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ABSTRACT

The throughput of a multiple-antenna broadcast channel highly
depends on the channel state information (CSI) at the trans-
mitter side. Due to the time variant nature of wireless chan-
nels, having perfect knowledge of the underlying links ap-
pears to be a questionable assumption, especially when the
number of users and/or antennas increases.

For a broadcast channel with M transmit antennas and n
users, each provided with one receive antenna, it is shown
that opportunistic beamforming can achieve the same scaling
as that of dirty paper coding for large n. Although the dirty
paper coding scheme needs perfect CSI from all users, op-
portunistic beamforming needs very little feedback. In this
paper we investigate the performance of opportunistic beam-
forming when the CSI is not perfect; i.e., the channel esti-
mation is erroneous. We will show that in order to maximize
the throughput, the transmitter needs to back off the rate than
what is suggested by the estimated channel coefficient. We
obtain the optimal back off and show that with this modified
opportunistic scheme, the same multiuser gain will be achiev-
able; in other words, the throughput scales like M log log n
even with imperfect limited CSI.

Index Terms— Broadcast channel, MIMO systems, chan-
nel state information(CSI), estimation error, multiuser diver-
sity.

1. INTRODUCTION

The main framework for studying the down-link of cellular
systems is the MIMO Gaussian broadcast channel. Therefore
a great deal of research has been conducted into the study
of the capacity of MIMO Gaussian broadcast channels. It is
shown [1] that the entire capacity region is achievable using
the dirty paper coding (DPC) [2].

However, the computational complexity and full chan-
nel state information (CSI) requirement by make DPC in-
feasible in practice. Therefore other schemes are proposed
which are suboptimal, but require little feedback. Moreover,
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these schemes are not computationally intensive like DPC.
One such scheme is opportunistic beamforming [3] in which
the transmitter selects a number of random beams and the
users feed back their highest SINR among the SINR’s they re-
ceive on different beams. Based on there estimates, the trans-
mitter assigns each beam to the user with the highest SINR on
that beam. However, in the analysis of the performance of this
scheme the CSI is assumed to be perfect (i.e., no error in the
channel estimation process), which may not be the case espe-
cially when the number of users and/or antennas increases.

As of the related work, in [4] the authors study the effect
of channel estimation error on the capacity region of MIMO
Gaussian broadcast channels under DPC scheme. The through-
put of opportunistic scheme in a single-antenna broadcast chan-
nel has been studied in [5]. The effect of imperfect CSI on the
capacity of point-to-point SISO and MIMO channels is con-
sidered in [6], [7], and [8]. The robustness of the capacity
achieving scheme in a Gaussian flat-fading channel is stud-
ied in [9]. As for the broadcast channel, [10] has considered
the effect of non-ideal feedback only in the transmitter due to
Doppler effect.

In this paper we will look at the robustness of opportunis-
tic beamforming against the erroneous channel estimation. In
fact in the scheme that we will consider the users feed back
their highest channel coefficient instead of their highest SINR.
We will look at the throughput scaling law in the regime of
large number of users. When perfect CSI is available, it has
been shown that opportunistic beamforming follows the same
scaling law as that of DPC. We will show that in order to
maximize the throughput, the transmitter has to assume some
value for the actual SINR of the underlying link based on the
estimated channel coefficient. We will show that the through-
put scales like M log log n which is exactly the same scaling
obtained by DPC.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the formulation of the problem along with the
proposed transmission scheme. In Section 3, we obtain the
optimal assumed SINR. The scaling of the throughput will
be obtained for the regime of large n in Section 4. Finally,
Section 5 concludes the paper.



2. PROBLEM FORMULATION

Channel Model
In this paper we consider a multiple-antenna broadcast

channel with M transmit antennas and n users, each provided
with N = 1 receive antenna. Users are assumed to have un-
correlated Gaussian block-fading channels with a coherence
time equal to T channel uses. Therefore each user’s channel
can be described by a M × 1 vector, Hi, which is constant
during the coherence time and has independent CN (0, 1) en-
tries. We denote the transmitted signal at t-th channel use by
a M × 1 vector, namely S(t), t = 1, . . . , T . Thus the signal
received by the i-th user at t-th channel use can be written as

yi(t) = H∗
i S(t) + wi(t), (1)

where wi(t) denotes the additive Gaussian noise of zero mean
and variance ρ (the network is assumed to be homogenous).
Moreover, the total transmit power is M; i.e., E[S∗(t)S(t)] =
M .

Random Beamforming
We assume that for each channel coherence interval the

transmitter chooses M orthonormal M × 1 random beams
denoted by φm, m = 1, . . . , M , from an isotropic distribu-
tion. At the t-th channel use M symbols are transmitted by
choosing S(t) =

∑M

m=1 φmsm(t). Therefore yi(t) can be
rewritten as

yi(t) =

M
∑

m=1

xi,msm(t) + wi(t), (2)

in which xi,m = H∗
i φm. All xi,m’s have CN (0, 1) distribu-

tion and are constant during the coherence interval. Moreover,
it is straightforward to check that E[x∗

i,mxi′,m′ ] = δi,mδi′,m′ .
We assume that at the beginning of each coherence inter-

val the users estimate their channels. The estimate of xi,m

will be denoted by x̂i,m. We will use x̃i,m to denote the error
in the estimation of xi,m. Thus,

xi,m = x̂i,m + x̃i,m. (3)

By assuming a MMSE estimator, x̂i,m and x̃i,m will be
independent and will have CN (0, 1 − β) and CN (0, β) dis-
tributions, respectively. Each user sends back its highest es-
timated channel coefficient, i.e. maxm |x̂i,m|2 along with its
index. Throughout the paper we will use mi to denote this
index. The transmitter assigns the m-th beam to the user with
the best corresponding estimated channel, i.e. maxi|x̂i,m|2.
We will denote this user by im. It can be shown that [3]
the probability that one user is the best user on two different
beams is negligible as the number of users, n, grows. Further-
more, when a user is selected to be served on the m-th beam,
the data intended for that user is encoded into sm(t) using a
Gaussian capacity-achieving codebook.

Average Throughput
If the mi-th beam is assigned to the i-th user, we can

rewrite yi(t) as,

yi(t) = xi,mi
smi

(t) +
∑

m6=mi

xi,msm(t) + wi(t), (4)

in which the second term is the interference caused by the
other beams not intended for that user. Since sm’s are chosen
from a Gaussian codebook and the data streams for different
users are independent, this interference term affects the signal
like an additive Gaussian noise. It is shown that [11] in this
scenario the receiver does not need to know the channel, and
any rate less than the channel capacity will be achievable (see
also [12] and the discussion in [5]). The capacity can be ex-
pressed as log (1 + SINRi,mi

), in which SINRi,mi
denotes

the signal-to-noise-plus-interference-ratio at the mi-th beam
at the i-th receiver; i.e.,

SINRi,mi
=

|xi,mi
|2

1/ρ +
∑

m′ 6=mi
|xi,m′ |2 . (5)

While serving a user with the estimated channel strength
of |x̂i,m|2, the transmitter needs to choose a transmission rate
which is less than log (1 + SINRi,mi

). We assume that any
transmission at a rate higher than the capacity fails. In other
words, the instantaneous of the i-th user, Ri will be,

Ri =

{

log (1 + λim
) λim

≤ SINRi,mi

0 λim
> SINRi,mi

(6)

Throughout the paper we will refer to λim
as the assumed

SINR of the i-th user which is a function of x̂im,m. The aver-
age throughput of this scheme can be expressed as,

Rav =
M
∑

m=1

Ex̂im,m
Rim

(x̂im,m) (7)

in which

Rim
(x̂im ,m) = (8)

max
λim

Pr(λim
≤ SINRim,m|x̂im,m) log (1 + λim

).(9)

In the following section we will solve the above maxi-
mization problem in order to find the optimum assumed SINR.

3. THE OPTIMUM ASSUMED SINR

Due to the symmetry of the problem, Rim
does not depend

on m and we can focus on a particular beam, say the first one.
Thus,

Rav = MEx̂i1,1
Ri1(x̂i1 ,1). (10)

First, we have to calculate,

P1 = Pr

(

λi1 ≤ |xi1,1|2
1/ρ +

∑

m′ 6=1 |xi1,m′ |2
∣

∣

∣

∣

x̂i1 ,1

)

, (11)



in which y =
∑

m′ 6=1 |xi1 ,m′ |2 represents the sum of the
squares of 2(M −2) Gaussian independent random variables.
Thus y will have a chi-square distribution with a CDF which
can expressed as,

FY (y) = 1 − e−y

M−2
∑

j=1

1

j!
yj , y ≥ 0 (12)

Moreover, by fixing the value of x̂i1 ,1, one can check that
z = |xi1 ,1|2 has a Rician distribution of the form,

fZ(z) =
1

β
e−

z+|x̂i1,1|2

β I0

(

2|x̂i1,1|
√

z

β

)

(13)

Therefore P1 can be obtained from,

P1 =

∫

u

(

z

λi1

− 1

ρ
− y

)

fY (y)fZ(z)dydz, (14)

where u(.) denotes the unit step function. The above integral
can be rewritten as,

P1 =

∫

FY

(

z

λi1

− 1

ρ

)

fZ(z)dz. (15)

We will consider the regime of large number of users. Since
|x̂i1,1|2 is the maximum among n independent random vari-
ables with exponential distribution, it will scale like log n.
Thus we can assume that |x̂i1,1|2 � 1. Furthermore, we
can say intuitively that λi1 has to be large. Therefore we can
approximate the Bessel function in the above integral by its
asymptotic value, i.e.

I0(x) → ex

√
2πx

. (16)

By plugging (16) into (13) and using saddle point integration
we can approximate (15) by,

P1 = 1−e
−(

|x̂i1,1|2

λi1
− 1

ρ
)

M−2
∑

j=1

1

j!

( |x̂i1,1|2
λi1

− 1

ρ

)j

+O(
1

(log n)3
)

(17)
In order to find the best assumed SINR in the regime of large
number of users, one has to solve the following maximization
problem,

max
λi1

e
−(

|x̂i1,1|2

λi1
− 1

ρ
)

M−2
∑

j=1

1

j!

( |x̂i1 ,1|2
λi1

− 1

ρ

)j

log (1 + λi1)

(18)
Although analytically solving the above maximization prob-

lem is intractable, in the regime of large number of users it can
be simplified further in order to find an approximate solution.
The following theorem gives a reasonable approximation for
the optimum assumed SINR, λ∗

i1
.

Theorem 1. Consider a broadcast channel with n users
and a transmitter equipped with M > 1 antennas which em-
ploys opportunistic beamforming based on the estimated high-
est channel coefficient. Assume that at a channel coherence
interval the im-th user has the highest estimated channel co-
efficient for the m-th beam, given by |x̂im,m|2. If the trans-
mitter serves this user at a rate equal to log(1 + λim

), where

λ∗
im

=
|x̂im,m|2

2
ρ

+ (M − 1) log (M − 1) + log
ρ log |x̂im,m|2

(M−2)!

,

(19)
the instantaneous rate (averaged on the coherence interval)
will be,

Rim
= log (|x̂im ,m|2)

(

1 + O

(

log log log |x̂im,m|2
log |x̂im,m|2

))

.

(20)
Proof: look at [13]. •
We have to remark that although P1 and λ∗

i1
can be calcu-

lated numerically with little effort, the simulation results sug-
gest that (17) and (19) give relatively good approximations
for these two quantities, respectively.

4. THE SCALING OF SUM RATE CAPACITY IN
THE REGIME OF LARGE NUMBER OF USERS

In order to find the throughput of this scheduling as expressed
in (10), we need the distribution of |x̂i1 ,1|2. The pdf of x̂i,m

can be written as,

f
X̂

(x̂i,m) =
1

1 − β
e−

|x̂i,m|2

1−β . (21)

As mentioned earlier, all x̂i,m’s are independent for dif-
ferent i or m’s and are identically distributed. Therefore the
pdf of maxi |x̂i1 ,1|2 can be found using the fact that,

fXmax
(xmax = max

i=1,...,n
xi) = fX(xmax) (1 − FX (xmax))

n−1
,

(22)
where xi’s are i.i.d. random variables. We can state the fol-
lowing theorem:

Theorem 2. Consider a broadcast channel with the setting
of Theorem 1. The transmitter employs opportunistic beam-
forming and modifies the transmission rate as described in
Theorem 1. The throughput of the system can be found to be,

Rav = M log log n + O(log log log log n). (23)

Proof: As we have mentioned before, in the regime of
large n, the distribution of |x̂i1,1|2 becomes more and more
concentrated around log n, such that the main contribution to
Rav comes from the interval of log n ± log log n. For details
look at [13] •
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Fig. 1. Throughput of opportunistic beamforming

As the above theorem states, the multiuser diversity gain,
M log log n, is achievable in a multiple-antenna broadcast chan-
nel even with imperfect knowledge of the highest channel co-
efficients of all users. This gives the same scaling law as that
of the dirty paper coding and random beamforming based on
the precise values of SINR’s. However, the second highest
order term of the asymptotic behavior of the throughput does
not match that of the opportunistic beamforming with perfect
CSI. As mentioned earlier, in the scheme we have considered
in this paper, for the sake of simplicity of the analysis we have
assumed that the users feed back their highest channel coeffi-
cient instead of their highest SINR.

In Figure 1, the achieved rate for three cases are plotted as
a function of n. The first case is the opportunistic beamform-
ing with the feedback of the SINR values. The second sce-
nario is the opportunistic beamforming with no estimation er-
ror when the transmitter only knows the channel coefficients.
In the third scenario we have a channel estimation error with
the error variance of β = 0.1. The plots are generated for
M = 2 antennas and for ρ = 1.

5. CONCLUSION

We considered a multiple-antenna Gaussian broadcast chan-
nel. We looked at the throughput achieved by opportunis-
tic beamforming in the presence of channel estimation error.
In the scheme proposed here, the users feed back their high-
est channel coefficient along with the index of the beam for
which they have the best channel. The transmitter assigns
each beam to the user with the highest estimated channel co-
efficient for that beam. For the regime of large number of
users, we showed that the scaling law of the throughput of
such scheme is precisely the same as the scaling law of the
throughput in the absence of channel estimation error.
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