 2 , s i —> S3, and S3 —> S4.

The transition ai —> a2 exists in the abstract model A because S3 —> S 4 exists and

O J (S 3) = ai and 0(54) = 02- Notice that transition a\ —> ai exists in the abstract

model A because, for example, s\ —-> S2 exists and a(s\) = ai and afa) = ai-

This shows that conservative abstraction can overapproximate the behaviors of the

concrete system. For example, the abstract model in Fig. 1.3 gives an impression

that S4 is reachable from all states in the concrete model, which is clearly not true.

In Chapter 3 and 4, we will use two instances of conservative abstraction:

localization reduction and predicate abstraction. Localization reduction [23] is an

abstraction technique that simplifies a design by removing some of its components.

More specifically, in hardware designs, latches and logic elements that are not di­

rectly mentioned in the properties being verified are good candidates for being re­

moved (abstracted away) from the design. The hope is that the fundamental be-

9

/ /p = (count<=10)

L2: while (count <= 10)

L l : int count = 0;

//(L2, F)

/ / (L1,F)

L3: count= count + 1; //(L3, F)

L4: z = count* 3.1415; // (L4, T) p = T

a) b)

Figure 1.4: Predicate-Abstraction Example, a) Small Code Excerpt and Predicate
Valuations per Line; b) Resulting Abstract Model:

havior of the design does not change in the absence of these removed components.

Predicate abstraction focuses on data abstraction. For example, consider the

program in Fig. 1.4 a). The type of the variable count is int. Instead of reasoning

about all possible values for count (i.e., all 2 3 2 possible values, if the size of int is 32

bits), a smaller model could be created based on the truth values of the predicate

count < 10. Fig. 1.4 b) gives the abstract model for this program.

More precisely, predicate abstraction [16] generates an abstract model whose

state variables are boolean variables. The truth values of these boolean variables

represent valuations of data predicates in the concrete model. While localization

reduction implicitly constructs the abstract transition system (the current and next-"

state logic of the components in the abstract model), predicate abstraction needs

explicitly to compute — e.g. using theorem provers [16] or SAT solvers (e.g. [10])

— the abstract transition system over the boolean variables of the abstract model.

The advantage of abstraction is that it allows for model checking to verify

larger systems using simpler, smaller, abstract models. However, the main disadvan­

tage of abstraction is that the abstract model is often too coarse. A coarse model

is prone to false negatives — the property fails in the abstract model but not in

the concrete model — due to overapproximation. To eliminate false negatives, we

need to refine the abstract model until the property is either proved or disproved.

10

This iterative refinement technique is called Counterexample Guided Abstraction

Refinement (CEGAR) (e.g. [9, 1]).

CEGAR has being very successful in extending the capacity of model check­

ing tools (e.g. [21]). However, with ever-increasing design complexity, even abstract

model checking often exhausts the memory available. While we are limited in what

we can achieve running abstract model checking on such very large designs, we can

still collect important information like abstract pre-images. The abstract pre-images

of a design contain approximate distances information of the search space and can

be used to guide a simulator during dynamic verification. This technique is called

abstraction-guided simulation, and we describe it in the next section.

1.2.4 Abstraction Guided Simulation

Abstraction-guided simulation is a general framework for automatically harnessing,

during simulation, information obtained by model checking an abstraction of the

design. The abstract design can be simplified enough to be amenable to model

checking, and the analysis gives a "big picture" global view of the structure of the

state space, which can direct the simulator in promising directions.

The earliest work in this area [19, 34] abstracted away all datapath, and then

directed the simulator to make (concrete) state changes to cover all (abstract) control

state transitions. Subsequent work tried to cover more general abstractions [14].

Most of the research on abstraction-guided simulation, however, has used abstract

pre-images from abstract target states as an approximate distance metric, to help the

simulator "home-in" on concrete target states (e.g., [33, 22, 17, 13, 30, 26, 12, 29]).

Fig. 1.5 sketches this approach.

More specifically, abstraction-guided simulation consists of the following:

• The goal of verification is to find an execution sequence that reaches a specified

set of target states, e.g., error states or a hard-to-reach coverage target.

• Any conservative abstraction technique is used to create a model small enough

11

Abstract Pre-Images

:a()
aO a() a() a()

Concrete
Simulation
Trace... — target

Figure 1.5: Abstraction-Guided Simulation.

for model checking. Recall that the abstract model preserves existence of

any paths to the error (target) states, but may introduce paths that do not

correspond to any concrete path.

• If formal verification succeeds (either finding no abstract error paths, or de­

riving a concrete path to the target states from an abstract error path), the

verification is done. The interesting case for simulation is when formal verifi­

cation fails (and attempts at abstraction refinement fail to create a tractable

model), as can occur typically with large hardware designs.

• The model checker has computed a series of pre-images from the error states

in the abstract model as in Section 1.2.2. These pre-images represent sets of

abstract states whose shortest (abstract) path to an error state is i abstract

states long. For example, as in Fig. 1.5, visualize these sets as concentric

("onion rings") around the error states. A concrete state that abstracts to an

abstract state in ring i is at least i clock cycles away from an error state.

• During dynamic verification, the simulator can consult the abstraction infor­

mation for guidance by periodically computing the abstraction of the current

simulation state using the abstraction function, illustrated in Fig. 1.5 as o(),

and querying which ring it is in. Thus, the simulator can benefit from consid­

erable information computed by model checking the abstract model.

12

Concrete
Simulation
Trace... —

Abstract Pre-images

Figure 1.6: Dead-End States.

Although abstraction-guided simulation is intuitively appealing, it has yet

to deliver on its promise. Results have been inconsistent — sometimes it works

amazingly well, but often it does not. The core problem is dead-end states. For

example, in Fig. 1.3 in page 9, analyzing the abstract model, one could assume

that any time a .concrete state is abstracted to a\ would mean that the simulation

is making progress (since a2 is reachable from a\)\ however,. s2 abstracts to a\

but notice that, from s2, there is no path to any state that abstracts to a2, i.e.,

the simulation is stuck. Because two different concrete states may map to the

same abstract state (e.g., in onion ring 2, in Fig. 1.6), an abstract trace might not

correspond to any concrete trace. If so, the abstraction will lead the simulator to a

dead end. Unfortunately, the simulator has no way of knowing whether it is headed

for a dead end, or whether it must search harder to make progress. Some researchers

resort to full-formal techniques (e.g., explicit model checking [13], SAT [30], or

abstraction refinement [26]) as a back-up tactic to ensure the simulation makes

progress. Nevertheless, the fundamental research issue is good guidance strategies

for the simulator, in the presence of possibly erroneous distance information from

the abstract pre-images.

13

Chapter 2

Bui ld ing a Research Platform

Three goals motivated building a research platform. First, because this thesis re­

searches guidance heuristics, I needed to have a platform in which different heuristics

could be easily deployed. Second, because abstraction-guided simulation involves

model checking and abstraction — each having a variety of techniques to choose

from such as, for example, symbolic or bounded model checking, and predicate ab­

straction or structural abstraction — it was important to have a flexible platform

such that different formal engines could be used. Finally, because of the need of

validating my experiments using real, industrial hardware designs as benchmarks, a

logical choice was to leverage the speed, capacity, ease-of-use and Verilog1 [20] com­

patibility of commercial logic simulators. All these considerations helped us decide

which third-party tools to use, and what tools to develop for our research platform.'

Our research platform consists of three major components: the logic simu­

lator, the abstraction/model-checking engine, and a tool, EverLost2, we developed

to implement abstraction-guided simulation. For tight integration and highest per­

formance, we had to target a specific logic simulator, although the tool could be

retargeted easily. We chose Synopsys VCS [31] because it is one of the most widely-
1 Hardware designs ih industry are typically described using the hardware description

language Verilog.
2 The name "EverLost" is a play on a pioneering, widely-deployed in-car G P S navigation

system.

14

Verification Engineer

Heuristic
Choice

RTL Verilog

Latch
Extractor

Tool

v Counterexample
V G E G A R

Abstract
Model

NuSMV
Abstract
Model C E G A R

Abstraction and Model-Checking Engine

Hierarchical
Latches

Abstraction Map Pre-images

Figure 2.1: Everlost Architecture.

EverLost

Abstraction Verilog to C
Function Function Call Pre-
In C Interface

Standard Compiled Logic Simulation
(Synopsys VCS wl DirectC)

used logic simulators in industry. We used Synopsys VCS version 7.2.

For the interface with the abstraction/model-checking engine, we designed

for maximum flexibility: all we require are a list of the design's latches, the abstrac­

tion function, and the BDD pre-images that are a by-product of symbolic model

checking tools. In Fig. 2.1, the darker box illustrates the fact that we can use dif­

ferent abstraction/model-checking techniques, e.g., from CEGAR (counterexample-

guided abstraction refinement) to structural-abstraction based model checking. In

this thesis, we either used VCEGAR [21] version 0.9 or VIS [4] version 2.1 as our

formal engines; these are the only free formal tools we are aware of that can han­

dle substantial Verilog designs. Chapter 3 and 4 describes in detail when each

abstraction/model-checking technique and tool is used.

Given the needed inputs, EverLost generates a simulation guidance driver

in C, the abstraction function in C, and a C interface in Verilog, which are passed

to VCS along with the Verilog files and the BDD pre-images. The user can specify

different simulation guidance heuristics via EverLost options.

The code generated by EverLost is compiled with VCS into a single exe-

15

Synopsys VCS Verilog EverLost

Generate

test vectors

Logically

simulate

I j I NO

Figure 2.2: Everlost Plaftorm: Abstraction-Guided Simulation Flow.

cutable. Internally, the simulator calls the EverLost driver every clock cycle. The

EverLost code can read the current simulation state, possibly save it, and possibly

evaluate it using the abstraction information. The EverLost code can then allow the

simulation to continue, or it can force the simulator to jump to a particular state.

Fig 2.2 sketches this flow.

This platform is available at http://www.cs.ubc.ca/~depaulfm/EverLost.

16

http://www.cs.ubc.ca/~depaulfm/EverLost

Chapter 3

Guided-Search Strategies

We start experimenting with some simple, greedy, local-neighborhood search heuris­

tics. Next, we implement a version of a proposed advanced guidance strategy [30].

The conclusions we draw from these experiments illustrate the problems most of

the current abstraction-guided simulation techniques face. We then propose our

own guidance strategy to address this problem.

3.1 B o u n d e d L o c a l S e a r c h E x p e r i m e n t s

As mentioned above, current abstraction-guided simulation heuristics typically search

the local neighborhood of a concrete state, trying to find a successor that maps to

the next closer onion ring. As illustrated in Fig. 3.1 for example, consider a heuristic

that, from a given concrete simulation state, simulates b different random traces,

each d cycles long, and then moves to the "best" state on those traces, according to

the abstract onion rings. We explore this heuristic space, first varying the breadth

b, and then the depth d.

For these experiments, we used as our design under verification (DUV) two

design units from the USB 2.0 Function Core and the USB 1.1 PHY designs from

OpenCores.org 1 . Because we needed a large number of experiments, we focused
1 http://OpenCores.org is an open source repository for hardware designs.

17

http://OpenCores.org
http://OpenCores.org

1 2 d-1 d

^ » • • •
1 2 d-1 d

Figure 3.1: Simple Local-Neighborhood Heuristic. Exploring b different random
traces, each d cycles long.

on two small units from these designs, but as often arises in practice, we examined

the integration of two units, each one coming from a separate design. In particular,

the DUV is the USB Packet Disassembly Unit (usbLpd) from the USB Function

Core integrated with the USB Receive Unit (rx_phy) from the USB PHY, as shown

in Fig. 3.2. The DUV contained 121 latches, 4 inputs and 56 outputs. We manu­

ally abstracted the DUV using structural abstraction: the abstract design was the

usbLpd unit alone, which had 74 latches, 11 inputs, and 42 outputs.

We selected 4 properties to try on the DUV, relating to receiving tokens

and/or data with proper acknowledgment:

pi Can usbLpd receive a token?

p2 Does usbLpd acknowledge receiving data?

p3 Can usbLpd receive a valid token or pid acknowledgment?

p4 Does usbLpd acknowledge receiving a valid token?

We used VIS to model check the abstract design, generating 5 abstract onion rings

for pl-p3, and 6 for p4.

Keep in mind that guided simulation imposes a substantial performance

penalty over conventional simulation. Any guidance mechanism needs to know the

design state, so the guided simulator must make additional function calls and mem­

ory accesses on each simulation cycle. What's worse is that making the simulation

18

D M A

and

Memory Interface

Packet
Assembly

Protocol
Engine

Transmit
Interface

Packet •
Dis -
Assembly

Receive I
Interface

Packet Layer Unu

USB PHY

Interface

Figure 3.2: Design Under Verification. Shaded area represent the integration of two
units from separate designs: the Packet Disassembly from the USB Function Core
Packet Layer Unit and the Receive Interface unit from the USB PHY. The DUV is
the integration of the Packet Disassembly and the Receive Interface units.

state visible at each cycle can disable some compiler optimizations, imposing a sub­

stantial slowdown.2 Therefore, abstraction-guided simulation is useful only if the

guidance is good enough to overcome the large overhead.

3.1.1 Varying Search Breadth

The most straightforward search strategy is greedy hill-climbing. From a simulation

state s, we generate b possible next states and evaluate all of them. If any successor

is better (maps to a closer onion ring) than s, we pick the best one. Otherwise, we

pick a successor randomly. The simulation then proceeds from the chosen successor.

The obvious first experiment is to vary the search breadth b: how many next

states do we try when looking for a state that maps to a better onion ring? If the

distances computed from the abstract pre-images were perfectly accurate, then a
2 Thanks to Valeria Bertacco for explaining this source of overhead.

19

14000

cr
o

i -
m
E i-

E

p1
P2
p3

L p4
p1r

. p 2 r

|.p3r
p4r

u

12000

10000

8000

6000

4000

2000

0

15 20
• Breadth

Figure 3.3: Mean Simulation Time for Varying Search Breadth. The overhead
swamps the benefit of guidance and grows with breadth. Pure random simulation
times for each property (denoted plr, p2r, p3r, and p4r) average 29.1, 19.7, 27.1
and 67.9 seconds, respectively. The error bars show 95% confidence intervals for the
true mean, based on Student's ^-distribution.

greedy search with enough breadth is guaranteed to find an optimum trace to the

target, so one might assume that greater search breadth will yield better results.

We simulated 60 runs for each property, with varying breadth. We computed

the estimated mean, the estimated standard deviation and the 95% confidence in­

terval for the true mean based on Student's ^-distribution. We also ran conventional

random simulation. We report the sample mean runtime for each experiment and

the confidence interval for the true mean in Fig. 3.3. Despite the large error bars,
i

two things are clear: the guided simulation is much slower than conventional simu­

lation, and the slowdown gets worse with greater breadth. The overhead of running

b simulation cycles for every cycle of progress dominates the results; guidance is.

ineffective, and the guided simulator is apparently getting stuck in dead ends and

then wandering randomly.

20

1200

§ 1000

<5

™ 800

|
l- 400
c
o
jo
I 200

0
10 100 1000

Depth (Log Scale)

Figure 3.4: Mean Simulation Time for Varying Search Depth. As search depth
increases, guided search becomes pure random simulation (whose results are as in
Fig. 3.3), but with a constant factor overhead . The error bars show 95% confidence
intervals for the true mean, based on Student's i-distribution.

3.1.2 Varying Search Depth

Another common heuristic is to allow the simulator to randomly search deeper: from

a simulation state s, run random simulation for d cycles, and evaluate all states on

that trace (e.g., set 6 = 1 and vary d in Fig. 3.1). If any successor is better than

s, pick the best one. Otherwise, pick a random state on the trace. Continue the

simulation from the chosen state.

As before, we simulated 60 runs for each property, varying d. Fig. 3.4 presents

the results. Exploring depth does much better than breadth, but still much worse

than random. As d increases, the performance improves. The explanation is that as

d —+ oo, the depth heuristic becomes pure random simulation. Indeed, the results

appear to be asymptotically approaching the constant factor slowdown of guided

simulation. In other words, guidance isn't working.

We can try combining breadth and depth, to get a larger sample of the local

neighborhood of the simulation state. The results in Fig. 3.3 show that simulation

21

1800

1600

1400

1200

1000

800

l - 600
c
q
M 400
E

«• 200

0

ra
ra cu
DC

o
o
E

• P1
r P2

P3 • •
P4

- i p1r -
P2r
p3r

j.
p4r

•if -

"n
<?

•
J. a
1 j

„ „ . „ ™ v ^ . I „ 1 . . „ „ „ w ^ ,

10 100
Depth (Log Scale)

1000

Figure 3.5: Mean Simulation Time Varying Search Depth with Breadth of 3. Com­
bining breadth and depth does not help. The error bars show 95% confidence
intervals for the true mean, based on Student's i-distribution.

runtimes are best when 6 = 3. We simulated 60 runs for each property, varying

only d. Fig. 3.5 shows that the results are similar: breadth (which would help if the

distance metric were perfect) imposes an 0(b) slowdown (vs. Fig. 3.4), and depth

approaches a slowed-down version of random simulation as d —> oo. The standard

heuristics do not work.

3.1.3 GUIDO's SimSearch

To evaluate a sophisticated, state-of-the-art guidance heuristic, we tried, out the

search heuristic proposed in GUIDO [30]. The GUIDO verification tool contains

two search modes: an abstraction-guided simulation mode SimSearch that fits the

framework of this thesis, backed up by an exhaustive, formal, SAT-based procedure

SimSAT for when SimSearch gets stuck.

Since the focus of this thesis is guidance heuristics, we implemented and

evaluated the SimSearch algorithm, presented in Alg. 1. As in the original imple­

mentation, our SimSearch implementation explores a bounded breadth b and depth

22

A l g o r i t h m 1 Adapted GUIDO's SimSearch
1: p r o c e d u r e SimSearchQ
2: CS = initial-state
3: w h i l e (CS!=goal_state) d o
4: l o o p b / / breadth
5: • curr_sample = sample_next_state(CS)
6: l o o p d //depth
7: i f Cost(curr_sample) != Cost(CS)

AND Is_not_in_queue(curr_sample)
8: add_priority_queue(curr_sample)
9: break
10: e lse
11: curr .sample = sample_next_state(curr_sample)
12: e n d l o o p
13: e n d l o o p
14: i f (priority.queue != empty)
15: CS = priority_queue. head
16: e n d w h i l e

d from a given state, similarly to the heuristics in Sec. 3.1.1 and Sec. 3.1.2. How­

ever, SimSearch stores all states that reach a different onion ring into a priority

queue. The simulation then proceeds from the best state in the priority queue. The

only difference between the original implementation and ours is that the simulation

continues from the current state if the priority queue is empty (lines L14-L15, in

Alg. 1). The description in [30] does not define what happens in this case.

In [30], specific values for neither b nor d are given. We ran 60 simulations

for each property, trying out d = 5, 10, 50, and 100. These simulations found the

target only when d = 100. Next, we tried several values for b, simulating 60 runs

for each property, keeping d = 100. The results, in Fig. 3.6, show that increasing

breadth has limited impact on simulation time, particularly compared with the

random simulation results. SimSearch alone is not an effective guidance strategy,

necessitating the more expensive SimSAT mechanism in GUIDO.

23

1400

? 1200

E> 1000 a
H

ra 800
CD
CC

» 600
E
i-
.1 4 0 0

jo

I 200

0
0 10 20 30 40 50 60

Breadth

Figure 3.6: Mean Simulation Time for SimSearch. Even a sophisticated, recent
heuristic loses to random simulation. We vary search breadth, with search depth
fixed at 100. Error bars and random simulation times.are as in Figs. 3.3-3.5. The
error bars show 95% confidence intervals for the true mean, based on Student's
^-distribution.

3.1.4 Hard Gains, Easy Losses

The intuition behind abstraction-guided simulation is that the simulation trace will

gradually work its way into closer onion rings, perhaps with some delays or detours

due to dead-end states. However, an informative picture of the progress of a search

strategy emerges by plotting the onion ring number of the simulation state over

time. Recall that we simulated 60 runs for each experiment. I analyzed a sample of

9 runs within the confidence interval: 3 around the bottom, 3 around the estimated

mean and 3 around the top. In all of them, the general behavior is very similar,

although each trace is unique.

Fig. 3.7 is a typical trace for the experiments with b — 1 and d = 100. What

is striking is how hard it is to make progress, but how easy to lose it. In Fig. 3.7, the

heuristic spends almost all of its time stuck at onion ring 3, almost never breaking

through. It quickly reached onion ring 1 a bit before 1,000,000 cycles, which may or

24

pi
p2
P3
P 4

p1r

<

-

1 1

P 4

• •

O.Oe+00 1.0e+06 2.0e+06 3.0e+06 4.0e+06 5.0e+06 6.0e+06 7.0e+06

Explored States

Figure 3.7: Simulation Trace using Depth of 100 and Breadth of 1.

may not have been a dead end, but then immediately gave up this progress for more

than 6,000,000 cycles before finally succeeding. All of the traces we have plotted

for previous heuristics are qualitatively similar. Even SimSearch produces a similar

graph (Fig. 3.8). The challenge is to develop a heuristic that does not get stuck near

dead ends, yet aggressively pursues promising states.

3.2 A N e w G u i d a n c e S t r a t e g y

Two key ideas underlie our new guidance strategy: remembering multiple states

from which to search, and balancing between greed and relaxation.

To remember multiple states from which to continue the search, we keep

"buckets" of previously visited states at each onion ring distance. The buckets for

the closest onion rings track the best states encountered during the simulation, over­

coming the problem of easily giving up hard-earned progress. Equally important,

having buckets for all distances allows flexibly backing up different distances to

avoid dead ends. Recall that a dead end is caused by an abstract transition with no

corresponding concrete transition, so one dead end will affect many nearby states,

25

p4

0 I ' ' 1 1 • 1 — 1
O.Oe+00 2.0e+06 4.0e+06 6.0e+06 8.0e+06 1.0e+07

Explored States

Figure 3.8: Simulation Trace using SimSearch with Depth 100 and Breadth 16. We
see the same pattern of hard gains, easy losses.

e.g., Fig. 1.6 on page 13. The multiple states in each bucket provide a much more

global concept of breadth, spreading the breadth across the history of the simula­

tion, rather than the local neighborhood of one state. We implement the buckets as

bounded FIFOs, guaranteeing no blow-up in space. Furthermore, using a bounded

bucket for each onion ring means that states at distances that are hard to reach will

persist, whereas states at onion rings where we are stuck will be quickly replaced.

The other challenge is to determine when to push forward from the current

state, when to return to previously visited promising states, and when to back up

to outer onion rings to escape the influence of a dead end. The right balance will be

different for different designs and different properties, and even for different parts of

the search space of one simulation: in a region of the search space where the distance

metric is wrong, leading to a dead end, a guidance heuristic should abandon the

current state; in a region where the distance metric is right, the guidance heuristic

should press ahead. We use randomization to solve this problem. In particular,

we start from the closest (lowest numbered) onion ring with a non-empty bucket

and flip a (fair) coin. Heads means we continue simulation from a random state

26

Algorithm 2 New Abstraction Guided Simulation Algorithm
1: procedure AGS()
2: CS = initiaLstate
3: while (CS!=goal_state) do
4: loop B R E A D T H
5: curr_sample = sample_next_state(CS)
6: loop DEPTH
7: distance = abstract_and_evaluate(curr_sample)
8: save_in_bucket(distance, curr_sample)
9: curr_sample = sample_next_state(curr_sample)

10: end loop
11: end loop
12: bkt_index = 1; restore_bkt_index = 0
13: while TRUE do
14: if (flip_coin AND bucket_is_not_empty[bkt_index]) then
15: restore_bkt_index — bkt_index
16: break
17: end if
18: bkt_index++
19: if (bkt_index >= onion_rings) then
20: bkt_index = 1
21: end if
22: end while
23: CS = bucket.random_pick(restore_bkt_index)
24: end while

in that bucket. Tails means we go on to the next non-empty bucket. If we reach

the outermost onion ring without choosing a bucket, we repeat this process. This

process gives an exponential decrease of the probability of choosing each non-empty

bucket, from the closest to the farthest. This probability distribution is important

because it favors persisting with promising states (hard gains) while keeping a more

global search (avoiding dead ends). The algorithm is presented in Algorithm 2.

Fig. 3.9 shows a typical simulation trace with our new heuristic. This is

for the same design and property as in Figs. 3.7 and 3.8, but note that the guided

simulation reaches the target 2-3x faster. Qualitatively, the difference is striking:

once the simulation reaches a closer onion ring, it persists at that distance, but it's

also flexible enough to back out to outer onion rings. This behavior can be seen

27

5

4

CD

l 3

GO

b
B 3

1

0 1

O.Oe+OO 8.5e+05 1.7e+06

Explored States

2.6e+06 3.4e+06

Figure 3.9: Simulation Trace using Algorithm 2 with Depth 100 and Breadth 1. The
behavior is radically different.

more clear by zooming in on Fig. 3.9, as in Figs. 3.10 and 3.11.

It seems I have found a good guidance heuristic. I tried greedy heuristics,

analyzed their behavior, understood the nature of the problem and devised a new,

more effective heuristic. However, at this point, I cannot say I am done because

these results are from a small DUV. Moreover, it is not clear if the parameters (i.e.

b and d) used here would work well for other, larger DUVs. To get to a conclusive

analyses, we needed to devise an experimental evaluation methodology and apply it

to larger DUVs. This is what I describe in the next chapters.

28

0

O.Oe+00 2.0e+04 4.0e+04 6.0e+04 8.0e+04 1.0e+05
Explored States

Figure 3.10: Enlargement of Part of (Fig. 3.9). First Thousands of Cycles. The
path to a closer ring is through a ring farther away. States at closer rings are tried
exponentially harder than states at farther rings.

29

Chapter 4

Experimental Evaluation

4 . 1 A n a l y s i s M e t h o d o l o g y

Because this research is an exploration of heuristics, good research methodology is

paramount to avoid misleading results.

We make the following assumptions about the verification flow:

1. The target states are specified logically, as would be the case for an assertion

violation or an unreached coverage target;

2. Random simulation is used to hit the easy targets quickly;

3. Formal verification is applied to any target that is not hit via random simula­

tion, as formal is the only way to prove that a target is not reachable;

4. Abstraction-guided simulation is used only when simulation fails to reach the

target, and formal verification fails to verify unreachability or generate a con­

crete trace to the target.

Runtime results for random simulation have enormous variance, so statistical

analysis is needed to draw valid conclusions. Resource limitations prevented running

all experiments with the same number of trials, so we report the number of trials

for each experiment. (Indeed, we could not even complete all of our experiments on

30

the same speed processors, but the processor for each benchmark is reported, and

we always compare a single benchmark across different heuristics on the. same speed

processor.) We report the sample mean runtime for each experiment, as well as a

95% confidence interval for the true mean, based on Student's t-distribution. We

also report minimum and maximum data points for each experiment.

We conducted our research using the EverLost platform described in the

Chapter 2. We use real, publicly available benchmarks for all of our experiments.

In particular, our experiments were conducted on design units from the USB 2.0

Function Core, the USB 1.1 PHY (I will define later which units we are using in

this chapter), and the Ethernet MAC 10/100 Mbps designs from OpenCores.org.

VCEGAR and VIS were unable to handle the original Verilog of these test cases, so

we modified them by hand, then verified equivalence to the original using Synopsys

Formality version V-2004.06-SP1. All data and modified Verilog models are available

at http://www.cs.ubc.ca/~depaulfm/EverLost.

With tunable heuristics, there is always the danger of over-tuning to a specific

benchmark, akin to over-fitting to data in statistics. We prevent this problem using

standard experimental design: for our proposed new guidance strategy, we tuned

using one design and set of properties, then evaluate using a different version of the

design and different properties, with no changes whatsoever to the heuristic. For

easier reference, we use "training set" when we refer to the experiments described in

Section 3.1, and "test set" when we refer to the experiments described in the next

section. As a further test, we apply the identical heuristic to a completely different

design, again with no further tuning. These results are reported in following sections.

Our new heuristic presented in Section 3.2 has only two parameters: depth,

and breadth. From the experiments in Section 3.1, we selected depth and breadth to

be 100 and 1.

31

http://OpenCores.org
http://www.cs.ubc.ca/~depaulfm/EverLost

4.2 T h e Tes t Set

The task now is to evaluate the heuristic in a different design. In this section, we

report results for the USB Function Core Packet Layer Unit (usbLpl). Although,

this design shares one unit with the DUV of the training set, namely the Packet

Disassembly unit, shown in Fig. 3.2 in page 19, none of the properties verified in this

section relates to the training set. Furthermore, the interconnects we are interested

in do not share any signals with the ones in the DUV of the training set.

We looked into four usbLpl properties:

usb_pO After receiving a transfer command request from the host processor, does

the usbLpl time out if the host does not follow the request with a packet?

u s b _ p l Has a packet been received and is it ready to be DMAed to Memory?

usb_p2 After sending data to the host in response to a host command, does the

usbLpl time out if no acknowledgment is properly signaled by the host?

usb_p3 Upon receiving data, is the data PID in sequence?

We chose these properties to meet three criteria: first, they are real properties,

describing interesting behavior of the design; second, the properties are non-trivial

for simulation; and third, they are challenging to the formal tools as well.

Recall that we use VCEGAR and VIS as our formal tools. V C E G A R auto­

matically abstracts the design, whereas for VIS, we manually created a structural

abstraction by removing design units not directly mentioned in the properties being

verified. The usbLpl, shown in Fig. 4.1, consists of 4 units: Packet Assembly, Packet

Disassembly, DMA and Memory Interface, and Protocol Engine. Altogether, it has

536 latches, 157 inputs, and 143 outputs. The abstract model, shown as shaded

blocks in Fig. 4.1, included only the Protocol Engine and the DMA and Memory

Interface units, and had 397 latches, 170 inputs, and 159 outputs.

Table 4.1 presents the formal verification results. Both tools had trouble with

the concrete design, but VIS was able to model check the structural abstraction for

32

DMA

. • • and • .

Memory Interface

Packet
Assembly

Protocol:
Engine '

Packet
Dis-
Assembly

Packet Layer Unit

Figure 4.1: Test Set. Design Under Verification: USB Function Core Packet Layer
Unit. The shaded blocks represent the abstract model resulting from manual struc­
tural abstraction.

all four properties. Because the structural abstraction also generated more onion

rings, we used those results for the guided simulation runs.

Table 4.2 compares guided simulation using the new heuristic to random

simulation. In three of the four cases, the guided simulation performed better than

both random simulation and formal verification. More specifically, for the property

usb_pO, VIS blows up when model checking the concrete design, and guided simu­

lation is two orders of magnitude faster than VCEGAR or conventional simulation.

For usb_pl, VIS again blows up, but the other methods succeed. Random simu­

lation is more than lOx faster than VCEGAR or guided simulation (including the

abstract model checking time). On the harder properties, usb_p2 and usb_p3, both

formal tools ran out of memory, and the random simulations timed out on every

trial, despite running for several days for each trial. Guided simulation took only

hours, and never timed out.

33

Property Concrete Model VIS on Abstract Model
V C E G A R VIS CPU Time onion rings

usb_pO 2128.8s MemOut 66.8s 26
usb_pl 42809.2s MemOut 32277.7s 12
usb_p2 MemOut MemOut 71.0s 28
usb_p3 MemOut MemOut 72.5s 5

Table 4.1: Test Set: Formal Verification Trials. V C E G A R runs were on Intel
P4@3.2GHz; VIS, on Sparcv9@900MHz. MemOut is 800MB.

Property (Run) #of Trials Avg (s) (95% Conf. Interval) (Min; Max) (s)
usb.pO (Random) 30 1011.3 (656.8; 1365.8) (27.5; 3999.3)
usb_p0 (Guided) 30 1.4 (1.25; 1.72). (0.4; 2.9)
usb_pl (Random) 30 3510.1 (2224.2; 4795.9) (106.8; 10885.5)
usb_.pl (Guided) 30 6681.6 (4015.6; 9347.7) (150.8; 28865)
usb_p2 (Random) 22 TimeOutO NA
usb_p2 (Guided) 30 10585.6 (6109.7; 15061.4) (481; 51444.4)
usb_p3 (Random) 16 TimeOutl NA
usb_p3 (Guided) 30 71687.4 (53804.9; 89570) (4424.3; 224962.7)

Table 4.2: Test Set: Random vs. Guided Simulation Time. The time to reach
the target is measured in seconds. Simulation times for usb_pl were on a Sparcv9
1.3GHz; others, on a Sparcv9 900MHz. TimeOut0>100 hours. TimeOutl>150
hours.

34

http://usb_.pl

MAC Transmit Unit

I MAC Receive Unit

• MAC Control Unit

' • MAC Status Unit I

\
Ethernet Core Units

Figure 4.2: Case Study on Ethernet MAC 10/100 Mbps. These core functions
represent this case study's DUV. The shaded block represents the abstract model
resulting from manual structural abstraction.

4.3 Case S t u d y on a Separate Des ign

As an additional test of the robustness of our guided-search strategy, we selected a

completely different design and followed the verification flow methodology assump­

tions made in Section 4.1. The design is the Ethernet M A C 10/100 Mbps from

OpenCores.org. The verification focused on the core functionality of the design,

described by the following four units: the MAC Control, the Transmit, the Receive,

and the Status units. Fig. 4.2 shows these core functions and their interconnect.

We tried to hit 14 properties in all. We started with random simulation and quickly

reached 12 of these. The remaining two properties seemed reasonably difficult for

simulation, so we tried to formally verify them.

To accommodate the Verilog limitations of V C E G A R and VIS, we modified

the implementation by hand and used the equivalence checker tool from Synopsys

(as described in Section 4.1) to prove that the modifications did not change the

design's behavior. Then, we attempted to formally verify the remaining two prop­

erties. Both tools, V C E G A R and VIS, exhausted the memory available (memory

limit was 800Mbytes). For VIS, we. manually abstracted the design, selecting the

35

http://OpenCores.org

Property VIS
abstract

model (s)

Avg (s)
(95% Conf. Interval)

(Min; Max) (s)

eth.pO
Random NA 19 out of 30 TimeOutO NA
Guided 1777 20.9 (13.9; 27.9) (1.7; 92)
eth_pl

Random NA TimeOutl . NA
Guided 11373 16.1 (12.9; 19.3) (3.7; 38.8)

Table 4.3: Case Study: Random vs. Guided Simulation Time. Times were on a
Sparcv9 900MHz. TimeOutO > 3 hours. TimeOutl > 6 hours

Receive unit to be the abstract model, since all the properties were related to this

unit. In Fig. 4.2, the shaded block represents the abstract model. During the ab­

straction process, we realized a problem with the model: it had multiple clocks,

i.e., the Transmit and Receive units can be configured at different clock rates. Un­

fortunately, neither formal tool supports this feature. We updated all four units

(to maintain synchrony with the simulations) by hand (again, equivalence checked)

and tried again. V C E G A R was still unable to handle both properties due to either

failing to find new predicates or exhausting the memory available. VIS, however,

was able to verify the abstract model, so we used the abstract onion rings resulting

from VIS to guide the simulation. We ran 30 simulations comparing random and

guided simulation on these two properties. We report estimated mean for simula­

tion runtime, the 95% confidence interval using the Student's t-distribution, and

minimum an maximum simulation runtimes. The results in Table 4.3 show that

on a completely different design, guided simulation helps find the targets, whereas

random simulation is usually timing out.

Unfortunately, we later realized that we had not tried VIS on the concrete

model (which had blown-up earlier) after fixing the multiple-clock issue. It turns

out VIS finds these two targets in less than five minutes. Although our oversight

weakens the case study, the results still demonstrate that guided simulation did

36

help find these two hard-to-reach targets much faster than random simulation, on a

different design, with no heuristic tuning.

37

Chapter 5

Conclusion and Future Work

Our study of the typical local search heuristics used by most previous works on

abstraction-guided simulation shows that they are not effective in avoiding dead

ends. Based on these experiments, we propose a new heuristic that is better able to

avoid dead ends by tracking multiple promising states and backing-off when getting

stuck. Experimental results on a variety of designs show excellent results on hard-

to-reach targets, with no heuristic tuning.

The direct line of future work is further experimentation to confirm our re­

sults and illuminate the way towards better and even more robust guidance strate­

gies. More generally, a challenge for abstraction-guided simulation is how to deal

with targets specified via a non-synthesizable software testbench. Handling such

targets is necessary to truly and seamlessly bridge formal and simulation.1 Fortu­

nately, the simulation side needs no modification: anything that can be done in a

simulator can be done in a guided simulator. To compute the abstract pre-images,

we believe software model checking techniques can apply.

Another very challenging area for future work is to understand what types

of abstractions better suit abstraction-guided simulation. During this thesis, we

noticed that predicate abstraction would often generate a map too coarse to provide
xThanks to Eyal Bin and Gil Shurek for pointing this out.

38

good guidance. The main challenge is to'understand the relationship, if any, between,

different designs (e.g. DSPs, processors) and different abstractions.

With better heuristics and broader applicability, abstraction-guided simula­

tion will be a valuable tool in the verification arsenal, filling the gap between formal

verification and simulation.

39

Bibliography

[1] T. Ball, R. Majumdar, T. Millstein and S. K. Rajamani. Automatic predicate

abstraction of C programs. PLDI, pp. 203-213, A C M Press, 2001.

[2] A. Biere, A. Cimatti, E. M . Clarke, and Y. Zhu. Symbolic model checking

without BDDs. TACAS, pp. 193-207. Springer, 1999. LNCS 1579.

[3] V. Boppana, S. P. Rajan, K. Takayama, and M . Fujita. Model checking based

on sequential ATPG. CAV, pp. 418-430. Springer, 1999. LNCS 1633.

[4] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz,

S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K.

Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa. VIS: A system for

verification and synthesis. CAV, pp. 428-432. Springer, 1996. LNCS 1102.

[5] J. R. Burch, E. M . Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.

Symbolic model checking: IO 2 0 states and beyond. LICS, pp. 428-439, 1990,

[6] Cadence Design Systems. Incisive HDL Simulator.

http://www.cadence.com/products / functionaLver / incisive.hdl

[7] E. M . Clarke and E. A. Emerson. Design and synthesis of synchronization

skeletons using branching time temporal logic. Wkshp Logics of Programs, pp.

52-71, 1981. LNCS 131.

40

http://www.cadence.com/products

[8] E. M . Clarke, E. A. Emerson. Design and Synthesis of Synchronization Skele­

tons Using Branching-Time Temporal Logic. Logic of Programs, pp. 52-71,

Springer, 1981. LNCS 131.

[9] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith. Counterexample-

Guided Abstraction Refinement. CAV, pp. 154-169. Springer, 2000.

LNCS 1855.

[10] E. M . Clarke, M . Talupur, H. Veith and D. Wang. SAT Based Predicate Ab­

straction for Hardware Verification. SAT, pp. 78-92, Springer, 2003.

[11] S. Davis. Total Cost of Ownership: Xilinx FPGA's vs. traditional ASIC solu­

tions (white paper), http://www.xilinx.com

[12] F. M . de Paula and A. J. Hu. EverLost: A flexible platform for industrial-

strength abstraction-guided simulation. CAV, pp. 282-285. Springer, 2006.

LNCS 4144.

[13] S. Edelkamp and A. Lluch-Lafuente. Abstraction in directed model checking.

Wkshp Connecting Planning Theory and Practice, pp. 7-13, 2004.

[14] M . K. Ganai and A. Aziz. Rarity based-guided state space search. GLSVLSI,

pp. 97-102. A C M , 2001.

[15] S. Gorai, S. Biswas, L. Bhatia, P. Tiwari, and R. S. Mitra. Directed-simulation

assisted formal verification of serial protocol and bridge. DAC, pp. 731-736.

ACM/IEEE, 2006.

[16] S. Graf, H. Sadi. Construction of Abstract State Graphs with PVS. CAV,

pp.72-83, 1997. LNCS 1254.

[17] A. Gupta, A. E. Casavant, P. Ashar, X. G. S. Liu, A. Mukaiyama, and K r Wak-

abayashi. Property-specific testbench generation for guided simulation. ASP-

DAC and VLSID, pp. 524-531. IEEE, 2002.

41

http://www.xilinx.com

[18] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco, J. Tay­

lor, and J. Long. Smart simulation using collaborative formal and simulation

engines. ICCAD, pp. 120-126. IEEE/ACM, 2000.

[19] R. C. Ho, C. H. Yang, M . A. Horowitz, and D. L. Dill. Architecture validation

for processors. ISCA, 1995.

[20] The Institute of Electrical and Electronics Engineers, Inc. Standard Hardware

Description Language Based on the Verilog Hardware Description Language.

IEEE Std. 1364-1995.

http: / / standards.ieee.org/reading/ieee/std_public / description / dasc /1364-

1995_desc.html

[21] H. Jain, D. Kroening, N . Sharygina, and E. Clarke. Word level predicate

abstraction and refinement for verifying RTL verilog. DAC, pp. 445-450.

ACM/IEEE, 2005.

[22] A. Kuehlmann, K. L. McMillan, and R. K. Brayton. Probabilistic state space

search. ICCAD, pp. 574-579. I E E E / A C M , 1999.

[23] R. P. Kurshan. Program Verification. Notices of The American Mathematical

Science, pp. 534-545, Vol. 47, Number 5., 2000.

[24] Mentor Graphics Corporation. Modelsim SE.

http: / / www .mentor. com/products/fv/digital.verification/modelsim_se

[25] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann.

Scalable automated verification via expert-system guided transformations. FM-

CAD, pp. 159-173. Springer, 2004. LNCS 3312.

[26] K. Nanshi and F. Somenzi. Guiding simulation with increasingly refined ab­

stract traces. DAC, pp. 737-742. ACM/IEEE, 2006.

42

http://standards.ieee.org/

[27] A. Pneuli. The Temporal Logic of Programs. Symposium on Foundations Of

Computer Science, pp. 46-57., 1997.

[28] J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems

in Cesar. Intl Symp Programming, pp. 337-35L Springer, 1981. LNCS 137.

[29] N. Rungta and E. G. Mercer. An improved distance heuristic function for

directed software model checking. FMCAD, pp. 60-67. IEEE, 2006.

[30] S. Shyam and V. Bertacco. Distance-guided hybrid verification with GUIDO.

DATE, pp. 1211-1216, 2006.

[31] Synopsys Inc. Smart RTL Verification. VCS.

http: //www.synopsys .com/products/simulation/simulation, html

[32] C. H. Yang and D. L. Dill. SpotLight: Best-first search of FSM state space.

' HLDVT, 1996.

[33] C. H. Yang and D. L. Dill. Validation with guided search of the state space.

DAC, pp. 599-604. ACM/IEEE, 1998.

[34] J. Yuan, J. Shen, J. Abraham, and A. Aziz. On combining formal and informal

verification. CAV, pp. 376-387. Springer, 1997. LNCS 1254.

43 <

http://www.synopsys

