skip to main content
research-article

Enhancing air traffic displays via perceptual cues

Published:30 January 2008Publication History
Skip Abstract Section

Abstract

We examined graphical representations of aircraft altitude in simulated air traffic control (ATC) displays. In two experiments, size and contrast cues correlated with altitude improved participants' ability to detect future aircraft collisions (conflicts). Experiment 1 demonstrated that, across several set sizes, contrast and size cues to altitude improved accuracy at identifying conflicts. Experiment 2 demonstrated that graphical cues for representing altitude both improved accuracy and reduced search time for finding conflicts in large set size displays. The addition of size and contrast cues to ATC displays may offer specific benefits in aircraft conflict detection.

References

  1. Anstis, S. M. 1974. A chart demonstrating variations in acuity with retinal position. Vision Research 14, 589--592.Google ScholarGoogle ScholarCross RefCross Ref
  2. Beck, J. 1994. Interference in the perceived segregation of equal-luminance element-arrangement texture patterns. Perception & Psychophysics 56, 4, 424--430.Google ScholarGoogle Scholar
  3. Benel, R. A. 1998. Workstation and software interface design in air traffic control. In Human Factors in Air Traffic Control, M. W. Smolensky and E. S., Stein, Eds. Academic Press, San Diego, CA. 17--63.Google ScholarGoogle Scholar
  4. Burnett, M. S. and Barfield, W. 1991. Perspective vs. plan-view air traffic control displays: Survey and empirical results. In Proceedings of the Human Factors Society, 35th Meeting. 87--91.Google ScholarGoogle Scholar
  5. Clausner, T. C. 2002. How conceptual metaphors are productive of spatial-graphical expressions. In Proceedings of the 24th Annual Conference of the Cognitive Science Society. Erlbaum, Mahwah, NJ. 208--213.Google ScholarGoogle Scholar
  6. Clausner, T. C. and Croft, W. 1997. Productivity and schematicity in metaphors. Cognitive Science 21, 247--282.Google ScholarGoogle ScholarCross RefCross Ref
  7. Clausner, T. C. and Croft, W. 1999. Domains and Image Schemas. Cognitive Linguistics 10, 1--31.Google ScholarGoogle ScholarCross RefCross Ref
  8. Da Vinci, L. c. 1492. Della prospettiva aerea {Of aerial perspective}. In The Notebooks of Leonardo da Vinci, J. P., Richter (Transl., 1883/1970). Dover, London, UK. 159--166.Google ScholarGoogle Scholar
  9. Duncan, J. and Humphreys, G. W. 1989. Visual search and stimulus similarity. Psychological Review 96, 433--458.Google ScholarGoogle ScholarCross RefCross Ref
  10. Egeth, H. E., Virzi, R. A., and Garbard, H. 1984. Searching for conjunctively-defined targets. Journal of Experimental Psychology: Human Perception & Performance 10, 32--39.Google ScholarGoogle ScholarCross RefCross Ref
  11. Ellis, S. R. and Palmer, E. A. 1981. Threat perception while viewing single intruder conflicts on a cockpit display of traffic information (NASA TM 81341), NASA Ames Research Center, Moffett Field, CA.Google ScholarGoogle Scholar
  12. Ellis, S. R., McGreevy, M. W., and Hitchcock, R. J. 1987. Perspective traffic display format and airline pilot traffic avoidance. Human Factors 29, 4, 371--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gibson, E. 1969. Principles of Perceptual Learning and Development. Appleton-Century-Crofts, East Norwalk, CT.Google ScholarGoogle Scholar
  14. He, Z. J. and Nakayama, K. 1992. Surfaces versus features in visual search. Nature (London) 359, 6392, 231--233.Google ScholarGoogle Scholar
  15. Healey, C. G., Booth, K. S. and Enns, J. T. 1996. High-speed visual estimation using preattentive processing. ACM: Transactions on Computer-Human Interaction 3, 2, 107--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hochberg, J. E. and Mcalister, E. 1955. Relative size vs. familiar size in the perception of represented depth. American Journal of Psychology 68, 294--296.Google ScholarGoogle ScholarCross RefCross Ref
  17. Holway, A. F., and Boring, E. G. 1941. Determinants of apparent visual size with distance variant. American Journal of Psychology 54, 21--37.Google ScholarGoogle ScholarCross RefCross Ref
  18. Hunt, S. M. J. 1994. MacProbe: A Macintosh-based experimenter's workstation for the cognitive sciences. Behavior Research Methods, Instruments & Computers 26, 3, 345--351.Google ScholarGoogle Scholar
  19. Johnson, M. 1987. The body in the Mind: The Bodily Basis of Meaning, Imagination, and Reason. University of Chicago Press, Chicago, IL.Google ScholarGoogle Scholar
  20. Johnston, J. C., Horlitz, K. L. and Edmiston, R. W. 1993. Improving situation awareness displays for air traffic controllers. In Proceedings of the Seventh International Symposium on Aviation Psychology, R. S. Jensch and D. Neumeister, Eds. Ohio State University, Columbus, Off.Google ScholarGoogle Scholar
  21. Kellman, P. J. 2002. Perceptual learning. In Stevens' Handbook of Experimental Psychology, 3rd edition, Vol. 3: Learning, Motivation and Emotion, R. Gallistel, Ed. Wiley, & NY.Google ScholarGoogle Scholar
  22. Kellman, P. J. and Kaiser, 1994. Perceptual learning modules in flight training. In Proceedings of the 38th Annual Meeting of the Human Factors and Ergonomics Society. 1183--1187.Google ScholarGoogle ScholarCross RefCross Ref
  23. Lakoff, G. 1993. The contemporary theory of metaphor. In Metaphor and Thought A. Ortony, 2nd ed. A Ortong, Ed. Cambridge University Press, Cambridge, UK.Google ScholarGoogle Scholar
  24. Lakoff, G. and Johnson, M. 1980. The metaphorical structure of the human conceptual system. Cognitive Science 4, 195--208.Google ScholarGoogle ScholarCross RefCross Ref
  25. Nichols, S. and Patel, H. 2002. Health and safety implications of virtual reality: A review of empirical evidence. Applied Ergonomics 33, 3, 251--271.Google ScholarGoogle ScholarCross RefCross Ref
  26. Rayner, K., Mcconkie, G. W. and Zola, D. 1980. Integrating information across eye movements. Cognitive Psychology 12, 2, 206--226.Google ScholarGoogle ScholarCross RefCross Ref
  27. Remington, R. W., Johnston, J. C., and Ruthruff, E. 2000. Visual search in complex displays: Factors affecting conflict detection by air traffic controllers. Human Factors 42, 5, 349--366.Google ScholarGoogle ScholarCross RefCross Ref
  28. Roske-Hofstrand, R. J. and Murphy, E. D. 1998. Human information processing in air traffic control. Human Factors in Air Traffic Control, M. W. Smolensky, and E. S. Stein, Eds. Academic Press, San Diego, CA. 65--114.Google ScholarGoogle Scholar
  29. Smith, J. D., Ellis, S. R., and Lee, E. C. 1984. Perceived threat and avoidance maneuvers in response to cockpit traffic displays. Human Factors 26, 33--48.Google ScholarGoogle ScholarCross RefCross Ref
  30. St. John, M., Cowen, M. B., Smallman, H. S., and Oonk, H. M. 2001. The use of 2D and 3D displays for shape-understanding versus relative-position tasks. Human Factors 43, 1, 79--98.Google ScholarGoogle ScholarCross RefCross Ref
  31. Stenger, A. J., Zimmerlin, T. A., Thomas, J. P., and Braunstein, M. L., 1981. Advanced computer image generation techniques exploiting perceptual characteristics. US AFHRL Technical Report. TR 80--61.Google ScholarGoogle Scholar
  32. Treisman, A. and Gelade, G. 1980. A feature-integration theory of attention. Cognitive Psychology 12, 1, 97--136.Google ScholarGoogle ScholarCross RefCross Ref
  33. Wolfe, J. M. 1994. Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review 1, 202--238.Google ScholarGoogle Scholar
  34. Wolfe, J. M. 1998. What can 1, 000, 000 trials tell us about visual search? Psychological Science 9, 1, 33--39.Google ScholarGoogle Scholar
  35. Wolfe, J. M., Cave, K. R., and Franzel, S. L. 1989. Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception & Performance 15, 419--433.Google ScholarGoogle ScholarCross RefCross Ref
  36. Wolfe, J. M. and Horowitz, T. S. 2004. What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience 5, 1--7.Google ScholarGoogle Scholar

Index Terms

  1. Enhancing air traffic displays via perceptual cues

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Applied Perception
            ACM Transactions on Applied Perception  Volume 5, Issue 1
            January 2008
            92 pages
            ISSN:1544-3558
            EISSN:1544-3965
            DOI:10.1145/1279640
            Issue’s Table of Contents

            Copyright © 2008 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 30 January 2008
            • Accepted: 1 April 2006
            • Revised: 1 December 2005
            • Received: 1 May 2004
            Published in tap Volume 5, Issue 1

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader