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Abstract 

Despite major advances in formal verification, simulation continues to be the dom

inant workhorse for functional verification. Abstraction-guided simulation has long 

been a promising framework for leveraging the power of formal techniques to help 

simulation reach difficult target states (assertion violations or coverage targets): 

model checking a smaller, abstracted version of the design avoids complexity blow

up, yet computes approximate distances from any state of the actual design to the 

target; these approximate distances are used during random simulation to guide the 

simulator. Unfortunately, the promise has.yet to be realized, as the performance 

of previous work has been unreliable — sometimes great, sometimes poor. The 

problem is the guidance strategy. 

In this thesis, we first develop a platform to enable flexible exploration of 

abstraction-guided simulation — different guidance heuristics and formal tools are 

easily inserted — while providing the capacity, speed, and Verilog compatibility of a 

leading industry-standard (logic-simulation) tool, Synopsys VCS. Then, we start by 

exploring some greedy heuristics and find that they tend to perform poorly, adding 

too much search overhead for limited ability to escape dead ends (local optima). 

Based on these experiments, we propose a new guidance strategy, which pursues a 

more global search and is better able to avoid getting stuck. Experimental results 

show that our new guidance strategy is highly effective in most cases that are hard 

for random simulation and beyond the capacity of formal verification. 
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Chapter 1 

In t roduc t ion 

1.1 M o t i v a t i o n a n d P h i l o s o p h y 

Abstraction-Guided Simulation (AGS) is a verification technique that combines 

model checking and dynamic verification (simulation). A formal definition of AGS 

will be given in later sections. For now, consider the task of verifying a design ac

cording to its specification. AGS divides this task into two phases: first, a model 

checking phase, in which AGS checks an abstract version of the design under verifi

cation (DUV) and generates a coarse map leading to the specification goal; second, 

a dynamic verification phase, in which AGS guides the DUV's simulation towards 

the specification goal by heuristically choosing transitions based on the coarse map. 

AGS has drawn a lot of attention from the hardware verification community. 

AGS is appealing because the model checking phase considers only an. abstract 

version of the DUV, and in doing so, it is not so much affected by the DUV's size. 

It is no surprise with this appeal that several researchers have proposed their own 

AGS schemes, (e.g. [19, 34, 14, 33, 22, 17, 13, 30, 26, 29]). However, results are 

often worse than with other techniques like (directed) pseudo-random simulation. 

The reasons for this inconsistency are twofold: the abstraction techniques used do 

not always generate good abstract models (precise maps), and the proposed guidance 

heuristics perform poorly with these imprecise maps. 
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The problem is dead-end states. A dead-end state is a state from which no 

progress is made towards a specification goal because imprecise abstractions create 

transitions that do not exist in the concrete model. Dead-end states create challenges 

to AGS for three reasons: a priori, there is no way to know where dead ends are 

located in the search space; it is hard to know whether the current simulation state 

is a dead end or not; and if a dead end is found, it is hard to know whether a dead 

end will be re-visited pr not. 

This thesis focuses on finding guidance heuristics that demonstrate consistent 

and effective results by properly handling dead-end states. To achieve this goal, the 

research is divided into several stages: first, to develop a research platform capable of 

supporting industrial designs; second, to investigate and to draw conclusions about 

common search algorithms; third, to investigate a recently proposed advanced search 

algorithm [30]; and finally, to propose my own guidance heuristic and to demonstrate 

its effectiveness. 

1.2 B a c k g r o u n d a n d R e l a t e d W o r k 

This section presents background on hardware verification techniques. While pre

senting these techniques in the order in which they were developed, I will discuss 

their advantages, disadvantages, and related work. 

1.2.1 Dynamic Verification 

Dynamic verification1 (DV) is a technique that uses logic simulation to check the 

behaviors of a design-under-verification (DUV). The role of a logic simulator is 

to simulate input stimuli to the DUV and to compute the DUV's next state and 

outputs. Therefore, dynamic verification involves coordinating the input stimuli 

generation and checking the DUV's response against the DUV's expected behavior. 
1Also known as "simulation" in the integrated circuit industry. 
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DV has been one of the most used verification techniques for hardware de

signs. Several reasons contribute to this success. I classify these reasons into two 

groups: direct and indirect. The direct reasons are related specifically to the dy

namic verification technique, whereas in the indirect group, we have social and 

historical reasons. The direct reasons for DV's success are its ease-of-use, its speed, 

and its scalability. In dynamic verification, each simulation run has only one exe

cution trace, which is a sequence of input stimuli, the DUV's state transitions, and 

the output changes. DV is easy to use because we need to consider only an indi

vidual trace at a time while debugging the DUV. Also, each simulation run requires 

the tracking of only a small number of states (compared to the entire state space), 

making simulation fast and more independent of the DUV's size. 

The indirect reasons for the success of dynamic verification are its mature 

technology and strong tool support. Dynamic verification is as old as integrated 

circuits (ICs). Because of this long history, it is common in academic departments 

of computer science and engineering to have DV courses for undergraduate students. 

At the same time, electronic design automation (EDA) companies like Synopsys Inc., 

Cadence Design Systems Inc., and Mentor Graphics Corporation have been at the 

forefront of dynamic verification with their tools [31, 6, 24], and EDA companies 

have already established a solid relationship with IC companies. Therefore, the large 

support coming from academia coupled with those commercial tools have immensely 

contributed to DV's success. 

Today's design complexity, however, is pushing dynamic verification to its 

limit. The problem is that the number of possible behaviors of the DUV grow ex

ponentially with the DUV's size. Therefore, this growth requires an ever-increasing 

number of simulation cycles to examine the long and non-trivial DUV behaviors. 

Also, because dynamic verification analyzes only a single simulation trace each run, 

a great number of simulation runs may be required to provide assurance that the 

DUV is free of bugs. Even then, several bugs may slip into the silicon. Once a bug 
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Figure 1.1: Time-to-Market Cost 

is found in the silicon,, it usually means the IC needs to be fabricate'd again (re-

spin). This results in two extra costs: the re-spin itself and the cost of the increased 

time-to-market. Figure 1.1 shows the profit losses due to delayed production [11]. 

Therefore, we need a more thorough and conclusive verification technique to find 

bugs before they slip into the silicon. Model checking is one example of such a 

verification technique and will be described in the next section. 

1.2.2 Model Checking 

Model checking [7, 28] is a formal 2 verification technique. In contrast with dynamic 

verification, model checking exhaustively searches the state space. Given sufficient 

resources (memory and cpu time), model checking will always conclude whether the 

system satisfies its specification or not. 

2 In the sense of mathematical formalism, rather than just applying test stimuli. 
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The model checking verification flow consists of three major steps: modeling, 

specification, and verification. The modeling step is a translation of the system into 

a formal model, capturing the properties of the design. In model checking, a Kripke 

structure is a typical formal model used to describe the system. A Kripke structure 

is a nondeterministic finite state machine given by the 4-tuple: M = {S, So, R, L}, 

where 

• S is the finite set of states, 

• So the set of initial states, 

• C 5 x 5 is a total transition relation, 

• £ : S H 2AP, is a function that labels each state with a set of atomic propo

sitions, AP, that are true in that state. 

The specification step uses some logical formalism (e.g. CTL or LTL [8, 27]) 

to capture the system's properties. In this thesis, we are interested only in safety 

properties. Intuitively, a safety property states that something bad never happens 

in the system (e.g. deadlock, division by zero). In CTL, safety properties are usually 

encoded as AG->p — for all paths and in every state in those paths, p is false — 

where p is a propositional formula, denoting the bad event. Although focusing only 

on safety properties seems restrictive, we are still able to capture many important 

design properties. 

Finally, the verification step consists of a methodical search of the state space 

for a state violating the specification. Recall that we are using a Kripke structure 

to model our design. Therefore, we need to traverse the Kripke structure to ver

ify whether it is a model of the CTL formula AG->p. Backward reachability is a 

standard mechanism used in model checking to verify such formulas. We compute 

backward reachability by successive pre-image (defined below) operations. For ex

ample, consider a set Po, which satisfies p, i.e., the set of bad states. The pre-image 

of the state Po is the set of states that can reach Po hi one step. We then compute 
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the pre-image of this new set of states and iterate. Eventually, this computation 

reaches a fixed-point, having computed all the states that can reach PQ. Formally, 

the pre-image operator is given by 

Prelmg(S) = { s £ S\3s' • s' e S A R(s, s' ')} (1.1) 

and, the backward reachability computation is given by 

•̂ o — Po 

FI Fo U PreImg(Fo) 

F2 
Fx U Prelmg(Fi) 

In practice, for efficiency, model checking tools implement two termination 

conditions while checking safety properties: first, the computation reaches a fixed-

point that does not include any initial state, i.e., the model checking tool shows 

that the set of bad states are unreachable from the set of initial states; second, 

the successive pre-images include an initial state, at which point, the model check

ing tool asserts that it is possible to reach the set of bad states and generates a 

counterexample. We illustrate these two scenarios in Fig. 1.2. 

Counterexample generation is one of the important features of model check

ing. A counterexample is an error trace demonstrating how the model can reach 

a bad state from an initial state. Consider the model-checking tool found that an 

error trace exists; that the model-checking tool computed n backward reachability 

iterations, and that the result of each Prelmg call, Pi, P2, • • •, Pn, is available. The 

model-checking tool will generate the counterexample by: 

1. choosing an initial state from Pn f l 5o ; 

2. computing its image (dual of the pre-image operator); 

6 



Figure 1.2: Model Checking AG->p via backward reachability computation. So is 
the set of initial state; T is the set of target states in which p is. true. Termination 
conditions: (a) Successive pre-images reach a fixed-point without including any 
initial state; (b) Successive pre-images reach an initial state. 
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3. intersecting the resulting set from step (2) with the set Pn-i] 

4. choosing a state from this intersection set and repeating steps (2)-(4) until 

n = 0. 

The main disadvantage of model checking is its complexity. The state space 

of meaningful systems is enormous and computers have only a fraction of the mem

ory space needed for model checking such systems. This problem, called the state 

explosion problem, has been an active area of research. The most prominent tech

niques used to lessen the state explosion problem have relied on saving memory by 

using different representations [5], bounding the search [2, 3], and creating simpler 

models via abstraction [21]. I will discuss abstraction techniques in the next section, 

since the model checking of abstract models is an essential part of this thesis. 

1.2.3 Abstraction 

Abstraction reduces complex systems to simpler models while still preserving im

portant behaviors of the original system. Then model checking tools can use this 

simpler model (abstract model) to verify properties of the original design. 

In this thesis, we focus on conservative abstraction. A conservative abstrac

tion is such that if a property holds (model checking proved the property to be true) 

on the abstract model, the property also holds on the original design. However, if a 

property fails in the abstract model, we cannot assert, without further inspection, 

that the property also fails on the original design. , 

Consider two models M = {S,S0,R} and MA = {SA, Sg, RA}, where S 

and SA are the sets of states; So and SA, the sets of initial states; and R C 

S x S and RA C SA x SA, the transition relations. Also, consider a : S —> SA, 

the abstraction function that maps states from the model M to states in the 

model MA. We say that model MA is a conservative abstraction of model M if 

SA — {ao|3so € 5*0 • ao = a(so)}; if every, transition s —> s' € R can be simulated 
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Figure 1.3: Conservative Abstraction. Concrete model M, its abstract model A, 
and respective transitions. The function a(-) is the abstraction function. 

by a transition a —> a! 6 RA, such that a(s) = a and a(s') = a'. Formally, the 

abstract transition relation RA is given by 

RA
 = {(a, a ' ) | 3s, s ' € S . R(s, s') A 

a ( s ) = a A a ( s ' ) = f l ' } ,. (1.2) 

In Fig.1.3, we illustrate the effects of conservative abstraction. Observe that, 

in the concrete model, M, we have transitions S i —> S 2 , s i —> S3, and S3 —> S4. 

The transition ai —> a2 exists in the abstract model A because S3 —> S 4 exists and 

O J ( S 3 ) = ai and 0(54) = 02- Notice that transition a\ —> ai exists in the abstract 

model A because, for example, s\ —-> S2 exists and a(s\) = ai and afa) = ai-

This shows that conservative abstraction can overapproximate the behaviors of the 

concrete system. For example, the abstract model in Fig. 1.3 gives an impression 

that S4 is reachable from all states in the concrete model, which is clearly not true. 

In Chapter 3 and 4, we will use two instances of conservative abstraction: 

localization reduction and predicate abstraction. Localization reduction [23] is an 

abstraction technique that simplifies a design by removing some of its components. 

More specifically, in hardware designs, latches and logic elements that are not di

rectly mentioned in the properties being verified are good candidates for being re

moved (abstracted away) from the design. The hope is that the fundamental be-
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/ /p = (count<=10) 

L2: while (count <= 10) 

L l : int count = 0; 

//(L2, F) 

/ / (L1,F) 

L3: count= count + 1; //(L3, F) 

L4: z = count* 3.1415; // (L4, T) p = T 

a) b) 

Figure 1.4: Predicate-Abstraction Example, a) Small Code Excerpt and Predicate 
Valuations per Line; b) Resulting Abstract Model: 

havior of the design does not change in the absence of these removed components. 

Predicate abstraction focuses on data abstraction. For example, consider the 

program in Fig. 1.4 a). The type of the variable count is int. Instead of reasoning 

about all possible values for count (i.e., all 2 3 2 possible values, if the size of int is 32 

bits), a smaller model could be created based on the truth values of the predicate 

count < 10. Fig. 1.4 b) gives the abstract model for this program. 

More precisely, predicate abstraction [16] generates an abstract model whose 

state variables are boolean variables. The truth values of these boolean variables 

represent valuations of data predicates in the concrete model. While localization 

reduction implicitly constructs the abstract transition system (the current and next-" 

state logic of the components in the abstract model), predicate abstraction needs 

explicitly to compute — e.g. using theorem provers [16] or SAT solvers (e.g. [10]) 

— the abstract transition system over the boolean variables of the abstract model. 

The advantage of abstraction is that it allows for model checking to verify 

larger systems using simpler, smaller, abstract models. However, the main disadvan

tage of abstraction is that the abstract model is often too coarse. A coarse model 

is prone to false negatives — the property fails in the abstract model but not in 

the concrete model — due to overapproximation. To eliminate false negatives, we 

need to refine the abstract model until the property is either proved or disproved. 

10 



This iterative refinement technique is called Counterexample Guided Abstraction 

Refinement (CEGAR) (e.g. [9, 1]). 

CEGAR has being very successful in extending the capacity of model check

ing tools (e.g. [21]). However, with ever-increasing design complexity, even abstract 

model checking often exhausts the memory available. While we are limited in what 

we can achieve running abstract model checking on such very large designs, we can 

still collect important information like abstract pre-images. The abstract pre-images 

of a design contain approximate distances information of the search space and can 

be used to guide a simulator during dynamic verification. This technique is called 

abstraction-guided simulation, and we describe it in the next section. 

1.2.4 Abstraction Guided Simulation 

Abstraction-guided simulation is a general framework for automatically harnessing, 

during simulation, information obtained by model checking an abstraction of the 

design. The abstract design can be simplified enough to be amenable to model 

checking, and the analysis gives a "big picture" global view of the structure of the 

state space, which can direct the simulator in promising directions. 

The earliest work in this area [19, 34] abstracted away all datapath, and then 

directed the simulator to make (concrete) state changes to cover all (abstract) control 

state transitions. Subsequent work tried to cover more general abstractions [14]. 

Most of the research on abstraction-guided simulation, however, has used abstract 

pre-images from abstract target states as an approximate distance metric, to help the 

simulator "home-in" on concrete target states (e.g., [33, 22, 17, 13, 30, 26, 12, 29]). 

Fig. 1.5 sketches this approach. 

More specifically, abstraction-guided simulation consists of the following: 

• The goal of verification is to find an execution sequence that reaches a specified 

set of target states, e.g., error states or a hard-to-reach coverage target. 

• Any conservative abstraction technique is used to create a model small enough 

11 
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Concrete 
Simulation 
Trace... — target 

Figure 1.5: Abstraction-Guided Simulation. 

for model checking. Recall that the abstract model preserves existence of 

any paths to the error (target) states, but may introduce paths that do not 

correspond to any concrete path. 

• If formal verification succeeds (either finding no abstract error paths, or de

riving a concrete path to the target states from an abstract error path), the 

verification is done. The interesting case for simulation is when formal verifi

cation fails (and attempts at abstraction refinement fail to create a tractable 

model), as can occur typically with large hardware designs. 

• The model checker has computed a series of pre-images from the error states 

in the abstract model as in Section 1.2.2. These pre-images represent sets of 

abstract states whose shortest (abstract) path to an error state is i abstract 

states long. For example, as in Fig. 1.5, visualize these sets as concentric 

("onion rings") around the error states. A concrete state that abstracts to an 

abstract state in ring i is at least i clock cycles away from an error state. 

• During dynamic verification, the simulator can consult the abstraction infor

mation for guidance by periodically computing the abstraction of the current 

simulation state using the abstraction function, illustrated in Fig. 1.5 as o(), 

and querying which ring it is in. Thus, the simulator can benefit from consid

erable information computed by model checking the abstract model. 

12 



Concrete 
Simulation 
Trace... — 

Abstract Pre-images 

Figure 1.6: Dead-End States. 

Although abstraction-guided simulation is intuitively appealing, it has yet 

to deliver on its promise. Results have been inconsistent — sometimes it works 

amazingly well, but often it does not. The core problem is dead-end states. For 

example, in Fig. 1.3 in page 9, analyzing the abstract model, one could assume 

that any time a .concrete state is abstracted to a\ would mean that the simulation 

is making progress (since a2 is reachable from a\)\ however,. s2 abstracts to a\ 

but notice that, from s2, there is no path to any state that abstracts to a2, i.e., 

the simulation is stuck. Because two different concrete states may map to the 

same abstract state (e.g., in onion ring 2, in Fig. 1.6), an abstract trace might not 

correspond to any concrete trace. If so, the abstraction will lead the simulator to a 

dead end. Unfortunately, the simulator has no way of knowing whether it is headed 

for a dead end, or whether it must search harder to make progress. Some researchers 

resort to full-formal techniques (e.g., explicit model checking [13], SAT [30], or 

abstraction refinement [26]) as a back-up tactic to ensure the simulation makes 

progress. Nevertheless, the fundamental research issue is good guidance strategies 

for the simulator, in the presence of possibly erroneous distance information from 

the abstract pre-images. 
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Chapter 2 

Bui ld ing a Research Platform 

Three goals motivated building a research platform. First, because this thesis re

searches guidance heuristics, I needed to have a platform in which different heuristics 

could be easily deployed. Second, because abstraction-guided simulation involves 

model checking and abstraction — each having a variety of techniques to choose 

from such as, for example, symbolic or bounded model checking, and predicate ab

straction or structural abstraction — it was important to have a flexible platform 

such that different formal engines could be used. Finally, because of the need of 

validating my experiments using real, industrial hardware designs as benchmarks, a 

logical choice was to leverage the speed, capacity, ease-of-use and Verilog1 [20] com

patibility of commercial logic simulators. All these considerations helped us decide 

which third-party tools to use, and what tools to develop for our research platform.' 

Our research platform consists of three major components: the logic simu

lator, the abstraction/model-checking engine, and a tool, EverLost2, we developed 

to implement abstraction-guided simulation. For tight integration and highest per

formance, we had to target a specific logic simulator, although the tool could be 

retargeted easily. We chose Synopsys VCS [31] because it is one of the most widely-
1 Hardware designs ih industry are typically described using the hardware description 

language Verilog. 
2 The name "EverLost" is a play on a pioneering, widely-deployed in-car G P S navigation 

system. 
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Figure 2.1: Everlost Architecture. 

EverLost 

Abstraction Verilog to C 
Function Function Call Pre-
In C Interface 

Standard Compiled Logic Simulation 
(Synopsys VCS wl DirectC) 

used logic simulators in industry. We used Synopsys VCS version 7.2. 

For the interface with the abstraction/model-checking engine, we designed 

for maximum flexibility: all we require are a list of the design's latches, the abstrac

tion function, and the BDD pre-images that are a by-product of symbolic model 

checking tools. In Fig. 2.1, the darker box illustrates the fact that we can use dif

ferent abstraction/model-checking techniques, e.g., from CEGAR (counterexample-

guided abstraction refinement) to structural-abstraction based model checking. In 

this thesis, we either used VCEGAR [21] version 0.9 or VIS [4] version 2.1 as our 

formal engines; these are the only free formal tools we are aware of that can han

dle substantial Verilog designs. Chapter 3 and 4 describes in detail when each 

abstraction/model-checking technique and tool is used. 

Given the needed inputs, EverLost generates a simulation guidance driver 

in C, the abstraction function in C, and a C interface in Verilog, which are passed 

to VCS along with the Verilog files and the BDD pre-images. The user can specify 

different simulation guidance heuristics via EverLost options. 

The code generated by EverLost is compiled with VCS into a single exe-
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Figure 2.2: Everlost Plaftorm: Abstraction-Guided Simulation Flow. 

cutable. Internally, the simulator calls the EverLost driver every clock cycle. The 

EverLost code can read the current simulation state, possibly save it, and possibly 

evaluate it using the abstraction information. The EverLost code can then allow the 

simulation to continue, or it can force the simulator to jump to a particular state. 

Fig 2.2 sketches this flow. 

This platform is available at http://www.cs.ubc.ca/~depaulfm/EverLost. 
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Chapter 3 

Guided-Search Strategies 

We start experimenting with some simple, greedy, local-neighborhood search heuris

tics. Next, we implement a version of a proposed advanced guidance strategy [30]. 

The conclusions we draw from these experiments illustrate the problems most of 

the current abstraction-guided simulation techniques face. We then propose our 

own guidance strategy to address this problem. 

3.1 B o u n d e d L o c a l S e a r c h E x p e r i m e n t s 

As mentioned above, current abstraction-guided simulation heuristics typically search 

the local neighborhood of a concrete state, trying to find a successor that maps to 

the next closer onion ring. As illustrated in Fig. 3.1 for example, consider a heuristic 

that, from a given concrete simulation state, simulates b different random traces, 

each d cycles long, and then moves to the "best" state on those traces, according to 

the abstract onion rings. We explore this heuristic space, first varying the breadth 

b, and then the depth d. 

For these experiments, we used as our design under verification (DUV) two 

design units from the USB 2.0 Function Core and the USB 1.1 PHY designs from 

OpenCores.org 1 . Because we needed a large number of experiments, we focused 
1 http://OpenCores.org is an open source repository for hardware designs. 
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1 2 d-1 d 

^ » • • • 
1 2 d-1 d 

Figure 3.1: Simple Local-Neighborhood Heuristic. Exploring b different random 
traces, each d cycles long. 

on two small units from these designs, but as often arises in practice, we examined 

the integration of two units, each one coming from a separate design. In particular, 

the DUV is the USB Packet Disassembly Unit (usbLpd) from the USB Function 

Core integrated with the USB Receive Unit (rx_phy) from the USB PHY, as shown 

in Fig. 3.2. The DUV contained 121 latches, 4 inputs and 56 outputs. We manu

ally abstracted the DUV using structural abstraction: the abstract design was the 

usbLpd unit alone, which had 74 latches, 11 inputs, and 42 outputs. 

We selected 4 properties to try on the DUV, relating to receiving tokens 

and/or data with proper acknowledgment: 

pi Can usbLpd receive a token? 

p2 Does usbLpd acknowledge receiving data? 

p3 Can usbLpd receive a valid token or pid acknowledgment? 

p4 Does usbLpd acknowledge receiving a valid token? 

We used VIS to model check the abstract design, generating 5 abstract onion rings 

for pl-p3, and 6 for p4. 

Keep in mind that guided simulation imposes a substantial performance 

penalty over conventional simulation. Any guidance mechanism needs to know the 

design state, so the guided simulator must make additional function calls and mem

ory accesses on each simulation cycle. What's worse is that making the simulation 
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Figure 3.2: Design Under Verification. Shaded area represent the integration of two 
units from separate designs: the Packet Disassembly from the USB Function Core 
Packet Layer Unit and the Receive Interface unit from the USB PHY. The DUV is 
the integration of the Packet Disassembly and the Receive Interface units. 

state visible at each cycle can disable some compiler optimizations, imposing a sub

stantial slowdown.2 Therefore, abstraction-guided simulation is useful only if the 

guidance is good enough to overcome the large overhead. 

3.1.1 Varying Search Breadth 

The most straightforward search strategy is greedy hill-climbing. From a simulation 

state s, we generate b possible next states and evaluate all of them. If any successor 

is better (maps to a closer onion ring) than s, we pick the best one. Otherwise, we 

pick a successor randomly. The simulation then proceeds from the chosen successor. 

The obvious first experiment is to vary the search breadth b: how many next 

states do we try when looking for a state that maps to a better onion ring? If the 

distances computed from the abstract pre-images were perfectly accurate, then a 
2 Thanks to Valeria Bertacco for explaining this source of overhead. 
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Figure 3.3: Mean Simulation Time for Varying Search Breadth. The overhead 
swamps the benefit of guidance and grows with breadth. Pure random simulation 
times for each property (denoted plr, p2r, p3r, and p4r) average 29.1, 19.7, 27.1 
and 67.9 seconds, respectively. The error bars show 95% confidence intervals for the 
true mean, based on Student's ^-distribution. 

greedy search with enough breadth is guaranteed to find an optimum trace to the 

target, so one might assume that greater search breadth will yield better results. 

We simulated 60 runs for each property, with varying breadth. We computed 

the estimated mean, the estimated standard deviation and the 95% confidence in

terval for the true mean based on Student's ^-distribution. We also ran conventional 

random simulation. We report the sample mean runtime for each experiment and 

the confidence interval for the true mean in Fig. 3.3. Despite the large error bars, 
i 

two things are clear: the guided simulation is much slower than conventional simu

lation, and the slowdown gets worse with greater breadth. The overhead of running 

b simulation cycles for every cycle of progress dominates the results; guidance is. 

ineffective, and the guided simulator is apparently getting stuck in dead ends and 

then wandering randomly. 
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Figure 3.4: Mean Simulation Time for Varying Search Depth. As search depth 
increases, guided search becomes pure random simulation (whose results are as in 
Fig. 3.3), but with a constant factor overhead . The error bars show 95% confidence 
intervals for the true mean, based on Student's i-distribution. 

3.1.2 Varying Search Depth 

Another common heuristic is to allow the simulator to randomly search deeper: from 

a simulation state s, run random simulation for d cycles, and evaluate all states on 

that trace (e.g., set 6 = 1 and vary d in Fig. 3.1). If any successor is better than 

s, pick the best one. Otherwise, pick a random state on the trace. Continue the 

simulation from the chosen state. 

As before, we simulated 60 runs for each property, varying d. Fig. 3.4 presents 

the results. Exploring depth does much better than breadth, but still much worse 

than random. As d increases, the performance improves. The explanation is that as 

d —+ oo, the depth heuristic becomes pure random simulation. Indeed, the results 

appear to be asymptotically approaching the constant factor slowdown of guided 

simulation. In other words, guidance isn't working. 

We can try combining breadth and depth, to get a larger sample of the local 

neighborhood of the simulation state. The results in Fig. 3.3 show that simulation 
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Figure 3.5: Mean Simulation Time Varying Search Depth with Breadth of 3. Com
bining breadth and depth does not help. The error bars show 95% confidence 
intervals for the true mean, based on Student's i-distribution. 

runtimes are best when 6 = 3. We simulated 60 runs for each property, varying 

only d. Fig. 3.5 shows that the results are similar: breadth (which would help if the 

distance metric were perfect) imposes an 0(b) slowdown (vs. Fig. 3.4), and depth 

approaches a slowed-down version of random simulation as d —> oo. The standard 

heuristics do not work. 

3.1.3 GUIDO's SimSearch 

To evaluate a sophisticated, state-of-the-art guidance heuristic, we tried, out the 

search heuristic proposed in GUIDO [30]. The GUIDO verification tool contains 

two search modes: an abstraction-guided simulation mode SimSearch that fits the 

framework of this thesis, backed up by an exhaustive, formal, SAT-based procedure 

SimSAT for when SimSearch gets stuck. 

Since the focus of this thesis is guidance heuristics, we implemented and 

evaluated the SimSearch algorithm, presented in Alg. 1. As in the original imple

mentation, our SimSearch implementation explores a bounded breadth b and depth 
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A l g o r i t h m 1 Adapted GUIDO's SimSearch 
1: p r o c e d u r e SimSearchQ 
2: CS = initial-state 
3: w h i l e (CS!=goal_state) d o 
4: l o o p b / / breadth 
5: • curr_sample = sample_next_state(CS) 
6: l o o p d //depth 
7: i f Cost(curr_sample) != Cost(CS) 

AND Is_not_in_queue(curr_sample) 
8: add_priority_queue(curr_sample) 
9: break 
10: e lse 
11: curr .sample = sample_next_state(curr_sample) 
12: e n d l o o p 
13: e n d l o o p 
14: i f (priority.queue != empty) 
15: CS = priority_queue. head 
16: e n d w h i l e 

d from a given state, similarly to the heuristics in Sec. 3.1.1 and Sec. 3.1.2. How

ever, SimSearch stores all states that reach a different onion ring into a priority 

queue. The simulation then proceeds from the best state in the priority queue. The 

only difference between the original implementation and ours is that the simulation 

continues from the current state if the priority queue is empty (lines L14-L15, in 

Alg. 1). The description in [30] does not define what happens in this case. 

In [30], specific values for neither b nor d are given. We ran 60 simulations 

for each property, trying out d = 5, 10, 50, and 100. These simulations found the 

target only when d = 100. Next, we tried several values for b, simulating 60 runs 

for each property, keeping d = 100. The results, in Fig. 3.6, show that increasing 

breadth has limited impact on simulation time, particularly compared with the 

random simulation results. SimSearch alone is not an effective guidance strategy, 

necessitating the more expensive SimSAT mechanism in GUIDO. 
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Figure 3.6: Mean Simulation Time for SimSearch. Even a sophisticated, recent 
heuristic loses to random simulation. We vary search breadth, with search depth 
fixed at 100. Error bars and random simulation times.are as in Figs. 3.3-3.5. The 
error bars show 95% confidence intervals for the true mean, based on Student's 
^-distribution. 

3.1.4 Hard Gains, Easy Losses 

The intuition behind abstraction-guided simulation is that the simulation trace will 

gradually work its way into closer onion rings, perhaps with some delays or detours 

due to dead-end states. However, an informative picture of the progress of a search 

strategy emerges by plotting the onion ring number of the simulation state over 

time. Recall that we simulated 60 runs for each experiment. I analyzed a sample of 

9 runs within the confidence interval: 3 around the bottom, 3 around the estimated 

mean and 3 around the top. In all of them, the general behavior is very similar, 

although each trace is unique. 

Fig. 3.7 is a typical trace for the experiments with b — 1 and d = 100. What 

is striking is how hard it is to make progress, but how easy to lose it. In Fig. 3.7, the 

heuristic spends almost all of its time stuck at onion ring 3, almost never breaking 

through. It quickly reached onion ring 1 a bit before 1,000,000 cycles, which may or 
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Figure 3.7: Simulation Trace using Depth of 100 and Breadth of 1. 

may not have been a dead end, but then immediately gave up this progress for more 

than 6,000,000 cycles before finally succeeding. All of the traces we have plotted 

for previous heuristics are qualitatively similar. Even SimSearch produces a similar 

graph (Fig. 3.8). The challenge is to develop a heuristic that does not get stuck near 

dead ends, yet aggressively pursues promising states. 

3.2 A N e w G u i d a n c e S t r a t e g y 

Two key ideas underlie our new guidance strategy: remembering multiple states 

from which to search, and balancing between greed and relaxation. 

To remember multiple states from which to continue the search, we keep 

"buckets" of previously visited states at each onion ring distance. The buckets for 

the closest onion rings track the best states encountered during the simulation, over

coming the problem of easily giving up hard-earned progress. Equally important, 

having buckets for all distances allows flexibly backing up different distances to 

avoid dead ends. Recall that a dead end is caused by an abstract transition with no 

corresponding concrete transition, so one dead end will affect many nearby states, 
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Figure 3.8: Simulation Trace using SimSearch with Depth 100 and Breadth 16. We 
see the same pattern of hard gains, easy losses. 

e.g., Fig. 1.6 on page 13. The multiple states in each bucket provide a much more 

global concept of breadth, spreading the breadth across the history of the simula

tion, rather than the local neighborhood of one state. We implement the buckets as 

bounded FIFOs, guaranteeing no blow-up in space. Furthermore, using a bounded 

bucket for each onion ring means that states at distances that are hard to reach will 

persist, whereas states at onion rings where we are stuck will be quickly replaced. 

The other challenge is to determine when to push forward from the current 

state, when to return to previously visited promising states, and when to back up 

to outer onion rings to escape the influence of a dead end. The right balance will be 

different for different designs and different properties, and even for different parts of 

the search space of one simulation: in a region of the search space where the distance 

metric is wrong, leading to a dead end, a guidance heuristic should abandon the 

current state; in a region where the distance metric is right, the guidance heuristic 

should press ahead. We use randomization to solve this problem. In particular, 

we start from the closest (lowest numbered) onion ring with a non-empty bucket 

and flip a (fair) coin. Heads means we continue simulation from a random state 
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Algorithm 2 New Abstraction Guided Simulation Algorithm 
1: procedure AGS() 
2: CS = initiaLstate 
3: while (CS!=goal_state) do 
4: loop B R E A D T H 
5: curr_sample = sample_next_state(CS) 
6: loop DEPTH 
7: distance = abstract_and_evaluate(curr_sample) 
8: save_in_bucket(distance, curr_sample) 
9: curr_sample = sample_next_state(curr_sample) 

10: end loop 
11: end loop 
12: bkt_index = 1; restore_bkt_index = 0 
13: while TRUE do 
14: if (flip_coin AND bucket_is_not_empty[bkt_index]) then 
15: restore_bkt_index — bkt_index 
16: break 
17: end if 
18: bkt_index++ 
19: if (bkt_index >= onion_rings) then 
20: bkt_index = 1 
21: end if 
22: end while 
23: CS = bucket.random_pick(restore_bkt_index) 
24: end while 

in that bucket. Tails means we go on to the next non-empty bucket. If we reach 

the outermost onion ring without choosing a bucket, we repeat this process. This 

process gives an exponential decrease of the probability of choosing each non-empty 

bucket, from the closest to the farthest. This probability distribution is important 

because it favors persisting with promising states (hard gains) while keeping a more 

global search (avoiding dead ends). The algorithm is presented in Algorithm 2. 

Fig. 3.9 shows a typical simulation trace with our new heuristic. This is 

for the same design and property as in Figs. 3.7 and 3.8, but note that the guided 

simulation reaches the target 2-3x faster. Qualitatively, the difference is striking: 

once the simulation reaches a closer onion ring, it persists at that distance, but it's 

also flexible enough to back out to outer onion rings. This behavior can be seen 
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Figure 3.9: Simulation Trace using Algorithm 2 with Depth 100 and Breadth 1. The 
behavior is radically different. 

more clear by zooming in on Fig. 3.9, as in Figs. 3.10 and 3.11. 

It seems I have found a good guidance heuristic. I tried greedy heuristics, 

analyzed their behavior, understood the nature of the problem and devised a new, 

more effective heuristic. However, at this point, I cannot say I am done because 

these results are from a small DUV. Moreover, it is not clear if the parameters (i.e. 

b and d) used here would work well for other, larger DUVs. To get to a conclusive 

analyses, we needed to devise an experimental evaluation methodology and apply it 

to larger DUVs. This is what I describe in the next chapters. 

28 



0 

O.Oe+00 2.0e+04 4.0e+04 6.0e+04 8.0e+04 1.0e+05 
Explored States 

Figure 3.10: Enlargement of Part of (Fig. 3.9). First Thousands of Cycles. The 
path to a closer ring is through a ring farther away. States at closer rings are tried 
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Chapter 4 

Experimental Evaluation 

4 . 1 A n a l y s i s M e t h o d o l o g y 

Because this research is an exploration of heuristics, good research methodology is 

paramount to avoid misleading results. 

We make the following assumptions about the verification flow: 

1. The target states are specified logically, as would be the case for an assertion 

violation or an unreached coverage target; 

2. Random simulation is used to hit the easy targets quickly; 

3. Formal verification is applied to any target that is not hit via random simula

tion, as formal is the only way to prove that a target is not reachable; 

4. Abstraction-guided simulation is used only when simulation fails to reach the 

target, and formal verification fails to verify unreachability or generate a con

crete trace to the target. 

Runtime results for random simulation have enormous variance, so statistical 

analysis is needed to draw valid conclusions. Resource limitations prevented running 

all experiments with the same number of trials, so we report the number of trials 

for each experiment. (Indeed, we could not even complete all of our experiments on 
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the same speed processors, but the processor for each benchmark is reported, and 

we always compare a single benchmark across different heuristics on the. same speed 

processor.) We report the sample mean runtime for each experiment, as well as a 

95% confidence interval for the true mean, based on Student's t-distribution. We 

also report minimum and maximum data points for each experiment. 

We conducted our research using the EverLost platform described in the 

Chapter 2. We use real, publicly available benchmarks for all of our experiments. 

In particular, our experiments were conducted on design units from the USB 2.0 

Function Core, the USB 1.1 PHY (I will define later which units we are using in 

this chapter), and the Ethernet MAC 10/100 Mbps designs from OpenCores.org. 

VCEGAR and VIS were unable to handle the original Verilog of these test cases, so 

we modified them by hand, then verified equivalence to the original using Synopsys 

Formality version V-2004.06-SP1. All data and modified Verilog models are available 

at http://www.cs.ubc.ca/~depaulfm/EverLost. 

With tunable heuristics, there is always the danger of over-tuning to a specific 

benchmark, akin to over-fitting to data in statistics. We prevent this problem using 

standard experimental design: for our proposed new guidance strategy, we tuned 

using one design and set of properties, then evaluate using a different version of the 

design and different properties, with no changes whatsoever to the heuristic. For 

easier reference, we use "training set" when we refer to the experiments described in 

Section 3.1, and "test set" when we refer to the experiments described in the next 

section. As a further test, we apply the identical heuristic to a completely different 

design, again with no further tuning. These results are reported in following sections. 

Our new heuristic presented in Section 3.2 has only two parameters: depth, 

and breadth. From the experiments in Section 3.1, we selected depth and breadth to 

be 100 and 1. 
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4.2 T h e Tes t Set 

The task now is to evaluate the heuristic in a different design. In this section, we 

report results for the USB Function Core Packet Layer Unit (usbLpl). Although, 

this design shares one unit with the DUV of the training set, namely the Packet 

Disassembly unit, shown in Fig. 3.2 in page 19, none of the properties verified in this 

section relates to the training set. Furthermore, the interconnects we are interested 

in do not share any signals with the ones in the DUV of the training set. 

We looked into four usbLpl properties: 

usb_pO After receiving a transfer command request from the host processor, does 

the usbLpl time out if the host does not follow the request with a packet? 

u s b _ p l Has a packet been received and is it ready to be DMAed to Memory? 

usb_p2 After sending data to the host in response to a host command, does the 

usbLpl time out if no acknowledgment is properly signaled by the host? 

usb_p3 Upon receiving data, is the data PID in sequence? 

We chose these properties to meet three criteria: first, they are real properties, 

describing interesting behavior of the design; second, the properties are non-trivial 

for simulation; and third, they are challenging to the formal tools as well. 

Recall that we use VCEGAR and VIS as our formal tools. V C E G A R auto

matically abstracts the design, whereas for VIS, we manually created a structural 

abstraction by removing design units not directly mentioned in the properties being 

verified. The usbLpl, shown in Fig. 4.1, consists of 4 units: Packet Assembly, Packet 

Disassembly, DMA and Memory Interface, and Protocol Engine. Altogether, it has 

536 latches, 157 inputs, and 143 outputs. The abstract model, shown as shaded 

blocks in Fig. 4.1, included only the Protocol Engine and the DMA and Memory 

Interface units, and had 397 latches, 170 inputs, and 159 outputs. 

Table 4.1 presents the formal verification results. Both tools had trouble with 

the concrete design, but VIS was able to model check the structural abstraction for 
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Figure 4.1: Test Set. Design Under Verification: USB Function Core Packet Layer 
Unit. The shaded blocks represent the abstract model resulting from manual struc
tural abstraction. 

all four properties. Because the structural abstraction also generated more onion 

rings, we used those results for the guided simulation runs. 

Table 4.2 compares guided simulation using the new heuristic to random 

simulation. In three of the four cases, the guided simulation performed better than 

both random simulation and formal verification. More specifically, for the property 

usb_pO, VIS blows up when model checking the concrete design, and guided simu

lation is two orders of magnitude faster than VCEGAR or conventional simulation. 

For usb_pl, VIS again blows up, but the other methods succeed. Random simu

lation is more than lOx faster than VCEGAR or guided simulation (including the 

abstract model checking time). On the harder properties, usb_p2 and usb_p3, both 

formal tools ran out of memory, and the random simulations timed out on every 

trial, despite running for several days for each trial. Guided simulation took only 

hours, and never timed out. 
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Property Concrete Model VIS on Abstract Model 
V C E G A R VIS CPU Time onion rings 

usb_pO 2128.8s MemOut 66.8s 26 
usb_pl 42809.2s MemOut 32277.7s 12 
usb_p2 MemOut MemOut 71.0s 28 
usb_p3 MemOut MemOut 72.5s 5 

Table 4.1: Test Set: Formal Verification Trials. V C E G A R runs were on Intel 
P4@3.2GHz; VIS, on Sparcv9@900MHz. MemOut is 800MB. 

Property (Run) #of Trials Avg (s) (95% Conf. Interval) (Min; Max) (s) 
usb.pO (Random) 30 1011.3 (656.8; 1365.8) (27.5; 3999.3) 
usb_p0 (Guided) 30 1.4 (1.25; 1.72). (0.4; 2.9) 
usb_pl (Random) 30 3510.1 (2224.2; 4795.9) (106.8; 10885.5) 
usb_.pl (Guided) 30 6681.6 (4015.6; 9347.7) (150.8; 28865) 
usb_p2 (Random) 22 TimeOutO NA 
usb_p2 (Guided) 30 10585.6 (6109.7; 15061.4) (481; 51444.4) 
usb_p3 (Random) 16 TimeOutl NA 
usb_p3 (Guided) 30 71687.4 (53804.9; 89570) (4424.3; 224962.7) 

Table 4.2: Test Set: Random vs. Guided Simulation Time. The time to reach 
the target is measured in seconds. Simulation times for usb_pl were on a Sparcv9 
1.3GHz; others, on a Sparcv9 900MHz. TimeOut0>100 hours. TimeOutl>150 
hours. 

34 

http://usb_.pl


MAC Transmit Unit 

I MAC Receive Unit 

• MAC Control Unit 

' • MAC Status Unit I 

\ 
Ethernet Core Units 

Figure 4.2: Case Study on Ethernet MAC 10/100 Mbps. These core functions 
represent this case study's DUV. The shaded block represents the abstract model 
resulting from manual structural abstraction. 

4.3 Case S t u d y on a Separate Des ign 

As an additional test of the robustness of our guided-search strategy, we selected a 

completely different design and followed the verification flow methodology assump

tions made in Section 4.1. The design is the Ethernet M A C 10/100 Mbps from 

OpenCores.org. The verification focused on the core functionality of the design, 

described by the following four units: the MAC Control, the Transmit, the Receive, 

and the Status units. Fig. 4.2 shows these core functions and their interconnect. 

We tried to hit 14 properties in all. We started with random simulation and quickly 

reached 12 of these. The remaining two properties seemed reasonably difficult for 

simulation, so we tried to formally verify them. 

To accommodate the Verilog limitations of V C E G A R and VIS, we modified 

the implementation by hand and used the equivalence checker tool from Synopsys 

(as described in Section 4.1) to prove that the modifications did not change the 

design's behavior. Then, we attempted to formally verify the remaining two prop

erties. Both tools, V C E G A R and VIS, exhausted the memory available (memory 

limit was 800Mbytes). For VIS, we. manually abstracted the design, selecting the 
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Property VIS 
abstract 

model (s) 

Avg (s) 
(95% Conf. Interval) 

(Min; Max) (s) 

eth.pO 
Random NA 19 out of 30 TimeOutO NA 
Guided 1777 20.9 (13.9; 27.9) (1.7; 92) 
eth_pl 

Random NA TimeOutl . NA 
Guided 11373 16.1 (12.9; 19.3) (3.7; 38.8) 

Table 4.3: Case Study: Random vs. Guided Simulation Time. Times were on a 
Sparcv9 900MHz. TimeOutO > 3 hours. TimeOutl > 6 hours 

Receive unit to be the abstract model, since all the properties were related to this 

unit. In Fig. 4.2, the shaded block represents the abstract model. During the ab

straction process, we realized a problem with the model: it had multiple clocks, 

i.e., the Transmit and Receive units can be configured at different clock rates. Un

fortunately, neither formal tool supports this feature. We updated all four units 

(to maintain synchrony with the simulations) by hand (again, equivalence checked) 

and tried again. V C E G A R was still unable to handle both properties due to either 

failing to find new predicates or exhausting the memory available. VIS, however, 

was able to verify the abstract model, so we used the abstract onion rings resulting 

from VIS to guide the simulation. We ran 30 simulations comparing random and 

guided simulation on these two properties. We report estimated mean for simula

tion runtime, the 95% confidence interval using the Student's t-distribution, and 

minimum an maximum simulation runtimes. The results in Table 4.3 show that 

on a completely different design, guided simulation helps find the targets, whereas 

random simulation is usually timing out. 

Unfortunately, we later realized that we had not tried VIS on the concrete 

model (which had blown-up earlier) after fixing the multiple-clock issue. It turns 

out VIS finds these two targets in less than five minutes. Although our oversight 

weakens the case study, the results still demonstrate that guided simulation did 
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help find these two hard-to-reach targets much faster than random simulation, on a 

different design, with no heuristic tuning. 
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Chapter 5 

Conclusion and Future Work 

Our study of the typical local search heuristics used by most previous works on 

abstraction-guided simulation shows that they are not effective in avoiding dead 

ends. Based on these experiments, we propose a new heuristic that is better able to 

avoid dead ends by tracking multiple promising states and backing-off when getting 

stuck. Experimental results on a variety of designs show excellent results on hard-

to-reach targets, with no heuristic tuning. 

The direct line of future work is further experimentation to confirm our re

sults and illuminate the way towards better and even more robust guidance strate

gies. More generally, a challenge for abstraction-guided simulation is how to deal 

with targets specified via a non-synthesizable software testbench. Handling such 

targets is necessary to truly and seamlessly bridge formal and simulation.1 Fortu

nately, the simulation side needs no modification: anything that can be done in a 

simulator can be done in a guided simulator. To compute the abstract pre-images, 

we believe software model checking techniques can apply. 

Another very challenging area for future work is to understand what types 

of abstractions better suit abstraction-guided simulation. During this thesis, we 

noticed that predicate abstraction would often generate a map too coarse to provide 
xThanks to Eyal Bin and Gil Shurek for pointing this out. 
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good guidance. The main challenge is to'understand the relationship, if any, between, 

different designs (e.g. DSPs, processors) and different abstractions. 

With better heuristics and broader applicability, abstraction-guided simula

tion will be a valuable tool in the verification arsenal, filling the gap between formal 

verification and simulation. 
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