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ABSTRACT
A key step in the design of cyclo-static real-time systems is the
determination of buffer capacities. In our multi-processor system,
we apply back-pressure, which means that tasks wait for space in
output buffers. Consequently buffer capacities affect the through-
put. This requires the derivation of buffer capacities that both result
in a satisfaction of the throughput constraint, and also satisfy the
constraints on the maximum buffer capacities. Existing exact so-
lutions suffer from the computational complexity that is associated
with the required conversion from a cyclo-static dataflow graph to
a single-rate dataflow graph. In this paper we present an algorithm,
with polynomial computational complexity, that does not require
this conversion and that obtains close to minimal buffer capacities.
The algorithm is applied to an MP3 play-back application that is
mapped on our multi-processor system. For this application, we
see that a cyclo-static dataflow model can reduce the buffer capac-
ities by 50% compared to a multi-rate dataflow model.
Categories and Subject Descriptors: C.3 [Special Purpose and
application based systems]: Real-time and embedded systems
General Terms: Algorithms, Design, Performance
Keywords: System-on-Chip, Dataflow, Buffer Capacity

1. INTRODUCTION
Decreasing feature sizes have made it possible to implement

multiple processing cores on a single chip, resulting in so-
called Multi-Processor System-on-Chip (MPSoC) designs. These
MPSoCs provide a high data processing throughput in a cost and
energy-efficient way, making them an ideal match with multi-media
applications as can be found in TV-sets, set-top boxes, and smart-
phones.

MPSoCs operate on multiple streams of data that often have tem-
poral constraints, such as throughput and latency. These streams
have firm or soft real-time constraints. In the mentioned appli-
cation domain, throughput constraints typically dominate over la-
tency constraints.

For firm real-time streams we want to guarantee that no deadline
is missed, because this would result in a severe quality degradation.
Therefore, we model the processing performed on these streams
with Cyclo-Static Dataflow (CSDF) graphs [3, 8], of which we can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM ACM 978-1-59593-627-1/07/0006 ...$5.00.

analytically derive the cycle that determines the throughput after
conversion to a Single-Rate Dataflow (SRDF) graph [3]. Tasks are
modelled by the vertices of a CSDF graph, which are called actors.

As discussed and shown in [3] and [8], CSDF graphs are more
expressive than Multi-Rate Dataflow (MRDF) graphs [6]. This
means that both a larger class of applications can be modelled and
that more detailed dependencies can be included, which often leads
to lower resource requirements.

An essential step when programming a multi-processor system
is the determination of buffer capacities. In our multi-processor
system, tasks start their execution on an assigned processor based
on the availability of containers that signal the presence of data or
space in a first-in first-out (FIFO) buffer with a fixed capacity. The
fact that the start of a task execution is dependent on the availability
of space results in so-called back-pressure. Therefore, in our sys-
tem, the buffer capacity has an influence on the start times of tasks
and consequently on the throughput. Applying back-pressure has
the advantage that the system does not require means to control jit-
ter, such as e.g. traffic shapers, in order to prevent buffer overflow.

However, determining whether particular buffer capacities allow
a throughput that satisfies the constraint is a complex task. In or-
der to find exact results, first a conversion from a cyclo-static to a
single-rate dataflow graph is required, which can result in an expo-
nential number of vertices [9], after which the throughput of each
cycle in the SRDF graph can be determined [4]. Algorithms that
have a polynomial complexity for SRDF graphs, therefore have an
exponential complexity for CSDF graphs.

Contribution. The contribution of this paper is an algorithm
based on a min-cost network flow formulation that obtains close
to minimal buffer capacities for CSDF graphs that satisfy both the
temporal constraint as well as any buffer capacity constraints that
are for instance caused by finite memory sizes. The presented al-
gorithm has a polynomial complexity for CSDF graphs, and results
in small run-times and memory requirements.

This is accomplished as follows. In our multi-processor sys-
tem [1], we only use pre-emptive schedulers that provide resource
budget guarantees [7]. These schedulers allow the derivation of the
response time of a task based on only the execution time of the task
and the scheduler settings. This response time is therefore indepen-
dent of the behaviour of other tasks. Using these response times, a
conservative schedule of actor executions is constructed that meets
the throughput constraint. From this schedule we derive sufficient
buffer capacities for the FIFO buffers. This is possible, because
our system has monotonic temporal behaviour, as explained in Sec-
tion 2, which guarantees that the schedule as determined at run-time
will not lead to later container production times.

Related work. The presented work is a generalisation of [12], in
which an algorithm is presented that obtains close to minimal buffer
capacities given buffer capacity and throughput constraints for a
class of MRDF graphs. In this paper, we (1) present an algorithm



for a more expressive dataflow model, and (2) remove the constraint
on the topology of the dataflow graph.

Two alternative approaches that determine buffer capacities for
CSDF graphs are known to us. The back-tracking approach to de-
rive a schedule as applied by [3] can be extended to deal with tem-
poral constraints, constraints on buffer capacities, and buffer ca-
pacity minimisation. Another approach is to back-track over the
possible buffer capacities of the CSDF graph, and check whether
the temporal constraints are satisfied by applying MCM analysis on
the corresponding SRDF graph [10]. Both approaches suffer from
an exponential space and time complexity, because they schedule
SRDF actors, but are able to satisfy the throughput requirement and
buffer capacity constraints for a larger set of problem instances, be-
cause they are exact.

The organization of this paper is as follows, relevant properties
of CSDF graphs are summarised in Section 2. Section 3 provides
the basic ideas behind the approach pursued in this paper. In Sec-
tion 4 we determine a schedule of actor phases. These schedules
are used in Section 5 to determine a minimum distance between
two actors connected by an edge. These distances form the con-
straint set of the network flow problem that determines start times
to minimise the buffer capacity as presented in Section 6. By apply-
ing the algorithm on an MP3 playback case study, we investigate
the run-time and accuracy of the algorithm in Section 7.

2. ANALYSIS MODEL
The input to our mapping flow is a CSDF [3] graph that

models the application. A CSDF graph is a directed graph
G = (V, E, δ, ρ, π, γ, θ) that consists of a finite set of actors V ,
and a set of directed edges, E = {(vi, vj)|vi, vj ∈ V }. Actors
synchronise by communicating tokens over edges that represent
queues. The graph G has an initial token placement δ : E → N.
An actor vi has θ(vi) distinct phases of execution, with θ : V → N,
and transitions from phase to phase in a cyclic fashion. An actor is
enabled to fire when the number of tokens that will be consumed
is available on all its input edges. The number of tokens consumed
in firing k by actor vi is determined by the edge and the current
phase of the token consuming actor, γ : E × N → N, and there-
fore equals γ(e, ((k − 1) mod θ(vi)) + 1) tokens. The speci-
fied number of tokens is consumed in an atomic action from all
input edges when the actor is started. The response time ρ(vi, f),
ρ : V × N → R, is the difference between the finish and the start
time of phase f of actor vi. The response time of actor vi in firing
k is therefore ρ(vi, ((k−1) mod θ(vi))+1). To ease the notation
we introduce ρf : V × N → R that provides the response time of
a firing, i.e. ρf (vi, k) = ρ(vi, ((k − 1) mod θ(vi)) + 1). When
actor vi finishes, then it produces the specified number of tokens on
each output edge e = (vi, vj) in one atomic action. The number of
tokens produced in a phase will be denoted by π : E × N → N.

For edge e = (vi, vj), we define Π(e) =
Pθ(vi)

f=1 π(e, f) as
the number of tokens produced in one cyclo-static period, and
Γ(e) =

Pθ(vj)

f=1 γ(e, f) as the number of tokens consumed in one
cyclo-static period. We further define the topology matrix Ψ as an
|E| × |V | matrix, where

Ψmi =

8

>

<

>

:

Π(em) if em = (vi, vj) and vi 6= vj

−Γ(em) if em = (vj , vi) and vi 6= vj

Π(em) − Γ(em) if em = (vi, vi)
0 otherwise

If the rank of Ψ is |V | − 1, then a connected CSDF graph is said
to be consistent [3]. A consistent CSDF graph requires queues with
finite capacity, while an inconsistent CSDF graph requires infinite
queue capacity.

We define the vector s of length |V |, for which holds Ψs = 0,
and which determines the relative firing frequencies of the cyclo-
static periods. The repetition vector q of the CSDF graph deter-
mines the relative firing frequencies of the actors and is given by

q = Θs with Θik =



θ(vi) if i = k
0 otherwise

The repetition rate qi of actor vi is therefore the number of
phases of vi within one cyclo-static period times the relative firing
frequency of the cyclo-static period.

In order to focus on the main concepts, we assume that every
actor vi implicitly has a self-edge (vi, vi) with a single initial token
and that this actor produces and consumes a token from this self-
edge in every firing.

For a strongly connected and consistent CSDF graph, we can
specify a required period µ within which on average every actor vi

should fire qi times. The throughput of the graph relates to µ−1. In
the remainder of this paper, we assume that the required period µ
is given.

2.1 Monotonic Execution
If a CSDF graph is executed in a self-timed manner, then actors

start execution as soon as they are enabled. If each actor either has
a constant response time, or has a self-cycle with one initial token,
then the graph maintains a FIFO ordering of tokens, since queues
by definition maintain a FIFO ordering of tokens.

An important property is that self-timed execution of a strongly
connected CSDF graph that maintains a FIFO ordering of tokens is
monotonic in time, which is defined as follows.

DEFINITION 1. A CSDF graph executes monotonically in time
if no decrease in response time or start time of any firing k of any
actor vi can lead to a later enabling of firing l of actor vj .

If a CSDF graph G maintains FIFO ordering of tokens, then the
self-timed execution of G is monotonic. This is because a decrease
in response time or start time can only lead to earlier token produc-
tion times, and therefore only to an earlier actor enabling.

2.2 Examples
An example CSDF graph is shown in Figure 1 in which data

flows from actor vp to actor vc, where vp has the response time
sequence rp = 〈2, 1〉 and vc has the response time sequence
rc = 〈1, 1〉. The vector s is [2 3]T, and the repetition vector is
q = [4 6]T. One instance of the problem discussed in this paper is
to find a token placement δ such that the period µ of the graph in
Figure 1 is 6. The presented algorithm will tell us that the buffer
capacity d2 = 3 is sufficient to satisfy the constraints.

〈1, 2〉

〈1, 2〉 〈1, 1〉

〈1, 1〉

d2

rc = 〈1, 1〉vcvprp = 〈2, 1〉

Figure 1: Example buffer capacity problem.

We will show that CSDF can model a larger class of tasks than
MRDF. Figure 2 shows an example CSDF graph taken from [8] in
which merging the actors v1 and v3 into an MRDF actor vm will
lead to deadlock, i.e. this creates a cycle with no initial tokens
where v2 requires a token on an edge from the actor vm and the
actor vm requires a token from actor v2 in order to be enabled. A
CSDF actor can merge the actors v1 and v3 without introducing
deadlock, since a CSDF actor can still allow the firing sequence
〈v1, v2, v3〉. Therefore, the task consisting of the code segments as



modelled by actors v1 and v3 can be modelled with a CSDF actor,
but should not be modelled with an MRDF actor. This shows that
CSDF is more expressive than MRDF.

v1 v3

v2

1
11

1

1

11

1

1
1 1

1

vm

1 1

Figure 2: Deadlock if vm is an MRDF actor.

2.3 Analysis model and implementation
We have established that CSDF graphs execute monotonically in

time. As explained in [12], we construct the CSDF graph in such
a way that there is a one-to-one correspondence between the task
graph and the CSDF graph, with the only important difference that
tasks can have a smaller response time than actors and produce their
containers before they finish, while actors produce the correspond-
ing tokens when they finish. Therefore we arrive at the conclusion
that tasks produce their containers no later than the corresponding
actors produce their tokens.

In the next section the basic idea is presented for the algorithm
that will derive buffer capacities that satisfy the throughput and
buffer capacity constraints.

3. BASIC IDEA
The basic idea of the algorithm is as follows. First a schedule of

phase start times is constructed for each CSDF actor that satisfies
the throughput constraint, i.e. actor vi fires qi times within µ. The
schedule of phase start times is constructed independent of other
actors in the graph, with the objective to minimise the difference
between linear bounds on the token consumption and production.

On each edge, e.g. edge (vp, vc) in Figure 1, we have that tokens
cannot be consumed before they are produced. The bounds on to-
ken consumption and production enable us to derive for each edge a
minimal distance β between the start times of the first phases, e.g.
between the first phases of vc and vp. These minimum distances
form a set of constraints and using a min-cost network flow formu-
lation we will determine the start times of the first phases such that
all these constraints are satisfied and the sum of the distances be-
tween the start times is minimised. The topology of the graph can
necessitate distances between the start times of the first phases that
are larger than the previously determined distance β.

When on each edge the distance between the start times of the
first phases is determined, the bounds on the token consumption
and production enable us to derive sufficient buffer capacities to
sustain the constructed schedules of phase start times.

Note that while buffer capacities are derived such that the con-
structed schedule always has sufficient tokens available, tasks in
the implementation do experience back-pressure. This is because
tasks execute in a self-timed fashion, which means that tasks start
as soon as they are enabled, where a task is enabled if sufficient
full containers are present on all input FIFO buffers and sufficient
empty containers are present on all output FIFO buffers. And fur-
thermore, since (1) start times in the constructed schedule are only
delayed compared to the self-timed schedule, and (2) the imple-
mentation has monotonic temporal behaviour, the self-timed sched-
ule will also meet the throughput constraint.

Figure 3 illustrates the derivation of the required number of ini-
tial tokens on the edge b = (vc, vp) of the CSDF graph as shown

in Figure 1. The schedule of phase start times of actor vp results in
token consumption and production times. The token consumptions
of vp are bounded by cb

u, and the token productions by vp on edge
e = (vp, vc) are bounded by pe

l . Similarly for vc, the token con-
sumptions from edge e are bounded by ce

u and the productions on
edge b are bounded by pb

l . Since no token can be consumed prior
to production we have that pe

l ≥ ce
u, which results in a minimum

distance β between the start times of the first phases of vc and vp.
The required number of tokens on (vc, vp) is the maximum differ-
ence between the number of tokens that are consumed by vp and
the number of tokens produced by vc.

to
ke

ns

pe
lcb

u

β

ce
u

time

buffer
capacity

pb
l

Figure 3: In order to minimise the buffer capacity, the distances
cb

u − pe
l , pe

l − ce
u, and ce

u − pb
l are minimised.

4. ACTOR SCHEDULE
In this section a schedule of phase start times is constructed,

such that the throughput constraint and the constraint formed by
the number of tokens on the self-edge are satisfied, and the dif-
ference between the linear upper and lower bounds is minimised,
since minimising this difference contributes to minimisation of the
buffer capacities.

This is accomplished by first constructing a free running sched-
ule of the phases, then creating a linear lower bound on this free
running schedule, and subsequently delaying the start times of the
phases to minimise the difference between the linear upper and
lower bounds.

4.1 Free running schedule
For each actor vi, we first construct a free running schedule,

which is the self-timed schedule that results after removal of all
edges (vi, vj), vi 6= vj and (vj , vi), vj 6= vi. The free running
schedule of vi is therefore the schedule that results when vi starts
as soon as vi is enabled by tokens on its self-edge. The start time of
firing k of actor vi in the free running schedule is given by Equa-
tion (1).

s(vi, k) =



s(vi, k − 1) + ρf (vi, k − 1) if k > 0
0 otherwise (1)

Figure 4 shows the production time of each token that is pro-
duced in siθ(vp) phases of the free running schedule of actor vp

from Figure 1.

4.2 Linear lower bound
In this section we will construct a linear lower bound, pe

l (t) =
αet + βp

e , on the number of tokens produced by actor vi on edge
e = (vi, vj) ∈ E by first deriving the slope αe and then the off-
set βp

e .
In Section 4.3 we will construct a schedule such that siθ(vi)

firings occur in µ time, therefore siΠ(e) tokens will be produced
by actor vi on edge e in µ time. The slope of the linear lower bound
on the token production on edge e is therefore αe = siΠ(e)/µ.

The linear lower bound needs to be conservative to the free run-
ning schedule. We obtain more accurate results by observing that



the lower bound needs not be conservative for every token that is
produced, but only for a set of relevant token productions. In Sec-
tion 4.3 we will create a schedule in which the last phase finishes at
µ/si. The bound should therefore also be conservative to the small-
est relevant token production that occurs in the last phase when the
last phase finishes at µ/si.

We will now construct the set of relevant token productions. This
is based on the observation that the lower bound only needs to be
conservative for a cumulative number of tokens that enables a fir-
ing of actor vj . The bound therefore needs to be conservative when
token

Pg
f=1 γ(vj , f) is produced, with g ≥ 1, g ∈ N. Since the

production rates are periodic with period θ(vi) and the consump-
tion rates are periodic with θ(vj) the bound is conservative for all g
if the bound is conservative for 1 ≤ g ≤ lcm(θ(vi), θ(vj)), where
lcm stands for the least common multiple.

This can result in problematic run-times since the result of a
least common multiple can be much larger than its operands. We
therefore apply the following approach, for which we first de-
fine λe as the greatest common divisor (gcd) of the total pro-
duction rate and the individual consumption rates on edge e,
λe = gcd({Π(e)} ∪ {γ(e, g)|g ∈ [1, θ(vc)] ∧ γ(e, g) 6= 0}).

Starting from the first period of the free running schedule, the
production times of every λe tokens will be periodic with θ(vi)
firings. This is because in θ(vi) phases Π(e) tokens are produced
on edge e, and λe divides Π(e). Furthermore, we have that ev-
ery cumulative number of tokens consumed can be described as
aΠ(e) + bλe, with a, b ∈ N. This leads to the conclusion that the
lower bound leads to conservative enabling times of vj on edge e
if the bound is conservative for every λe tokens that are produced
within the first period of the free running schedule of vi.

In Figure 4 the lower bound on the free running schedule of ac-
tor vp from Figure 1 is shown. In this example, the dominant con-
straint is the constraint that the bound needs to be conservative to
the smallest multiple of λe tokens produced in phase θ(vp), which
is token 2 produced in phase θ(vp) = 2. By construction, phase
θ(vp) will finish in the schedule as constructed in Section 4.3 at
µ/sp = 6/2 = 3.

4
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64

to
ke

ns

time
80 2

Figure 4: The linear lower bound on token productions of a
free running schedule.

4.3 Start time postponement
Now that we have constructed the linear lower bound on the

number of tokens produced, pe
l (t), we will delay the start times of

the free running schedule. The objective of this start time post-
ponement is to minimise the difference between the linear up-
per bound on the number of tokens consumed by vi from edge
b = (vj , vi) ∈ E, cb

u, and the linear lower bound on the number of
tokens produced by vi, pe

l , since this contributes to the minimisa-
tion of the buffer capacity as illustrated in Figure 3. This objective
is achieved by minimising the difference between the time at which
a relevant token m is produced in the constructed schedule and the
time at which token m is produced according to the linear bound.

This schedule is constructed by letting phase nθ(vi), with
n > 0, n ∈ N, finish at n(µ/si) and by using these finish times as

reference points to derive the other finish times. This results in a
schedule that is periodic with a period of θ(vi) firings, and we will
therefore only derive the finish times during the first period.

When deriving this schedule there are two types of constraints.
The first type of constraint is that we need to ensure that only one
firing executes at any point in time. The second type of constraint
is that the production time of any relevant token m according to the
constructed schedule is not later than the production time of this
relevant token m according to the linear bound pe

l (t).
The first type of constraint requires that the finish time h(vi, k)

of firing k of actor vi is smaller than or equal to g(vi, k+1), which
is the start time of firing k+1 of actor vi, as derived in Equation (2).

g(vi, k) =



h(vi, k) − ρf (vi, k) if k < θ(vi)
µ
si

− ρf (vi, k) otherwise (2)

The second type of constraint requires that the finish time
h(vi, k) should be smaller than or equal to the upper bound on the
production time of the smallest relevant token, mk

e , that is not yet
produced on edge e in firings 1 to k−1, as derived in Equation (3).
The smallest relevant token is sufficient because every phase pro-
duces tokens in an atomic action.

mk
e = min({m|m = pλe >

k−1
X

u=1

π(e, u), p ≥ 0, p ∈ N}) (3)

According to the bound pe
l (t) = αet + βp

e , as derived in Sec-
tion 4.2, the number of tokens produced at time t is at least pe

l (t).
Therefore for token pe

l (t) = mk
e we have an upper bound on the

production time that equals mk
e−βp

e/αe.
Since the finish time h(vi, k) should satisfy both types of con-

straints we obtain Equation (4) for firings k, with 1 ≤ k < θ(vi).
All finish times are now determined, because the finish time of fir-
ing k = θ(vi) equals µ/si by construction and we have that this
schedule repeats with a period of θ(vi firings.

h(vi, k) = min({g(vi, k + 1)} ∪ {
mk

e − be

αe
|e = (vi, vj)}) (4)

The start times as provided by Equation (2) determine the to-
ken consumption times on edge b = (vj , vi) ∈ E, which can be
linearly bounded by cb

u(t) = αbt + βc
b .

Figure 5 shows the derived production times for the first spθ(vp)
firings of actor vp from Figure 1, by comparing the production
times in Figure 4 and Figure 5 we see that finish times and thereby
start times are delayed to construct a schedule that exactly satisfies
the throughput constraint.
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Figure 5: The linear lower bound on token productions and the
derived finish times.

5. SCHEDULING CONSTRAINTS
In the previous section we have constructed actor schedules that

satisfy the throughput constraint and minimise the difference be-
tween the linear upper bound on the number of tokens consumed
and the linear lower bound on the number of tokens produced. In



this section we will determine a minimal distance βij between the
start times of the first phases of the actors vi and vj that are con-
nected by an edge e = (vi, vj) ∈ E such that no token is con-
sumed by vj which is not already produced by vi. This leads to the
requirement that the number of tokens produced should be larger
than or equal to the number of tokens consumed, and therefore
pe

l ≥ ce
u. Since the actor schedules are constructed such that vi

produces siΠ(e) in µ time and vj consumes sjΓ(e) in µ time, we
have by definition of s that the number of tokens produced in µ
equals the number of tokens consumed in µ. This means that the
slope of the linear bounds is equal, which leads to the conclusion
that the minimum distance βij is such that pl

i = cu
j .

For the actor schedules as derived in the previous section, we
have that, the lower bound on the number of tokens produced
by vi on edge e, pe

l (t) = 0 at tp = −βp
e/αe. Furthermore we

have that, the lower bound on the number of tokens consumed
by vj from edge e, ce

u(t) = 0 at tc = −βc
e/αe. If we define

τp
e = −βp

e/αe − s(vi, 1), and τ c
e = s(vj , 1) − −βc

e/αe, then we
can derive the minimal distance between s(vj , 1) and s(vi, 1).

THEOREM 1. If we let the first firing of actor vj start τe later
than the first firing of actor vi, with τe = τp

e + τ c
e −λ bδ(e)/λecαe,

then no token will be consumed before it is available.

PROOF. If edge e does not have initial tokens, then the mini-
mum distance τe is such that pl

i = cu
j . This implies that cu

j should
equal 0 at the same time as pl

i equals 0 which is at tp = −βp
e/αe.

The difference between tp and s(vi, 1) is by definition τp
e , and the

difference between s(vj , 1) and t0 is again by definition τ c
e .

With δ(e) initial tokens, we know that λbδ(e)/λc tokens con-
tribute to an earlier enabling of vj . According to the upper bound
on the number of tokens consumed, actor vj consumes a token ev-
ery αe time. Which means that, with δ(e) initial tokens, the sched-
ule of actor vj can start λbδ(e)/λcαc earlier.

6. NETWORK FLOW PROBLEM
In this section we will determine for all actors a start time of the

first phase, such that all constraints on the minimal differences be-
tween the start times of the first phases as derived in the previous
section are satisfied and the buffer capacities are minimised. Be-
cause we have linearly bounded the actor schedules, minimising
the buffer capacities involves minimising the differences between
the start times of the first phases. This is achieved by adding a ver-
tex v0 to obtain V0 = V ∪ {v0}, and adding edges (v0, vi) with
β0i = 0 to every actor vi ∈ V in the original graph to obtain a set
of edges E0. By minimising the difference in start times relative to
the start time of v0 the buffer capacities are minimised.

The problem formulation is shown in Algorithm 1. This prob-
lem is an instance of the dual to the uncapacitated minimum-cost
network flow problem, which in our case can be solved in O(|V |4)
time [2], with |V | the number of CSDF actors.

Algorithm 1 Network Flow Problem

min
X

vi∈V

s(vi, 1)

subject to

s(vi, 1) − s(vj , 1) ≤ −β(vi,vj) ∀(vi, vj) ∈ E0

s(v0, 1) = 0

Now that the start time of the first phase of each actor has been
determined, the required number of initial tokens on each cycle in
the CSDF graph can be derived. Suppose that, on a cycle in the

graph, edge b = (vc, vp) ∈ E is the edge on which initial tokens
are placed, then in Section 4 we have determined linear upper and
lower bounds on the number of tokens consumed, cb

u(t), and pro-
duced, pb

l (t). While in Section 5 we have derived expressions that
relate these bounds to the start time of the first phase of each actor.
Now that the start times of the first phase are determined using the
min-cost network flow formulation in Section 6, we can derive the
ceiled difference between the upper bound on the number of tokens
consumed and the lower bound on the number of tokens produced,
dcb

u(t) − pb
l (t)e, which equals the required number of tokens to

sustain the constructed schedule.
This results in a polynomial overall complexity. The derivation

of the linear lower bound on token productions on an edge as well
as the derivation of the finish times of the phases are both linear in
the number of phases, which results in a complexity O(|V ||E|T ),
with T = maxi(θ(vi)). The derivation of the minimum distances
between the start times of the first phases is O(|E|). Combining
this with the complexity of the algorithm to solve the network flow
problem results in an overall complexity of O(|V |4 + |V ||E|T ).

7. EXPERIMENTAL RESULTS
In this section we apply our algorithm to determine a minimal

sum of buffer capacities for an MP3 playback application. The
implementation of this application is first modelled as an MRDF
graph, and subsequently as a CSDF graph. For both models the
run-time and accuracy of the presented algorithm is compared with
alternative approaches. The algorithm can be applied on the MRDF
model, because MRDF is a subclass of CSDF, where MRDF re-
stricts each actor to only have a single phase.

In the MP3 playback application, of which the MRDF graph
is shown in Figure 6, with R = 1152, the compressed audio
is decoded by the MP3 task into a 48 kHz audio sample stream.
These samples are converted by the Sample Rate Converter (SRC)
task into a 44.1 kHz stream, after which the Audio Post-Processing
(APP) task enhances the perceived quality of the audio stream and
sends the samples to a Digital to Analogue Converter (DAC).

DACAPPSRCMP3
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480R
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Figure 6: Dataflow model of the MP3 playback application

The repetition vector of the MRDF graph is [5 12 5292 5292]T.
The frequency of the DAC is 44.1 kHz, leading to
rDAC = 1/44100 s. The required period µ is fixed to
qDAC · rDAC = 120 ms to derive buffer capacities that guar-
antee a periodic execution of the DAC. The other response times
are rMP3 = 7.51 ms, rSRC = µ/qSRC = 120/12 = 10 ms, and
rAPP = µ/qSRC = 1/44100 s. In this experiment, the response
time of the sample rate converter is varied to show the behaviour
of the presented algorithm.

Table 1 lists the resulting buffer capacities for this experiment,
both as determined by the algorithm presented in Section 6 and
as determined through back-tracking where the throughput of the
MRDF graph is determined with Maximum Cycle Mean (MCM)
analysis [10], which is applied on the SRDF graph.

The behaviour of the MP3 task can however be modelled in more
detail, which, as the following experiment shows, results in smaller
buffer capacities. The decoding of every MP3 frame involves the
decoding of the header, decoding of 2 granules, and decoding of 18
sub-bands that each consist of 32 samples per granule. Only after
the sub-bands of a granule are decoded is the decoded data sent to



Buffer Capacity rel.
d1 d2 d1 + d2 diff.

alg. opt. alg. opt. alg. opt. (%)
rSRC 2304 2016 882 882 3186 2898 10

3/4·rSRC 2208 1824 772 988 2980 2812 6
1/2·rSRC 2112 1536 662 772 2774 2308 20
1/4·rSRC 2016 1536 552 551 2568 2087 23

Table 1: Our results (alg.), the optimal results (opt.) for the
MRDF model of the MP3 playback application.

the SRC. This behaviour can be concisely modelled with a CSDF
actor. In this case R = 〈0, 0, 18x32, 0, 18x32〉 in Figure 6.

The CSDF model has a different R, which results in
a repetition vector [195 12 5292 5292]T, and further
rMP3 = 〈670, 2700, 18x40, 2700, 18x40〉µs. Again the response
time of the sample rate converter is varied to show the behaviour of
the presented algorithm.

Table 2 lists the resulting buffer capacities for this experiment,
both as determined by the algorithm presented in Section 6 and
as determined through back-tracking where the throughput of the
CSDF graph is determined with Maximum Cycle Mean (MCM)
analysis [10], which is applied on the SRDF graph. In this exper-
iment, the total buffer capacity is reduced by at least 49% when
using a CSDF model instead of an MRDF model.

Buffer Capacity rel.
d1 d2 d1 + d2 diff.

alg. opt. alg. opt. alg. opt. (%)
rSRC 1056 960 882 882 1938 1842 5

3/4·rSRC 928 576 772 910 1700 1486 14
1/2·rSRC 800 480 662 661 1462 1141 28
1/4·rSRC 672 480 552 551 1224 1031 19

Table 2: Our results (alg.), the optimal results (opt.) for the
CSDF model of the MP3 playback application.

As shown in Tables 1 and 2, the accuracy of the algorithm de-
creases as the slack time and thereby the scheduling freedom in-
creases. This is because the slack time is distributed over different
firings of an actor in a locally optimal manner. The run-time of the
algorithm for both the MRDF and the CSDF graph is in the order
of 10−2 s.

We expect that many task to processor assignments and sched-
uler settings, which each lead to different response times, need to
be evaluated in order to determine a configuration of our multi-
processor system that satisfies the temporal constraints. The low
run-time of a single iteration enables this approach.

Even though we have been able to apply back-tracking in com-
bination with MCM analysis for this example, we feel that, in
general, this is not a feasible approach since one iteration of the
Howard algorithm [4], which we used to derive the MCM, requires
a minute.

Govindarajan’s [5] linear programming formulation can be used
to determine minimal buffer capacities for the MRDF model of the
MP3 playback implementation. However, application of this ap-
proach on the MP3 playback application was infeasible, because
the solver from the GNU Linear Programming Kit (GLPK) runs
out of memory. Removal of the APP task from the graph enables
the application of Govindarajan’s approach, but still has a run-time
of half an hour. Since CSDF is more expressive than MRDF, we ex-
pect that extensions of Govindarajan’s approach to include CSDF
graphs will also have problematic run-times and memory require-
ments.

It seems possible to extend the work presented in [11] to make
it applicable to CSDF graphs. This approach does not require the

conversion to the corresponding SRDF graph in order to determine
the throughput, and leverages the fact that a strongly connected and
consistent MRDF graph enters a periodic regime after a transitional
phase. Even though good experimental results are provided, no
bound on the complexity is provided, and we know of no bound on
the length of the transitional phase. Furthermore, since the through-
put is determined for every possible combination of buffer capac-
ities, and we have that this number of combinations grows expo-
nentially with the number of buffers, we expect that for graphs that
model a large number of buffers this approach leads to problematic
run-times.

In this section, we have shown that a CSDF model can lead to
reduced resource requirements compared to an MRDF model and
that the presented algorithm can leverage the more detailed infor-
mation.

8. CONCLUSION
In this work we have presented an algorithm that determines

close to minimal buffer capacities for Cyclo-Static Dataflow graphs
such that the throughput requirement and constraints on maximum
buffer capacities are satisfied. The buffer capacities are analyti-
cally determined from a constructed conservative schedule. Be-
cause this algorithm does not require a conversion from a Cyclo-
Static Dataflow graph to a Single-Rate Dataflow graph, we do not
suffer from the exponential complexity associated with this con-
version and obtain an algorithm with a polynomial complexity. Re-
lated approaches do make this conversion and have excessive run-
times and memory requirements for realistic Cyclo-Static Dataflow
graphs.

We are currently setting up a mapping flow that determines both
scheduler settings and the task to processor assignment. In order
to derive a configuration that meets all constraints, we expect that
this mapping flow will need to evaluate many different scheduler
settings and task to processor assignments, for which the presented
algorithm is an important contribution.
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