
RZ 3688 (# 99698) 04/18/07
Computer Science 30 pages

Research Report

Efficient Fork-Linearizable Access to Untrusted Shared Memory

Christian Cachin and abhi shelat

Email: {cca, abs}@zurich.ibm.com

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

Alexander Shraer

Email: shralex@cs.technion.ac.il

Department of Electrical Engineering
Technion
Haifa 32000
Israel
shralex@cs.technion.ac.il.

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Efficient Fork-Linearizable Access to
Untrusted Shared Memory

Christian Cachin∗ abhi shelat∗ Alexander Shraer†

April 18, 2007

Abstract

When data is stored on a faulty server that is accessed concurrently by multiple clients, the server
may present inconsistent data to different clients. For example, the server might complete a write
operation of one client, but respond with stale data to another client. Mazières and Shasha (PODC
2002) introduced the notion of fork-consistency, also called fork-linearizability, which ensures that
the operations seen by every client are linearizable and guarantees that if the server causes the views
of two clients to differ in a single operation, they may never again see each other’s updates after that
without the server being exposed as faulty. In this paper, we improve the communication complexity
of their fork-linearizable storage access protocol with n clients from Ω(n2) to O(n). We also prove
that in every such protocol, a reader must wait for a concurrent writer. This explains a seeming
limitation of their and of our improved protocol. Furthermore, we give novel characterizations of
fork-linearizability and prove that it is neither stronger nor weaker than sequential consistency.

1 Introduction

Many users no longer keep all their data on local storage. Instead, their data often resides on remote,
online service providers. Systems with such remotely stored information include network filesystems,
online collaboration servers such as Wikis, source code repositories using versioning tools like CVS, and
web-based email providers. Users rely on the provider to maintain the integrity of the stored data, but
there is no generally available technology that allows a user to easily verify that no subtle modification
has been introduced to the data. In other words, users must trust the storage provider.

When the users locally maintain even a small amount of trusted memory, the trust in the storage
provider can be greatly reduced using well-known cryptographic methods. A single, isolated user may
verify the integrity of its remotely stored data by keeping a short hash value of the data in its local
memory. When the volume of data is large, this method is usually implemented using a Merkle hash tree.
But in multi-user environments, integrity should be guaranteed between a writer and multiple readers,
for which hashing alone is not enough. Digital signatures achieve data integrity against modifications
by the server when the users sign all their data. Every user only needs to store an authenticated signature
public-key of the others or the root certificate of a public-key infrastructure in its trusted memory.

Neither of the above methods rules out all attacks by a faulty or malicious server. Even if all data
is signed during write operations, the server might present the modifications in a different order to a
client, it may decide to omit a recent update to some user and present a different subset of the valid write
operations to another user.

∗IBM Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland. {cca,abs}@zurich.ibm.com.
†Department of Electrical Engineering, Technion, Haifa 32000, Israel. shralex@cs.technion.ac.il.

1

In the model considered here, there are no common clocks and the clients do not communicate with
each other. Some of the above attacks can therefore never be prevented. In particular, the server may use
an outdated value in the reply to a reader and omit a more recent update. Mazières and Shasha [MS02]
present a protocol called SUNDR that does not prevent such attacks, but makes them easily detectable.
The SUNDR protocol ensures that whenever the server causes the views of two clients to differ in a
single operation, the two clients may never again see each other’s updates after that. Such partitioning
can easily be detected through out-of-band communication.

Mazières and Shasha [MS02] introduced the notion of fork-consistency for the properties that their
protocol provides to a set of clients concurrently accessing the server. Fork-consistency ensures that
every client sees a linearizable [HW90] history of read and write operations, i.e., one that is consistent
with all operations observed by the client, such that the operations seen in the histories of all clients can
be arranged in a “forking tree.” Oprea and Reiter [OR06] suggested the name fork-linearizability for
fork-consistency.

Contribution. In this paper, we make two contributions. First, we investigate the notion of fork-
linearizability of shared memory consisting of read/write registers. We show that every protocol emu-
lating fork-linearizable shared memory on a possibly faulty server involves executions, where the server
is correct but one client cannot complete an operation because it must wait for another client to perform
some computation steps. In other words, no such emulation is wait-free [Her91]. This result explains
a seeming limitation of the SUNDR protocol and of our protocol, where a reader must wait for a con-
current writer. This also explains why any asynchronous protocol emulating fork-linearizable shared
memory must assume that clients do not fail. Next, we show that fork-linearizability is neither stronger
nor weaker than sequential consistency in the sense that fork-linearizable executions may not be se-
quentially consistent and vice versa. Furthermore, we give a “global” definition of fork-linearizability
in terms of a single sequential history of operations, of which the clients observe linearizable subse-
quences.

Second, we provide an efficient protocol for emulating fork-linearizable shared memory on an un-
trusted server. Our protocol is inspired by the SUNDR protocol [MS02] and is also based on vector
timestamps. In a system with n clients, our protocol improves the communication complexity to O(n)
from Ω(n2) in the SUNDR protocol. Intuitively, our improvement results from relying only on the vec-
tor timestamp of the client that executed the most recent operation, instead on the vector timestamps of
all clients.

Analogously to the work about SUNDR [MS02], we present two protocols: a protocol that proceeds
in “lock-step,” because the server blocks during every client operation, and a “concurrent” protocol,
where the clients may proceed at their own speed and interact concurrently with the server, up to the
limitation mentioned above. We note that even though our protocol follows the general pattern of the
SUNDR protocol, we need a new proof that it guarantees fork-linearizability. Our efficiency improve-
ment comes at the cost of introducing certain vulnerabilities that may be exploited by faulty clients
colluding with the server. The SUNDR protocol prevents some of these attacks by using n vector time-
stamps, although Mazières and Shasha [MS02] do not formally state any properties about the SUNDR
protocol with faulty clients.

To see the significance of our contribution, consider a widely used Internet-based storage system
with thousands of registered users. Suppose that n = 10000. Our algorithm and the SUNDR protocol
both require that at least one timestamp per user is sent during every operation, i.e., typically at least
4 Bytes. Thus, whereas our algorithm will send 4n = 40KB per operation, the SUNDR protocol will
require to send 4n2 = 380MB per operation.

2

Related work. The SUNDR protocol [MS02] has been implemented in a practical distributed filesys-
tem called SUNDR [LKMS04], which provides fork-linearizable semantics for its “fetch” and “modify”
operations. SUNDR demonstrates that ensuring fork-linearizability in network filesystems is practical.
There are many distributed filesystems that rely on digital signatures for checking the integrity of the
stored data, but only SUNDR prevents attacks on the consistency of the client views through fork-
linearizability.

Oprea and Reiter [OR06] generalize fork-linearizability and introduce, among other notions, the
interesting concept of fork-sequential-consistency, where the sequence of read and write operations seen
by every client is only required to be sequentially consistent. They investigate cryptographic filesystems,
where a high-level encrypted file object is implemented by a file-key object and a file-data object. They
consider a situation where both objects are stored on an untrusted server and the clients want to achieve
a given consistency property for the high-level file object. They are able to characterize necessary
and sufficient conditions for the consistency notions required of the file-key access and file-data access
protocols.

There is a rich literature on verifying the correctness of untrusted memories without concurrent
access by using hashing. It ranges from the fundamental work of Blum et al. [BEG+94] to investigations
on “incremental” hash functions [CDvD+03], motivated by the goal to construct secure processors with
untrusted main memory [CSG+05]. Hash trees have also been used in several filesystems, starting with
Fu’s work [Fu98] and the SFSRO filesystem [FKM02].

Finally, it is worth pointing out that this paper does not address the question of emulating shared
memory on a set of storage servers, of which a fraction may fail or deviate in arbitrary ways from their
specification [MAD02, ACKM06]. These emulations do not provide any guarantees with a majority of
faulty servers, unlike the protocols considered here.

Outlook. Our work can be extended in several directions. Our proof that waiting is necessary in
fork-linearizable executions does not apply to fork-sequentially-consistent executions. Thus, protocols
emulating fork-sequential-consistency are potentially more efficient and more robust. Another important
avenue for future work is to consider faulty clients and to investigate communication-efficient protocols
that achieve forking consistency conditions in this model. Some simple precautions by the server, such
as checking signatures and orderings, may already prevent many attacks by malicious clients. But formal
consistency notions taking into account faulty clients are necessary to capture this realistic situation. It
would also be interesting to provide lower bounds on the communication complexity of fork-linearizable
emulations and to investigate the use of other methods for ensuring causal order between operations.

Organization of the paper. The remainder of the paper is organized as follows. Definitions are pre-
sented in Section 2. The three results that characterize fork-linearizability are contained in Section 3.
Section 4 describes the lock-step protocol to emulate fork-linearizable shared memory, and Section 5
presents the emulation allowing concurrent operations.

2 Definitions

2.1 System Model

The system consists of n clients C1, . . . , Cn and a server S that are modeled as I/O Automata [LT89,
Lyn96]. Clients and servers are collectively called parties. All clients are assumed to be correct and
to follow the protocol. The server, however, may be faulty and deviate arbitrarily from its protocol,
exhibiting so-called “Byzantine” [PSL80] or “NR-arbitrary” faults [JCT98].

3

The parties interact by sending messages over an asynchronous network, which consists of reliable
point-to-point links. We wish to design a protocol where the server provides a shared functionality F
to the clients; the functionality is defined using terminology from the “shared memory model” of dis-
tributed computation. F is similar to a shared object, but may violate liveness because the server that
implements it may be faulty. Our goal will be to show that the protocol constrains the server so that it
simulates to the clients an interaction with F .

The clients interact with the functionality F by accessing operations provided by F . An operation is
defined in terms of two events occuring at the client, denoting the invocation and the completion of the
operation. These two events are sometimes also called request and response, respectively. An operation
is invoked on a client at some point in time and completes at a later point in time when a response from
F reaches the client. An operation o1 is said to precede another operation o2 whenever o1 completes
before o2 is invoked. Two operations are called sequential if one of them precedes the other one and
concurrent otherwise. A sequence of events is called sequential if it only contains sequential operations.

An execution of the system consist of a sequence of events and internal state transitions at the parties
and is asynchronous.

The clients generate arbitrary sequences of requests for F , but we assume that clients always interact
sequentially with a given functionality, i.e., the sequence of events on a client consists of alternating
invocations and matching responses, starting with an invocation. A functionality may further require
that clients comply with problem-specific restrictions on the allowed sequences of requests.

The functionality F is defined via a sequential specification, which indicates the behavior of F when
all interactions between the clients and F are sequential.

2.2 Read/Write Registers

The basic functionality that we consider is a read/write register X . It is defined as follows. The register
stores a value v from a domain V and offers a read and a write operation. Initially, every register contains
a special value⊥ 6∈ V . When a client Ci invokes the read operation, denoted readi(X), the functionality
responds by returning a value v, denoted readi(X) → v. When Ci invokes the write operation with a
value v, denoted writei(X, v), the response of X is an acknowledgment OK. The sequential specification
of X requires that each read operation from X returns the value written by the most recent preceding
write operation, if there is one, and the initial value otherwise. We assume that the values written to any
particular register are unique. This can easily be implemented by including the identity of the writer and
a sequence number together with the stored value.

Registers come in several variations [Lam86], depending on whether one or more clients can invoke
its operations. In this paper, we consider single-writer/multi-reader (SWMR) registers, where for every
register, only a designated “writer” may invoke the write operation, but any client may invoke the read
operation. The functionality considered here consists of n SWMR read/write registers X1, . . . , Xn. The
registers are usually identified by their indices and may be accessed independently of each other.

2.3 Consistency Conditions

When a shared functionality is accessed by concurrent operations, the sequential specification alone
may not be powerful enough to provide a meaningful semantics to the clients. In this subsection, we
define three different consistency conditions with respect to a shared functionality under concurrent
access. Two of them are well-known [AW04]: sequential consistency and linearizability. The third
one, fork-linearizability, has been introduced by Mazières and Shasha [MS02] under the name of fork-
consistency in the context of storage systems that may deviate from their specification. Implementing a
fork-linearizable shared memory with an untrusted server is the main goal of this work.

4

A consistency condition is expressed in terms of the sequence of events that the shared functionality
may exhibit in an execution, as observed by the clients. Such a sequence is also called a history; a
history σ is said to be complete whenever all invocations in σ have a matching response.

Definition 1 (Preservation of real-time order). A permutation π of a sequence of events σ is said to
preserve the real-time order of σ if for every operation o that precedes an operation o′ in σ, the operation
o also precedes o′ in π.

An important consistency condition is linearizability [HW90], which guarantees that all operations
occur “atomically,” i.e., appear to be executed at a single point in time.

Definition 2 (Linearizability [HW90]). A sequence of events σ observed by the clients demonstrates
linearizability with respect to a functionality F if and only if there exists a sequential permutation π of
σ such that:

1. π preserves the real-time order of σ; and

2. The operations of π satisfy the sequential specification of F .

In other words, a sequence of operations on a functionality is linearizable if there is a way to re-
order the operations into a sequential execution that respects the semantics of the functionality and that
respects the ordering of events as observed by all clients together.

Sequential consistency is a weaker notion than linearizability and only imposes a total order on the
events observed by every client in isolation.

Definition 3 (Sequential consistency). A sequence of events σ observed by the clients demonstrates se-
quential consistency with respect to a functionality F if and only if there exists a sequential permutation
π of σ such that:

1. For every client Ci, the restriction of π to the events occuring at Ci preserves the real-time order
of σ restricted to the events occurring at Ci; and

2. The operations of π satisfy the sequential specification of F .

Neither linearizability nor sequential consistency can be achieved when F is implemented on a
Byzantine server. For instance, suppose that Ci was the last client to execute an operation on F ; no
matter what protocol the clients use to interact with the server, a faulty server might roll back its internal
memory to the point in time before executing the operation on behalf of Ci, and pretend to a client Cj

that Ci’s operation did not take place. As long as Cj and Ci do not communicate with each other, none
of them can detect this violation, and thus neither definition can be satisfied.

Mazières and Shasha [MS02] called such behavior a forking attack. They postulate that forking
two (sets of) clients by introducing discrepancies between the events observed by two is the only way
in which a faulty server may violate the consistency of a functionality that it provides. In particular,
it should be ruled out that the server causes any common operation to be observed by two distinct
clients after they have been forked, i.e., to join the sequences of observed operations again. In the above
example, Ci should not see any data written by Cj after the forking attack.

The notion of fork-linearizability [MS02] captures this intuition by requiring that the history of
events occuring at every client satisfies the conditions of linearizability and that for any operation visible
to multiple clients, the history of events occuring before the operation is the same.

Definition 4 (Fork-Linearizability). A sequence of events σ observed by the clients is called fork-
linearizable with respect to a functionality F if and only if for each client Ci, there exists a subse-
quence σi of σ consisting only of completed operations and a sequential permutation πi of σi such
that:

5

1. All completed operations in σ occurring at client Ci are contained in σi; and

2. πi preserves the real-time order of σi; and

3. The operations of πi satisfy the sequential specification of F ; and

4. For every o ∈ πi ∩ πj , the sequence of events that precede o in πi is the same as the sequence of
events that precede o in πj .

Note that a fork-linearizable history that does not fork and satisfies πi = π for all clients is lineariz-
able. Moreover, conditions 2 and 3 imply that each σi is linearizable with respect to F .

Oprea and Reiter [OR06] consider forking attacks not only for linearizable implementations but also
with other consistency conditions. For instance, they define the notion of fork-sequential-consistency;
but we do not address it in this work.

2.4 Byzantine Emulations

Our goal is to provide a protocol for the clients that emulates a functionality F with the help of server S
under a given consistency condition. Such a protocol P consists of n identical algorithms running
locally on every client and one algorithm running on the server (when it is correct). The algorithms
may send messages to each other over the network. We define an emulation in terms of events observed
by the clients when they run P , and require that the sequence of these events correspond to a possible
interaction of the clients with F .

Our notion of Byzantine emulation is derived from the definition of a fault-tolerant implementation
of a shared object by Jayanti et al. [JCT98]. It differs from the latter with respect to handling non-
responsive faults of the server and by allowing forking attacks. If the server is faulty, any functionality
that it should emulate may have operations that do not complete, causing the emulation to violate live-
ness; furthermore, the server may fork the of the clients in arbitrary ways. The intuition behind our
notion of Byzantine emulation is that introducing forks and violating liveness are also the only possible
ways in which the protocol execution may differ from an interaction of the clients with F . If the server
is correct, of course, the emulation has to satisfy liveness and must not fork.

An execution of a system is called admissible when the requests generated by the clients comply with
the problem-specific restrictions for F and the execution satisfies “fairness.” Fairness means, informally,
that the execution does not halt prematurely, when there are still steps to be taken or messages to be
delivered; we refer to the standard literature for a formal definition [Lyn96, AW04].

Definition 5 (Fork-linearizable Byzantine emulation). We say that a protocol P for a set of clients
emulates a functionality F on a Byzantine server S with fork-linearizability if and only if in every ad-
missible execution of P , the sequence of events observed by the clients is fork-linearizable with respect
to F . Moreover, if S is correct, then every admissible execution is complete and has a linearizable
history.

We remark that for other consistency conditions Γ such as sequential consistency, the notion of a
fork-Γ-consistent Byzantine emulation may be defined analogously.

2.5 Cryptographic Primitives

The protocols of this paper require hash functions and digital signatures from cryptography. Because
the focus of this work in on concurrency and correctness and not cryptography, we model both as ideal
functionalities implemented by a trusted entity.

6

A hash function maps a bit string of arbitrary length to a short, unique representation. The function-
ality provides only a single operation H; its invocation takes a bit string x as parameter and returns an
integer h with the response. The implementation maintains a list L of all x that have been queried so
far. When the invocation contains x ∈ L, then H responds with the index of x in L; otherwise, H adds
x to L at the end and returns its index. This ideal implementation models only collision-resistance but
no other properties of real hash functions. The server may also invoke H .

The functionality of the digital signature scheme provides two operations, sign and verify. The
invocation of sign takes an index i ∈ {1, . . . , n} and a string m ∈ {0, 1}∗ as parameters and returns a
signature s ∈ {0, 1}∗ with the response. The verify operation takes the index i of a client, a putative
signature s, and a string m ∈ {0, 1}∗ as parameters and returns a Boolean value b ∈ {FALSE, TRUE}
with the response. Its implementation satisfies that verify(i, s,m) = TRUE for all i ∈ {1, . . . , n}
and m ∈ {0, 1}∗ if and only if Ci has executed sign(i,m) → s before, and verify(i, s,m) = FALSE

otherwise. Only Ci may invoke sign(i, ·) and S cannot invoke sign. Every party may invoke verify.
In the following we denote sign(i,m) by signi(m) and verify(i, s,m) by verifyi(s,m).

3 On the Notion of Fork-Linearizability

This section contains three results that characterize the notion of fork-linearizability. We first show
that no protocol for fork-linearizable shared memory emulation on a faulty server is wait-free, then
provide an alternative definition of fork-linearizability, and finally demonstrate that fork-linearizability
is incomparable with sequential consistency.

3.1 Waiting is Necessary in Fork-Linearizable Byzantine Emulations

It is well-understood that lock-based algorithms for synchronizing concurrent access to shared data
are problematic and that wait-free [Her91] synchronization methods are desirable and often more ef-
ficient. A wait-free algorithm ensures that any client may complete any operation in a finite number
of steps, regardless of the execution speeds of the other clients. Weaker progress conditions have also
been introduced, and include include lock-freedom, fw-termination [ACKM06], and obstruction free-
dom [HLM03]. In an obstruction-free algorithm, every operation of a correct client is guaranteed to
complete eventually when the client is allowed to take enough steps alone, without other clients taking
steps, i.e., when there is no contention.

In this section, we show that any emulation of fork-linearizable shared memory with a possibly
faulty server must involve executions where some client is delayed by another client.

Theorem 1. Let P be a protocol for emulating n ≥ 1 SWMR registers on a Byzantine server S with
fork-linearizability. Then there is an execution of P where S is correct and an operation of some client
cannot complete unless another client takes some steps.

Proof. Towards a contradiction, assume that in all states of every execution of P in which S is correct,
and a client Ci has invoked an operation o that has not yet completed, there is a continuation of the
execution that includes the completion of o and that consists entirely of events and transitions of S and
of Ci.

Recall that protocol P describes the asynchronous interaction of Ci with S for emulating o. We
assume w.l.o.g. that the emulation of o consists of an exchange of messages a1, b1, a2, b2, . . . , bk, ak+1

between S and Ci, where Ci first sends a1, and for j = 1, 2, . . . , k, the server sends bj in response to
receiving aj and Ci sends aj+1 in response to receiving bj . Message bk is the last message from S and
o completes only after Ci receives it; message ak+1 may be missing, in which case the emulation of o
ends with bk.

7

We construct an execution α, in which S is correct. The execution is shown in Figure 1 and
consists of operations by clients C1 and C2 that access only one register X1. First, C1 executes
w1

1 = write1
1(X1, u) → OK. Let s0 denote the point in time when the server receives the last message

from C1 in the emulation of w1
1. After that, C2 invokes an operation r1

2 = read1
2(X1) that returns u.

Subsequently, C1 executes a write operation w2
1 = write2

1(X1, v) → OK, which eventually completes
because S is correct. Operation w2

1 consists of messages a1, b1, . . . , bk, and possibly ak+1, as defined
above. Let s1, . . . , sk denote the points in time when S sends b1, . . . , bk, respectively. The points
s0, s1, . . . , sk are marked by dots in Figure 1.

Concurrently to the execution of w2
1, client C2 performs a sequence of read operations r2

2, . . . , r
k
2 ,

such that rm
2 executes between sm−1 and sm for m = 2, . . . , k. By the assumption of the theorem,

every operation rm
2 can terminate without any steps by C1 and before S receives am. Finally, C2

invokes another read operation rk+1
2 after sk that completes before ak+1 reaches S (if ak+1 exists).

Observe the values returned by the read operations r1
2, r

2
2, . . . , r

k+1
2 of C2. Since the server is correct,

the execution is linearizable. Hence, the first read r1
2 must return u because it occurs sequentially after

w1
1 and before w2

1. The last read rk+1
2 might return either u or v by linearizability alone, because it is

concurrent to w2
1 and two concurrent operations may be ordered either way. But we now show that rk+1

2

cannot return u under the condition that P produces only linearizable executions when S is correct.

Claim 1.1. Operation rk+1
2 in execution α returns v.

Proof. Towards a contradiction, assume that rk+1
2 returns u. Consider another execution α′, in which

the server is correct and which is identical to α up to the following difference: Operation w2
1 completes

in α′ before rk+1
2 is invoked, but ak+1 (if it exists) still arrives after the completion of rk+1

2 . Client C2

cannot distinguish execution α′ from α and returns u as in α. But this violates linearizability, which
must be preserved in α′ because S is correct.

Thus, the first read r1
2 returns u and the last read rk+1

2 returns v. Since α is linearizable, there exists
a point in time (the “linearization point” of w2

1) at which the reads by C2 switch from returning u to
returning v. We let z > 1 be the index of the first read that returns v, i.e., reads r1

2, . . . , r
z−1
2 return u

and rz
2, . . . , r

k+1
2 return v. However, we next show that rz

2 cannot return v under the condition that P
produces only fork-linearizable executions when S is faulty.

Claim 1.2. Operation rz
2 in execution α cannot return v.

Proof. Assume towards a contradiction that rz
2 in α returns v. We construct an execution β, in which

S is correct. First, C1 executes w1
1 as in α. If z > 2, then the continuation of β is identical to α up to

the point sz−2, when S has received az−2 and sent bz−2, and after operation rz−2
2 by C2 has completed.

After sz−2, no further operations by C2 occur and w2
1 completes by steps of S and C1 alone. Otherwise,

if z = 2, the continuation of β after s0 consists only of w2
1 and there are no read operations by C2.

We next construct an execution γ, in which S deviates from the protocol. Execution γ starts out by
performing all steps of β, thus, client C1 cannot distinguish these two runs. After w2

1 has completed, C2

invokes rz−1
2 and then rz

2 . Notice that a faulty S can construct the state at point sz−2 just like in α, since
β is a prefix of γ, and because β is also a prefix of α up to sz−2. Thus, S can emulate rz−1

2 to C2 in the
same way as the correct S in α, and rz−1

2 returns u as in α.
But now, the faulty server may also reconstruct the state of S at point sz−1 in α. Note that this

state may only depend on the state of S at sz−2, on operation rz−1
2 , and on message az−1. The server

possesses the same information also in γ: the state at sz−2 and operation rz−1
2 are exactly as in α by

construction, and message az−1 from C1 in α does not depend on operation rz−1
2 by C2 because az−1

may only depend on bz−2 that was sent before the invocation of rz−1
2 . Given the state at point sz−1 in α,

the server can emulate rz
2 to C2 in the same way as the correct S in α, and rz

2 returns v as in α.

8

w11(u)
C1

a1 b1

s0 s1

az-2 bz-2

sz-2

az-1 bz-1

sz-1

az bz

sz

ak bk

sk

r12→u

... ... ak+1

rz-12→u

rz2→vr22→u

w21(v)

rk+12→v

Execution 

C2

S

... ...rz-22→u

rz-22→u

w11(u)
C1

s0 s1 sz-2

r12→u r22→u

w21(v)

Execution 

C2

S

...

rz-12→u

w11(u)
C1

s0 s1 sz-2

r12→u r22→u

w21(v)

Execution 

C2

S

... rz-22→u rz2→v

Figure 1: Three executions α, β, and γ with z > 2, as described in the text. C1 cannot distinguish
execution γ from β and C2 cannot distinguish γ from α.

Note that C1 cannot distinguish execution γ from β and C2 cannot distinguish γ from a prefix of α,
and both are executions that satisfy linearizability with a correct server. But γ is not fork-linearizable
because the subsequences σ2 and π2 according to Definition 4 would have to include all operations of
γ, and γ is not linearizable. Hence, the faulty server can violate fork-linearizability in γ, contradicting
the requirement that protocol P allows only fork-linearizable executions.

We shown that no read operation among r2
2, . . . , r

k+1
2 can be the first to return v. Thus, rk+1

2 in
execution α returns neither u nor v. This contradicts our assumption that in every execution with a
correct server, any operation of a client may always complete without waiting for another client to take
any steps.

This result explains why in the concurrent algorithm of Mazières and Shasha [MS02] and in our
concurrent algorithm of Section 5, a read operation is blocked until a concurrent write operation has
completed. Let us extend the standard terminology [Her91, JCT98] and call an emulation protocol
using a Byzantine server S wait-free if every client Ci that has invoked an operation can complete the
operation together with a correct S from any state of its execution, even when no other client takes any
steps. Theorem 1 implies that no fork-linearizable emulation of n ≥ 1 SWMR registers on a Byzantine
server is wait-free.

9

If we consider a slightly more general model, where clients may fail by crashing, we also obtain the
following corollary.

Corollary 2. No protocol for emulating n ≥ 1 SWMR registers on a Byzantine server with fork-
linearizability is obstruction-free.

Proof. According to Theorem 1, there exist executions in which the server is correct and a client Ci

must wait for another client Cj to take steps. Now, if Cj crashes, Ci remains blocked forever because it
has no way to distinguish the situation from a situation with a slow network. This situation is obviously
obstruction-free since a crashed client does not take any steps.

3.2 Global Fork-Linearizability

The existing definition of fork-linearizability requires that all operations of a history σ can be arranged in
a “forking tree” such that the history on every branch, represented by σi, is linearizable; that is, for every
Ci, there exists a sequential permutation πi of σi that preserves the real-time order of σi and satisfies
the sequential specification of the functionality. We show here that this notion of fork-linearizability is
equivalent to the seemingly stronger notion in which there exists a “global,” sequential permutation π
of σ that respects the real-time order of σ. The histories πi are merely subsequences of π. This clarifies
the notion of fork-linearizability and may lead to simpler arguments about protocols emulating fork-
linearizable behavior.

Definition 6 (Global Fork-Linearizability). A sequence of events σ observed by the clients demon-
strates fork-linearizability with respect to a functionality F if and only if there exists a sequential per-
mutation π of σ such that:

1. π preserves the real-time order of σ; and
2. For each client Ci, there exists a subsequence πi of π such that:

(a) All events in π occurring at client Ci are contained in πi; and
(b) The operations of πi satisfy the sequential specification of F ; and
(c) For every o ∈ πi∩πj , the sequence of events that precede o in πi is the same as the sequence

of events that precede o in πj .

Theorem 3. A sequence of events is fork-linearizable if and only if it is globally fork-linearizable.

Proof. Notice that global fork-linearizability trivially implies fork-linearizability. To prove the reverse
implication, we first construct a history π such that every πi according to Definition 4 is a subsequence
of π. We start by appending sequential operations to π according to the common prefix of all se-
quences πi, for i = 1, . . . , n. When the forking tree branches, we continue simultaneously along both
branches. We always take the next event from any of the branches under consideration according to
real-time order and append it to π. We continue with this procedure and eventually proceed simultane-
ously along all n histories πi, until π contains all events of σ. Note that the only difference between the
resulting sequence π and the global history π of Definition 6 is that the latter must be sequential.

We describe a procedure that turns π into a sequential history π′ that is equivalent to π with respect
to all conditions of fork-linearizability. The difference mentioned above means that there exists some
operation in some subsequence πi that is concurrent to one or more operations that are contained in
different subsequences. Let oi be the first such operation according to the order of π. W.l.o.g. let
C = {c1, . . . , ck} be the set of all operations concurrent to oi that are invoked after oi in π, where
c1 ∈ πi1 , . . . , ck ∈ πik such that operation cj is executed by client Cij . For the moment, assume that oi

is complete.

10

Fork-linearizability implies that oi is not contained in any πij for j = 1, . . . , k because πij is
sequential. For the same reason, no operation that occurs in πi after oi is contained in any πij for
j = 1, . . . , k and, vice versa, no operation that occurs in some πij after cj for j = 1, . . . , k is contained
in πi.

Let c∗ ∈ πi∗ be the operation from C, whose invocation in π occurs first, i.e., before the invocation
of any other operation in C. Hence, the invocation of oi occurs in π immediately before the invocation of
c∗ and there is no other event between them. In turn, the invocation of c∗ occurs somewhere before the
completion of oi. Modify π to π′ by moving the completion of oi to an earlier point in time, inserting it
between the invocation of oi and the invocation of c∗.

Notice that oi is now sequential and no longer concurrent with any operation in the resulting his-
tory π′. We claim that π′, together with the same subsequences π1, . . . , πn as before, satisfies all con-
ditions of fork-linearizability according to Definition 4. First, π′ preserves the real-time order of σ
because oi only terminates earlier and this can only have enlarged the set of operations that are invoked
after oi. For the second condition, note that any subsequence πj that contains oi is not affected by the
modification because πj was already sequential and did not contain any events between the invocation
of oi and its completion, i.e., j 6∈ {i1, . . . , ik}; hence, all such πj may remain the same as before and
satisfy Definition 4 with respect to π′, just as with π. But any other subsequence πc is not affected either
because πc does not even contain oi.

If π′ is sequential, the theorem holds. Otherwise, repeat this step and use induction on the sequence
of modifications to obtain a sequential permutation of all events. Because at least one pair of concurrent
operations is eliminated in each step, the induction terminates.

3.3 Comparing Fork-Linearizability with Sequential Consistency

Recall that every linearizable history is trivially fork-linearizable and that there is no protocol that pro-
vides a linearizable emulation of even one SWMR register on a Byzantine server S. But this does not
rule out that S may emulate a register with a weaker consistency notion. Sequential consistency, for ex-
ample, does not have to preserve the real-time order of operations. It would be acceptable for a correct
server to return old register values, as long as it preserves the relative order in which it shows them to
every client. However, we show in the following theorem that a faulty server may also violate sequential
consistency when it emulates more than one register.

Theorem 4. There is no protocol that emulates n > 1 SWMR registers on a Byzantine server with
sequential consistency.

Proof. For any protocol P which emulates two SWMR registers X1 and X2, we demonstrate an execu-
tion λ involving a faulty server S which violates sequential consistency.

The execution consists of four operations by the clients C1 and C2. Client C1 executes write1(X1, v)
→ OK and read1(X2) → ⊥. The server interacts with C1 as if it was the only client executing any
operation. Concurrently, C2 executes write2(X2, v)→ OK and read2(X1)→ ⊥ and S also pretends to
C2 that it is the only client executing any operation. Such “split-brain” behavior is obviously possible
when S is faulty: it can act as if the write operations to X1 and X2 have completed, as far as the
writing client is concerned, but still return the old values of X1 and X2 in the read operations. Since the
only interaction of the clients is with S, neither client can distinguish execution λ from a sequentially
consistent execution where it executes alone.

Notice λ is not sequentially consistent: There is no permutation of the operations in λ in which the
sequential specification of both X1 and X2 is preserved and, at the same time, the order of operations
occurring at each client is the same as their real-time order in λ. Specifically, in any possible permutation
of λ, the operation read1(X2)→ ⊥ cannot be positioned after write2(X2, v), since the read would have

11

to return v 6= ⊥ according to the sequential specification of X2. However, read1(X2)→ ⊥ may neither
occur before write2(X2, v) as we now argue. Since the local order of operations has to be the same as in
λ in this case, write1(X1, u) must occur before read1(X2) → ⊥ and hence also before write2(X2, v).
But since the latter operation precedes read2(X1)→ ⊥ in the local order seen by C2, we conclude that
write1(X1, u) precedes read2(X1) → ⊥, which contradicts the sequential specification of X1. Thus,
λ is not sequentially consistent and contradicts the assumption that P always produces sequentially
consistent executions.

Note that execution λ constructed in the proof above is fork-linearizable but not sequentially con-
sistent. On the other hand execution γ exhibited in the proof of Theorem 1 and shown in Figure 1 is
sequentially consistent but not fork-linearizable. Hence, we obtain the following result.

Corollary 5. Fork-linearizability is neither stronger nor weaker than sequential consistency.

4 A Simple Implementation of Fork-Linearizable Shared Memory

In this section, we present a simple protocol that implements a shared memory on a Byzantine server S
and guarantees fork-linearizability. It is called the lock-step protocol and is derived from the bare-bones
protocol of Mazières and Shasha [MS02], but achieves the same task more efficiently. Whereas their
bare-bones protocol requires messages of size Ω(n2), the size of the messages in our lock-step protocol
is O(n).

In the lock-step protocol, a client sends a SUBMIT message containing a request to server S. Upon
accepting the request, S sends a REPLY message with current state information to the client and stops
accepting further requests, until it receives a final COMMIT message from the client. Hence, the name
lock-step protocol.

Description. Our shared memory consists of n SWMR registers X1, . . . , Xn with domain V; client
Ci may write only to Xi but read from any register.

The domain V of a register is arbitrary. In practice, however, an array of fixed-size registers can
provide consistent access to an array of arbitrarily large data sets through using a hash tree [LKMS04].

Every client locally maintains a timestamp that it increments during every operation. We call a
vector of n such timestamps a version vector or simply a version; it acts as a vector clock for ordering
operations.

We define a partial order on version vectors. For two version vectors u and v, we say that u is
smaller than or equal to v, denoted u ≤ v, whenever u[i] ≤ v[i] for i = 1, . . . , n. We say that u is
smaller than v, denoted u < v, if and only if u ≤ v and u[i] < v[i] for some i.

The state of the client consists of a version vector T representing its most recently completed oper-
ation, together with a copy of its own data value x̄. For simplicity of the protocol description, the client
stores x̄ and writes it back during every read operation.

The server S maintains an array X , representing the register values, where entry X[i] represents Xi

and is a pair of the form (xi, σi) ∈ {0, 1}∗×{0, 1}∗. The string xi contains the actual value, and σi is a
digital signature by Ci on the string VALUE‖xi‖ti, where ti is a timestamp equal to Ci’s own timestamp
T [i] at the time of completing the operation that wrote xi. Furthermore, S keeps information related to
the most recently executed operation: the version vector V of the operation, the identity c of the client
performing the operation, and a digital signature ϕ by Cc on V .

When a client Ci invokes an operation, it sends the request to the server in a SUBMIT message. The
server sends a REPLY message, containing the version vector V and the accompanying signature ω from
the most recently completed operation. In a read operation for register j, the server also sends (xj , σj),

12

representing the current value of the register. The server then waits for another message from Ci and
does not process any messages from other clients.

The client verifies that the reply contains valid data: the version V must be at least as big as its own
version T , the i-th entry of V must correspond to the i-th entry of T , and the signature on COMMIT‖V
must be valid. In a read operation, the client also verifies the signature on the data value and the
associated timestamp. When a client detects any inconsistency in the reply, it considers the server to be
Byzantine and stops the execution. In practice, the client might generate an alarm in this situation and
alert an operator to invoke a recovery procedure.

After Ci has successfully verified the reply, it adopts the received version V as its own version T ,
increments its timestamp T [i], and signs the new version T , resulting in a signature ϕ. It also signs its
own value together with T [i]. Then it sends a COMMIT message to S, containing the T , ϕ, its value x
and the signature on VALUE‖x‖T [i].

The server then stores T and ϕ as its version V and signature ω from the most recent operation, and
updates X[i] with the received value and signature.

The detailed protocol is shown in Algorithms 1 and 2.

Algorithm 1 Lock-step protocol, algorithm for client Ci.
1: state
2: T [j] ∈ N, initially 0, for j = 1, . . . , n // current version of Ci

3: x̄ ∈ {0, 1}∗ // most recently written value

4: write(x)
5: x̄← x
6: send 〈SUBMIT, WRITE,⊥〉 to S
7: wait for a message 〈REPLY, V, `, ϕ′〉 from S
8: if not

([
V = (0, . . . , 0) or verify`(ϕ

′, COMMIT‖V)
]

and T ≤ V and T [i] = V [i]
)

then
9: halt

10: T ← V ; T [i]← T [i] + 1
11: ϕ← signi(COMMIT‖T)
12: σ ← signi(VALUE‖x‖T [i])
13: send 〈COMMIT, T, ϕ, x, σ〉 to S
14: return OK

15: read(j)
16: x← x̄
17: send 〈SUBMIT, READ, j〉 to S
18: wait for a message 〈REPLY, V, `, ϕ′, (y, ρ)〉 from S
19: if not

([
V = (0, . . . , 0) or verify`(ϕ

′, COMMIT‖V)
]

and T ≤ V and T [i] = V [i]
)

then
20: halt
21: if not

(
V [j] = 0 or verifyj(ρ, VALUE‖y‖V [j])

)
then

22: halt
23: T ← V ; T [i]← T [i] + 1
24: ϕ← signi(COMMIT‖T)
25: σ ← signi(VALUE‖x‖T [i])
26: send 〈COMMIT, T, ϕ, x, σ〉 to S
27: return y

13

Algorithm 2 Lock-step protocol, algorithm for server S.
1: state
2: X[i] ∈ {0, 1}∗ × {0, 1}∗, initially (⊥,⊥), for i = 1, . . . , n // current state
3: V [i] ∈ N, initially 0, for i = 1, . . . , n // current version
4: ` ∈ {1, . . . , n}, initially 1 // client that completed the last operation
5: ω ∈ {0, 1}∗, initially the empty string // sig. by C` for last operation

6: loop
7: wait for receiving a message 〈SUBMIT, o, j〉 from some client Ci

8: if o = READ then
9: send 〈REPLY, V, `, ω, X[j]〉 to Ci

10: else
11: send 〈REPLY, V, `, ω〉 to Ci

12: wait for receiving a message 〈COMMIT, T, ϕ, x, σ〉 from Ci

13: (V, `, ω)← (T, i, ϕ)
14: X[i]← (x, σ)

Complexity. All messages sent in the protocol have size O(n + |x|+ κ), where |x| denotes an upper
bound on the length of the register values and κ denotes the length of a digital signature. Hence,
the protocol uses network bandwidth economically. In particular, this improves the communication
complexity of the bare-bones protocol of Mazières and Shasha [MS02] by an order of magnitude; their
protocol achieves the same guarantees, but has communication complexity Ω(n2 + nκ + |x|).

Analysis. The rest of this section is devoted to the analysis of the lock-step protocol. Recall from
the protocol that every client stores in T a “current” version that was computed during its most recent
operation. At the end of every operation, the client sends T to the server in the COMMIT message; we
say that this version is associated to the operation.

We first prove two lemmas about the versions associated to operations that causally influence each
other. The first lemma shows that the version vectors associated to the operations of any single client
are totally ordered. Recall that by the assumption of sequential interaction, every client executes its
operations sequentially.

Lemma 6. Let o and o′ be two operations completed by a client Ci with associated versions v and v′,
respectively, such that o precedes o′. Then v[i] < v′[i] and v < v′.

Proof. Observe that Ci stores its current version in T . At the start of any operation, T is equal to the
version associated to the most recently completed operation by Ci. Suppose T = v0 when o′ is invoked.
During the execution of o′, the checks that T ≤ V in lines 8 and 19 of Algorithm 1 ensure that T is
updated on line 10 and 23 only to a V that is at least as big as v0. The remaining code modifies the
current version T only by incrementing the i-th entry. Since the version v′ associated to o′ reflects
the value of T immediately before o′ ends, v′[i] > v0[i] and v′ is bigger than v0. By induction on
Ci’s operations, it follows that v′ is bigger than the version associated to any o executed by Ci that
precedes o′.

The second lemma shows that the version associated to a write operation is smaller than the version
associated to any read operation that returns the written value.

Lemma 7. Let r = readi(j) → x be a completed read operation of some client Ci with associated
version vr such that x 6= ⊥. Let w be the write operation by Cj that wrote x, and let vw be the version
associated to it. Then vw < vr.

14

Proof. Note first that w is well-defined because the condition x 6= ⊥ ensures that Cj has executed some
write operation and because each written value is unique.

Let 〈REPLY, V, `, ϕ, (x, σ)〉 be the message received by Ci during r such that σ verifies successfully.
Although read operations by Cj occurring after w also update x and σ, it is easy to see from the client
code that the written value has not changed since Cj’s last write operation. Hence, we may assume in
the rest of the proof that Cj did not execute any read operation after w and that it computed σ during a
write operation.

According to the code for the writer, it must be V [j] > 0. On line 23, Ci assigns V to its current
version and later changes it only by incrementing the i-th entry. Therefore, vr > V . By the algorithm
and by the integrity of the signature scheme, only Cj may increase the j-th entry in a version vector that
passes signature verification, and since Cj increases the entry in every operation, there is exactly one
version signed by Cj with the j-th entry equal to V [j]. This version is vw, and we need to prove that
vw < vr.

During execution of r, client Ci receives V from S signed by C`. Let o be the operation by C`

whose associated version is V . If c = j, then because Cj signed the value x together with V [j] and
Cj signs only one version with the j-th entry equal to V [j], we get that V = vw. Hence, vr > vw

as required because vr > V . If c 6= j, consider the execution of o. Client C` has received a signed
version v′ from S, which is associated to some operation o′ by some C`′ . Since c 6= j, operation o
does not change the j-th entry in v′ and therefore v′[j] = V [j]. If c′ = j, then v′ = vw since there
is only one operation by Cj with an associated version whose j-th entry is equal to s. It follows that
vw = v′ < V < vr as required. Otherwise, we may continue like this and trace the execution of the
operations, producing the sequence of associated version vectors vr, V, v′, . . . backwards in time, until
we encounter an operation by Cj . Since no operation in the sequence considered up to here has changed
the j-th entry of the version with respect to vr, the version signed by Cj must have its j-th entry equal
to V [j]. And because Cj signs only one such version, this must be vw. Because the partial order on
version vectors is transitive, it follows vw < vr.

We still have to show that a version vector signed by Cj appears somewhere in the above sequence.
Towards a contradiction, assume that there is no such version. Observe that any two vectors in the
sequence differ by 1 in exactly in one entry. Since all vectors contain only non-negative values and the
sequence starts with the all-zero vector according to the protocol, the number of vectors in the sequence
is clearly finite. But since V [j] > 0 at the end of the sequence and because only Cj may have increased
the j-th entry, there exists a version signed by Cj .

The main result about the lock-step protocol is the following theorem.

Theorem 8. The lock-step protocol consisting of Algorithms 1 and 2 emulates n SWMR registers on a
Byzantine server with fork-linearizability.

Proof. Let σ be the sequence of events observed by the clients in the protocol. We construct a se-
quential permutation π of σ and show that it preserves the real-time order of σ and that there exists a
suitable subsequence of π for every client satisfying the definition of fork-linearizability, according to
Definition 6.

Note that there might be invocations in σ that have no matching response. But because the clients
interact sequentially with the shared memory, there can be at most one such incomplete operation per
client and n in total. Whatever the order of π, these operations can easily be added at the end of π
because they do not influence the clients in any way, since their responses are missing. Hence, we
assume in the following that σ is complete.

We construct the sequential execution π from a total order of all events in σ. Observe that π is
sequential and the invocation and response events of every operation immediately follow each other.

15

Hence, we can speak of the order of operations in π. We order σ as follows:

1. Sort the operations in σ by the order on their associated version vectors;

2. Sort any yet unsorted sequential operations by their real-time order in σ ;

3. Sort any yet unsorted operations according to the real-time order of their completion event.

We also construct the subsequences πi: First, we include in πi all operations of client Ci. Next, for each
o ∈ πi we add to πi all operations o′ ∈ σ whose associated version is less than or equal to the version
associated to o.

Claim 8.1. Let o and o′ be two operations in σ such that o precedes o′. Then, o precedes o′ in π.

Proof of Claim 8.1. Let the versions associated to o and o′ be v and v′, respectively. Since o precedes o′

in σ, note that the first two rules of the sort order imply the claim except in case v > v′. We show that
this does not occur by constructing a contradiction in that case.

Consider operation o. The client executing o receives a signed version v1 from S and v1 differs
from v by −1 in exactly one entry. Consider the operation o1 to which v1 is associated. Clearly, o
does not precede o1 because o1 must already have been invoked before o completed. Continuing like
this with o1, we build a sequence of operations, where the version vectors associated to every two
neighboring operations differ in one entry by −1. The sequence is finite and ends with an operation in
which the client receives the all-zero vector from S. By induction, o completes in σ after the invocation
of any operation in the sequence. But if v′ were smaller than v, then o′ would occur in the sequence,
contradicting the assumption that o′ is invoked after o completes.

Claim 8.2. Let r = readi(j)→ x with x 6= ⊥ be a completed read operation of some client Ci in some
πk, with associated version vr; let w be the write operation of Cj that wrote x. Then:

1. Operation w is in πk; and

2. There is no write operation by Cj subsequent to w in πk that completes before r is invoked.

Proof of Claim 8.2. As in the proof of Lemma 7, we assume w.l.o.g. that Cj issued no read operations
after w and before the completion of r.

The first statement is easy to see. Lemma 7 implies that the version vw associated to w is less than
vr. Operation w is therefore included in πk by construction.

For the proof of the second statement, suppose towards a contradiction that there is another write
operation w′ by Cj with associated version v′w in πk such that w′ is invoked after w completes and such
that w′ precedes r in σ. We have three sequential operations w, w′, and r, occurring in that order in σ.

We first prove that vr and v′w are not sorted according to the order on version vectors by showing
that vr[j] < v′w[j] and vr[i] > v′w[i]. Then we extend this to show that v′w 6∈ πk.

Suppose Ci received a vector V and a tuple (x, σ) in the REPLY message from S during r. Since
i 6= j, client Ci does not change the j-th entry in its version and therefore vr[j] = V [j]. Note that by
definition of w, we have also vw[j] = V [j]. Moreover, since w and w′ are both operations by Cj , and
ow precedes o′w, we have v′w[j] > vw[j] according to Lemma 6, and therefore

vr[j] = vw[j] < v′w[j]. (1)

On the other hand, observe that Ci is the only client that may increment the i-th entry in version
vectors accompanied by valid signatures, and it does that for every operation. Hence, the version vector
V̄ that Ci receives from S during r satisfies V̄ [i] = vr[i] − 1. Moreover, the i-th entry in any version

16

vector accompanied by a valid signature that was observed by a client before the invocation of r was
less than vr[i]. In particular, this applies also to v′w and we have

vr[i] > v′w[i]. (2)

Since r and w′ are included in πk, by construction of πk there exist operations o and o′ by Ck with
minimal associated version vectors v and v′, respectively, such that vr ≤ v and v′w ≤ v′. Since every
two operations by Ck are ordered, either v ≤ v′ or v > v′. W.l.o.g. assume v ≤ v′. Therefore, v′ ≥ v′w
and v′ ≥ vr.

Since Ci is the only client that may increment the i-th entry of a version vector, in order for v′ to
satisfy v′[i] ≥ vr[i], there must be a sequence of operations and associated version vectors as in the
proof of Lemma 7, starting with or and ending in o′, in which every two adjacent version vectors differ
by 1 in one entry.

Since vr[j] < v′w[j] by (1), and because no other client than Cj may increment the j-th entry of
a version vector, no operations invoked by Cj are in this sequence of operations; otherwise, Cj would
notice (by checking T [i] = V [i] on line 8) that the j-th entry in the version sent by the server is
vr[j] < v′w[j]. But Cj expects this to be equal to T [j] = v′w[j], after having completed o′w. Because
Cj is not in this sequence, all version vectors contained in it, including v′, have their j-th entry equal to
vr[j]. Hence, v′[j] = vr[j] < v′w[j] and we know that v′[i] ≥ vr[i] > v′w[i] from (2). Therefore, v′ is
incomparable with v′w, which contradicts the fact that o′ was chosen such that v′ ≥ v′w and shows that
v′w 6∈ πk.

It remains to show that π and all πi satisfy the properties of fork-linearizability: Claim 8.1 shows
that π preserves the real-time order of σ; furthermore, properties 2(a) and 2(c) of fork-linearizability
are immediate by construction of πi, and property 2(b) follows from Claim 8.2. This shows that σ is
fork-linearizable with respect to n SWMR registers.

As the last step in the proof of the theorem, we have to establish that the protocol is live when run
with a correct server. The key observation is that only Ci updates the i-th entry of the server’s version V ,
but does that for every operation. Hence, after every operation, every register value X[i] = (xi, σi) of S
contains a valid signature σi on VALUE‖xi‖V [i]. From this it is easy to verify that every client operation
eventually completes.

5 A Concurrent Implementation of Fork-Linearizable Shared Memory

In the lock-step protocol, when a correct server executes an operation o submitted by a client, it is not
allowed to accept any other request until o is completed. This section extends the protocol to allow
concurrent processing of independent operations, while maintaining O(n) communication complexity.
When the server follows the protocol and the execution is admissible, every client may complete its
operations independently of the speed of other clients, unless the two operations depend on each other.
A write operation never depends on another operation, but a read operation depends on the most recent
write operation to the same register. Hence, the server blocks a read operation o if it has received a
concurrent write operation o′ before o until o′ completes. As shown in Section 3.1, this is unavoidable
for any protocol that emulates shared memory on a Byzantine server with fork-linearizability.

The protocol for clients is presented in Algorithms 3 and 4, and the protocol for the server appears in
Algorithm 5. Our protocol is derived from the concurrent version of the SUNDR protocol [MS02], and
improves the communication complexity from Ω(n2) to O(n), while providing the same guarantees.

17

Description. We first describe the algorithm of the clients (all line numbers refer to Algorithms 3
and 4). Every client locally maintains a version vector Vold and a list Mold of missing proofs that
were created by its most recent operation. This version acts as a vector clock, similarly to the lock-
step protocol, but Mold is a new data structure that collects information on the operations that were
concurrent to the most recent operation. The client also maintains the latest written value w̄.

A client submits an operation with a SUBMIT message, which includes an announcement of the
operation, consisting of a tuple of the form (c, oc, v, l, τ), where c is the index of the client submitting
the operation, oc is the operation code (READ or WRITE), v is the sequence number of this operation, l
is the register being read (relevant only for read operations), and τ is a signature. The server sends back
a REPLY message, containing a data structure Sinfo representing the operation which committed with the
greatest version vector thus far. In the client code, this operation is denoted by oS , the associated version
vector by VS , and the associated list of missing proofs byMS .

This announcement is then used by the server to notify a new operation op about all uncommitted
operations that started after oS had committed and that were scheduled by the server before op. Specifi-
cally, a new operation announcement is appended to a list C of concurrent operations that is maintained
by the server, and this list is sent in the REPLY message to clients. The last operation in C received from
the server during operation op is always op itself. A client Ci, executing op computes its new version
vector by taking VS as a base, and incrementing the entries corresponding to every client Cc having an
operation in C (lines 45-49). Since op is in C as well, the i-th entry of the vector is always incremented
as in the lock-step protocol. When encountering an operation by client Cc in C, Ci first checks that VS

reflects all previous operations of that client. Otherwise the server must be faulty and the execution is
halted.

In the algorithm as described thus far, a client cannot know whether the operations in C are presented
in the same order to other clients, and whether these operations are really concurrent, i.e., that the server
did not just retransmit some old announcements. To solve this problem, every version vector is now
augmented by a list of missing proofsM. When a client commits an operation o, it includes inMnew a
pair (o′, hV ′) for every announced operation o′ that the server intends to schedule before o, and whose
COMMIT message did not arrive at the server before the REPLY message for o was sent.

When a client Ci executing an operation op encounters an announcement of an operation o′ in C, it
can calculate the version vector V ′ that will be committed by o′, if o and o′ receive consistent information
about concurrent operations from the server. Operation o then includes the pair (o′, H(V ′)) in itsMnew.
When o′ commits, it sends its real new version vector Vnew signed to the server. The server then uses the
pair (o′, H(Vnew)) as a proof to other clients, which they use to remove (o′, hV ′) fromM, by comparing
the “proof,” H(Vnew), to the expected version vector hash, hV ′ , in verify-proofs (line 44). We thus call
operations in M unverified. Proofs are transmitted in a set P in the REPLY message. Since clients
execute operations sequentially, no operation by client Ci could be unverified during op (line 51), and
no client can have more than one unverified operation (line 52).

When a client Ci commits, it sends to the server a list Mnew of operations that Ci is aware of
that remain unverified. All information committed by the last operation of Ci is stored by the server.
Additionally,Mnew is saved by Ci in a local variableMold. When a new operation o by a Ci starts, it
receivesMS (theMnew list sent to the server during oS). If o is a read operation of register l, Ci also
receivesMx which is theMnew that was stored by the server for client Cl. The client then initializes
Mnew for the new operation withMS (line 43). It runs the verify-proofs procedure, which removes all
unverified operations that match a proof received in the P fromMnew. If a proof arrives for operation
o such that the hash of the real version vector committed by o does not match the one saved with o in
Mnew, the server must be Byzantine and the execution is halted. Next, as was already mentioned, all
operations that appear in C are added toMnew together with a hash of the version vector the operation
is expected to sign upon completion (line 49).

18

In order to simplify the presentation of the protocol and the proof, we define an order on version-
vector/list-of-missing-proof pairs. A similar order, but for different data structures, was used by Maziè-
res and Shasha [MS02].

Definition 7 (Order of version-vector/list-of-missing-proofs pairs). Consider an operation o which
commits with version vector V and a list of missing proofsM, and an operation o′ which commits with
V ′ andM′. We say that (V,M) ≤ (V ′,M′) if the following conditions hold:

1. V ≤ V ′ (according to the order on version vectors from Section 4); and
2. For each (o′′, E) ∈M′ where o′′ = (c, oc, v, l, τ), one of the following holds:

(a) V [c] < V ′[c] (i.e., o was scheduled before o′′)
(b) V [c] = V ′[c] and (o′′, E) ∈M (i.e., o′′ was unverified during o)
(c) V [c] = V ′[c] and E = H(V) (i.e., o and o′′ are the same operation).

The protocol makes sure that all operations of the same client are ordered according to this relation,
and that a read operation is ordered with the write operation that wrote the value returned by the read.
This is achieved by lines 41 and 50 and additionally by line 29 for a read. If a faulty server conceals
operation o with associated version vector V from a later operation o′ whose associated version vector
is V ′, then it can be shown that V 6≥ V ′ and V ′ 6≥ V . The concurrent protocol guarantees that no
later operation o′′ can sign a version vector V ′′ and a missing proof listM′′ s.t. (V ′′,M′′) ≥ (V,M)
and (V ′′,M′′) ≥ (V ′,M′) (where M and M′ are the missing proof lists committed by o and o′

respectively).
A read operation by client Cr from register l receives additional information in the REPLY message

from the server. Specifically, it receives Xinfo committed by Cl; it includes the written data, x, the
version vector of the operation that wrote the data, Vx, and the missing proof list Mx. Although the
Cr executing read cannot generally know if the server returns the data which corresponds to the latest
preceding committed operation by Cl, Cr can make sure that it itself is not aware of any later operation
by Cl. If there are no unverified operations by Cl, then the data returned by Cr must have been written by
the last operation of Cl as known to Cr. Specifically, the check on line 33 makes sure that Vx[l] = Vr[l],
where Vr is the version vector committed by the reader. On the other hand, if there is an unverified
operation by Cl, then this operation can only be a read if the server follows the protocol, which is
checked by line 31. In this case, Vx should be the operation of Cl which immediately preceded the
concurrent read. This is assured by line 32 which makes sure that Vr[l] = Vx[l] + 1.

We now describe the server code (all line numbers refer to Algorithm 5). The server maintains in
X[i] all information committed by the last operation of client Ci. It additionally maintains the list C of
concurrent operations. The server stores in c the identifier of the client that committed with the greatest
version vector out of all committed operations thus far. The server code consists of two procedures (lines
5–13 and lines 15–17), which operate on common variables. Only one of the procedures is allowed to
run at any given time, but if the processing of an operation is blocked on line 6, another operation
can be processed meanwhile, and when the blocking condition is satisfied, processing of the blocked
operation will be able to resume when no process executes either procedure. The queue of pending
operations, i.e., which wait for a permission to enter one of the procedures, is implicitly managed as a
FIFO queue. When a REPLY message is sent to a client Ci for its operation o, the list C always includes
o as its last operation. When an operation o commits and has the greatest version vector out of all
operations that committed thus far, the server updates c. Furthermore, S may delete the prefix of C up
to o. Intuitively, this is done since all important information about this prefix can be deducted from
information committed by o.

The first procedure (lines 5–13) deals with the receipt of a SUBMIT message from a client Ci. If the
submitted operation is a read from register l, and there is a write operation by client Cl (the only client

19

Algorithm 3 Concurrent protocol. Code for client Ci, part 1.
1: notation
2: Strings = {0, 1}∗ ∪ {⊥}; Clients = {1, . . . , n} ∪ {⊥}; Opcodes = {READ, WRITE,⊥}
3: Operations = Clients× Opcodes× N× Clients× Strings
4: OpHashSets = 2{(o,h)|o∈Operations,h∈Strings} // lists of tuples from Operations and hash values
5: state
6: Vold[i] ∈ N, initially Vold[i] = 0, for i ∈ {1, . . . , n} // version vector of last operation
7: Mold ∈ OpHashSets, initially empty // list of missing proofs
8: w̄ ∈ Strings, initially ⊥ // most recently written value
9: write(w)

10: w̄ ← w
11: τ ′ ← signi(SUBMIT‖WRITE‖Vold[i]‖i)
12: op← (i, WRITE, Vold[i], i, τ ′)
13: send 〈SUBMIT, op〉 to S
14: wait for a message 〈REPLY, Sinfo, C,P〉 from S
15: where Sinfo = (s, hoS

, hxS
, VS ,MS , ϕS)

16: (Vnew,Mnew)← common(op, Sinfo, C,P)
17: (Vold,Mold)← (Vnew,Mnew)
18: ϕ′ ← signi(COMMIT‖H(op)‖H(w)‖H(Vnew)‖H(Mnew))
19: send 〈COMMIT, op, w, Vnew,Mnew, ϕ′〉 to S
20: return OK

21: read(l)
22: w ← w̄
23: τ ′ ← signi(SUBMIT‖READ‖Vold[i]‖l)
24: op← (i, READ, Vold[i], l, τ ′)
25: send 〈SUBMIT, op〉 to S
26: wait for a message 〈REPLY, Sinfo, Xinfo, C,P〉 from S
27: where Sinfo = (s, hoS

, hxS
, VS ,MS , ϕS) and Xinfo = (hox , x, Vx,Mx, ϕx)

28: if not
(
Vx = (0, . . . , 0) or verifyl(ϕx, COMMIT‖hox‖H(x)‖H(Vx)‖H(Mx))

)
then halt

29: if (VS ,MS) 6≥ (Vx,Mx) then halt
30: (Vnew,Mnew)← common(op, Sinfo, C,P)
31: if exists (o,E) ∈Mnew where o is a WRITE by client Cl then halt
32: if exists (o,E) ∈Mnew where o is a READ by client Cl

then if Vnew[l] 6= Vx[l] + 1 then halt
33: else if Vnew[l] 6= Vx[l] then halt
34: (Vold,Mold)← (Vnew,Mnew)
35: ϕ′ ← signi(COMMIT‖H(op)‖H(w)‖H(Vnew)‖H(Mnew))
36: send 〈COMMIT, op, w, Vnew,Mnew, ϕ′〉 to S
37: return x

20

Algorithm 4 Concurrent protocol. Code for client Ci, part 2.
38: common(op, (s, hoS

, hxS
, VS ,MS , ϕS), C,P)

39: if not
(
VS = (0, . . . , 0) or verifys(ϕS , COMMIT‖hoS

‖hxS
‖H(VS)‖H(MS))

)
40: then halt
41: if not

(
(VS ,MS) ≥ (Vold,Mold) and VS [i] = Vold[i]

)
then halt

42: if op is not the last operation in C then halt
43: Mnew ←MS

44: verify-proofs(P,Mnew)
45: Vnew ← VS

46: for o = (c, oc, v, l, τ) in C do
47: if not (v = Vnew[c] and verifyc(τ, SUBMIT‖oc‖v‖l)) then halt
48: Vnew[c]← Vnew[c] + 1
49: if o 6= op then add (o,H(Vnew)) toMnew

50: if (Vnew,Mnew) 6> (VS ,MS) then halt
51: if exists an operation by Ci inMnew then halt
52: if exists a client Cj with more than one entry inMnew then halt
53: return (Vnew,Mnew)
54: verify-proofs(P,M)
55: for (c, oc, hxc , hVc , hMc , ϕc) ∈ P do
56: if not verifyc(ϕc, COMMIT‖H(oc)‖hxc‖hVS

‖hMc)) then halt
57: if exists E s.t. (oc, E) ∈M
58: if E 6= hVc

then halt
59: remove (oc, E) fromM

Algorithm 5 Concurrent protocol. Code for server.
1: state
2: C ∈ Operations∗, initially empty // list of concurrent operations
3: X[i] = (opi, xi, Vi,Mi, ϕi) ∈ Operations× Strings× Nn ×OpHashSets× Strings,

initially (⊥,⊥, (0, . . . , 0), ∅,⊥), for i ∈ {1, . . . , n} // current state
4: c ∈ Clients, initially 1.
5: upon receiving a message 〈SUBMIT, op〉 from Ci, where op = (i, oc, v, l, τ):
6: if ((oc = READ) and (the latest operation op′ of Cl s.t. op′ ∈ C

or exists (op′, E) ∈Mc, is a WRITE)) then wait until opl = op′

7: append op to the end of C
8: P ← ∅
9: for each o by client Cj s.t. (o, ∗) ∈Mc do

10: if (opj = o) then add (j, opj ,H(xj),H(Vj),H(Mj), ϕj) to P
11: if oc = READ then
12: send 〈REPLY, (c,H(opc),H(xc), Vc,Mc, ϕc), (H(opl), xl, Vl,Ml, ϕl), C,P〉 to Ci

13: else
14: send 〈REPLY, (c,H(opc),H(xc), Vc,Mc, ϕc), C,P〉 to Ci

15: upon receiving a message 〈COMMIT, op, x, V,M, ϕ〉 from client Ci:
16: X[i]← (op, x, V,M, ϕ)
17: if (V > Vc) then
18: c← i
19: remove from C the prefix of operations up to (including) op

21

that writes to l) that was received by the server before the read but which COMMIT message was not yet
received, then Ci’s read is blocked until this operation by Cl completes. Note that if the server follows
the protocol, the operation must be either in C or inMc.

The server then examines the list of missing proofsMc that it sends to Ci, and collects in P all nec-
essary “proofs” it has for operations in this list. These are tuples containing an operation and the hash of
the actual version vector committed by the operation. Then, S sends a REPLY message, which includes
the data committed by operation oc which had the greatest version vector thus far (was scheduled later
than any other operation that committed), including its associated list of missing proofsMc. The REPLY

message also contains the data requested by the client, the list C of concurrent operations, and P .
When a COMMIT message is received from client Ci (lines 15–17), the received information is saved

in X[i], and if the committed operation has a greater version vector then the operation committed by c,
then c becomes i and the prefix of C up to the newly committed operation is deleted. The server’s code
does not include any checks for correctness of the client responses because we assume that clients are
correct. Such checks could be added easily (the server can calculate precisely with what version vector
and missing proof list a client is supposed to commit).

Complexity. During an execution of operation op by client Ci, all operations in C (other than op itself)
are inserted intoMnew and then Ci checks that there is at most one operation by each client inMnew,
and no operations by Ci. Thus, the size of C is bounded by the size of n−1 operations, i.e. O(nκ), where
κ denotes the maximal length of digital signatures and hashes. For the same reason, any list of missing
proofs can contain at most n−1 operation/hash pairs, thus its size is O(nκ) as well. Furthermore, P has
at most n−1 entries becauseM has at most n−1 entries, and the size of P is also O(nκ). Using |x| to
denote an upper bound on the length of register values, the communication complexity of the protocol
when run with a correct server is therefore O(nκ + |x|).

A faulty server could obviously send larger messages. Because most data sent by S must suc-
cessfully verify a signature issued by a client, together with including some additional checks, we can
actually guarantee a stronger notion: whenever a client completes an operation, its communication
complexity was no more than O(nκ + |x|). The additional checks in the verify-proofs procedure should
check that no operation is included more than once in P and that every operation oc with a “proof” in P
is actually needed because it is inM.

This improves the communication complexity of the concurrent SUNDR protocol [MS02] by an
order of magnitude; the protocol achieves the same guarantees, in the same model, but has communica-
tion complexity O(n2 + n(κ + |x|)), which remains its worst-case complexity even after applying the
suggested bandwidth optimizations.

Observe that writing during read operations is not necessary, however if read operations do not
update the version of the data, a reader of the data must be able to distinguish stale data from data that
was not updated by read operations. This can be solved by maintaining two version vectors instead of
one, one for the number of write operations only, while the other counts the total number of operations.
We avoid this for the sake of simplicity of presentation.

Analysis. The rest of this section is devoted to the analysis of the concurrent protocol. It is structured
in the same way as the analysis of Mazières and Shasha [MS02].

Lemma 9. Let o and o′ be two succeeding operations completed by the same client Ci with associated
version vectors v and v′, respectively, such that o precedes o′. Then (a) v′[i] = v[i] + 1; and (b) v < v′

Proof. Consider the processing of o′ by Ci. By line 41 of procedure common, VS [i] = Vold[i] = v[i].
On line 45 we have Vnew ← VS and then when o′ is encountered in C (o′ must be the last operation in

22

C by line 42), the i-th entry is incremented to VS [i] + 1. Notice that there are no later operations by
Ci in C (since no such operations exist when o′ is processed) and that if o′ is encountered more than
once in C, the check on line 47 will fail. Thus, at the end of procedure common, v′[i] = Vnew[i] =
VS [i] + 1 = Vold[i] + 1 = v[i] + 1, which proves (a). The check on line 41 requires that for every index
j, VS [j] ≥ Vold[j] = v[j]. From (a) we have v′[i] > v[i]. Thus v′ > v, as required by (b).

Lemma 10. Let o = (c, oc, v, l, τ) and o′ = (c′, oc′, v′, l′, τ ′) be two operations that commit (V,M)
and (V ′,M′) respectively, s.t. (V,M) < (V ′,M′). Then V [c′] < V ′[c′].

Proof. Note that since there is a strong inequality, o′ 6= o. Assume for the purpose of reaching a
contradiction that V [c′] = V ′[c′] (since V ′ > V , we know that V [c′] ≤ V ′[c′]). Since V ′[c] ≥ V [c] then
either o′ saw o in C, otherwise VS [c] ≥ Vc[c] and then either oS = o or oS saw o in its C, or V ′

S [c] ≥ V [c]
where V ′

S is the VS received by oS from the server, and so on.
Notice that if o′ inserts some (o′′,H(V ′′)) to M, then V ′[c′] > V ′′[c′], since o′, which is the last

element in C, according to line 42, causes the c′-th entry to be incremented, after (o′′,H(V ′′)) was
already added to M. Therefore, if o′ indeed sees o in C and insets (o,E = H(V ′′)) to M, then we
get V ′′[c′] < V ′[c′]. Therefore, V ′′ cannot be V (we assumed V ′[c′] = V [c′]), and E 6= H(V), which
contradicts (V,M) < (V ′,M′): we assumed that V [c′] = V ′[c′], and o cannot have an operation by c
in itsM by line 51, which leaves only the option of E = H(V), which as we just saw does not hold.

Therefore, it must be that either oS = o or oS saw o in its C, or V ′
S [c] ≥ V [c] where V ′

S is the VS

received by oS from the server, and so on. However, from Lemma 9 we know that VS [c′] < V ′[c′],
and therefore, oS 6= o since we assumed V [c′] = V ′[c′]. Furthermore, if VS inserts (o,E) toMS , this
will also be with a version vector which has less than V ′[c′] is the c′-th entry, i.e., E 6= H(V) just like
before. Similarly we show that some operation, either oS , or the operation o′S that oS received from
the server, or the one o′S received from the server, and so on, had to insert o with the (hash of) wrong
expected version vector to M. Moreover, no such operation could have removed this entry from M,
since the verification procedure checks that E = H(V), which is not the case. Therefore, o′ must have
received (o,E) inMS , inserted it toMnew (and could not remove it from this list, as explained before).
But this contradicts (V,M) < (V ′,M′) as was explained above.

Lemma 11. The order relation on version-vector/list-of-missing-proofs pairs is transitive, i.e., if (V1,M1) ≤
(V2,M2) and (V2,M2) ≤ (V3,M3) then (V1,M1) ≤ (V3,M3)

Proof. If (V1,M1) = (V2,M2) or (V2,M2) = (V3,M3), the proof is trivial. We therefore assume that
(V1,M1) < (V2,M2) and (V2,M2) < (V3,M3). First, since V1 < V2 < V3, by transitivity of the ’<’
relation on version vectors we have V1 < V3. Second, for any (o,E) ∈ M3 where o = (c, oc, v, l, τ),
(a) if V2[c] < V3[c], then since V1 < V2, we have V1[c] < V3[c]; otherwise, if V2[c] = V3[c] then (b)
if (o,E) ∈ (V2,M2), then either (b-1) V1[c] < V2[c] and then we have V1[c] < V3[c]; otherwise, if
V1[c] = V2[c] then (b-2) (o,E) ∈ (V1,M1), or the last option is (b-3) E = H(V1), which also stands to
the requirement. (c) E = H(V2). This means that (V2,M2) was committed by o (an operation by Cc).
Since (V1,M1) < (V2,M2), by Lemma 10 we have V1[c] < V2[c] = V3[c].

Lemma 12. (a) All operations of the same client are ordered according to the order on (version vector,
list of missing proofs)
(b) Let or be a completed read operation that commits (Vr,Mr) and receives Xinfo = (H(ox), x, Vx,
Mx, ϕx) from the server, and ox the operation that wrote this data, then (Vr,Mr) ≥ (Vx,Mx).
(c) Let or be a completed read operation that commits (Vr,Mr) and received Xinfo = (H(ox), x, Vx,
Mx, ϕx) from the server, and ow be ox if ox is a write operation or the latest write operation that
precedes ox if ox is a read operation, s.t. ow commits with (Vw,Mw). Then (Vr,Mr) ≥ (Vw,Mw).

23

Proof. When or is executed, the check (Vnew,Mnew) > (VS ,MS) on line 50 in the common procedure
must hold if or successfully completes. The check on line 41 in the common procedure makes sure that
(VS ,MS) ≥ (Vold,Mold). The check on line 29 in the read procedure makes sure that (VS ,MS) ≥
(Vx,Mx). (a) is correct by transitivity of the order on (version vector, list of missing proofs) pairs and
the first+second checks mentioned above. (b) is correct by transitivity of the order on (version vector,
list of missing proofs) pairs and the first+third checks mentioned above. (c) is correct by transitivity of
the order on (version vector, list of missing proofs) pairs and (a)+(b).

Lemma 13. Let o be an operation that commits with version vector Vnew and missing proof listMnew.
Then for each (o′, E′) ∈Mnew where o′ = (c′, oc′, v′, l′, τ ′), it holds that Vnew[c′] = v′ + 1.

Proof. Consider the following sequence of operations, ending with o. If (o′, E′) 6∈ MS , o is the only
operation in the sequence. Otherwise, the operation that precedes o in this sequence is oS , the operation
which committed the information sent by the server in the Sinfo structure. If (o′, E′) 6∈ M′

S , whereM′
S

is theMS received by oS from the server, then oS is the first in the sequence. Otherwise, the operation
that precedes oS in the sequence is o′S , which is the operation that committed the information sent by
the server in the S′

info structure to oS , and so on. The first operation in the sequence is the one that did
not receive (o′, E′) from the server inMS , and still committedMnew which included (o′, E′).

We prove the lemma by induction on the position of o in this sequence. The base case is that o is the
first in this sequence, i.e., did not have (o′, E′) inMS it received from the server, and included (o′, E′)
inMnew. Thus, o saw o′ in C. According to line 47, Vnew[c] = v when o′ was encountered in C. Then
Vnew[c] is incremented once on line 48 (it cannot be incremented more than once because of line 52),
and thus Vnew[c] = v + 1.

Suppose that the claim holds for every operation o in a position i < k in the sequence, and let o
be the k > 1 operation in the sequence. Therefore, o gets (o′, E′) ∈ MS . By induction assumption,
VS [c′] = v′ + 1. o cannot encounter in C o′ or any other operation by C ′

c that precedes o′, otherwise
the check on line 47 would be violated. Since (o′, E′) ∈ Mnew signed by o, o cannot encounter later
operations by C ′

c in C, since the check on line 52 would be violated. Therefore, no operations by C ′
c are

seen in C by o and Vnew[c′] = VS [c′] = v′ + 1.

Lemma 14. If an operation o by client Ci reads register i and successfully completes, then it cannot
receive stale data from the server.

Proof. The received data was written by Ci, otherwise the signature check on line 28 would fail. Since
the latest data by Ci was written with a version vector Vold, and we assume that Vx corresponds to a
stale operation, we have that Vx[i] < Vold[i]. By line 51, Mnew does not include operations by Ci in
Mnew. Thus, the check on line 33 of the read procedure requires that VS [i] = Vx[i]. By the check on
line 41 of the common procedure, VS [i] = Vold[i] and thus Vx[i] = Vold[i], contradicting the assumption
that the data is stale.

The following lemma proves that if the server hides data that was written by operation ow, then ow

and the read or that returns the stale data (i.e., data which was written before ow) will have incomparable
version vectors. Since Lemma 14 proved that stale data cannot be returned if the reader read his own
data, we assume that the writer and the reader are different clients.

Lemma 15. Let or be a completed read operation by client Cr of register l 6= r, which received Xinfo
= (H(ox), x, Vx,Mx,ϕx) from the server, and committed with version vector Vr. If exists an operation
ow by Cl that starts after ox completes, completes before or starts, and commits with version vector Vw,
then (a) Vr[r] > Vw[r]; and (b) Vr[l] < Vw[l].

24

Proof. (a) The r-th entry in a version vector is incremented (on line 48) only when encountering an
announcement of an operation by Cr. Until the beginning of or no operation could possibly encounter
announcements of operations by Cr with a sequence number of Vr[r] − 1 or greater (notice that an-
nouncements are signed in the read and write procedure, and the signatures are checked in the common
procedure). Thus, no operation could set the r-th entry in its associated version vector to Vr[r] or greater.
Since or starts after ow ends, we conclude that Vr[r] > Vw[r].

(b) Observe the computation of Vr during the processing of or. First, by line 31 in read procedure,
there could not be an unverified write operation by Cl. However, there might be an unverified read
operation by Cl. Suppose that there indeed exists a read operation ol by Cl that appears in Mnew

committed by or. By line 32 in the read procedure, Vr[l] = Vx[l] + 1. Since ol is a read operation and
ox is the operation that immediately preceded it, ow (a write operation that comes after ox) must be a
later operation by Cl then ol, i.e., must have more than Vx[l] + 1 in the l-th entry (by Lemma 9), and
we get Vw[l] > Vx[l] + 1 = Vr[l]. If there is no such read operation by Cl inMnew, by line 33 in the
read procedure, Vr[l] = Vx[l]. Since we assumed that ow starts after ox, we have that Vw[l] > Vx[l] (by
Lemma 9), and thus Vw[l] > Vr[l] as required.

Lemma 16. After an operation o by Ci adopts VS on line 45, each entry in the version vector is incre-
mented at most once.

Proof. From Lemma 9, the i-th entry is incremented exactly once during o. For any other j 6= i, an
entry in the version vector will be incremented only if an operation by Cj is found in C, and each such
operation is inserted into the Mnew list. Since the check on line 52 makes sure that not more than a
single operation by Cj is inMnew (and the check on line 47 makes sure that no operation appears twice
in C), we conclude that the j-th entry could be incremented only once.

Lemma 17. If operation o and operation o′ sign version vectors V and V ′ respectively, s.t. V [i] > V ′[i]
and V ′[j] > V [j], then if some operation o′′ signs a version vector V ′′ s.t. V ′′ ≥ V and V ′′ ≥ V ′ then
Mnew committed by o′′ includes (o, E) s.t. E 6= H(V) or (o′, E) s.t. E 6= H(V ′) (i.e., the expected
version vector is incorrect).

Proof. Observe the following sequence of operations ending with o′′. Preceding o′′ in this sequence is
oS , the operation that committed the information received by o′′ in the Sinfo structure. Before oS comes
o′S , the operation that committed S′

info received during oS . We continue building the sequence in this
way and the first operation in the sequence is an operation om s.t. the version vector received by om

from the server in the Sinfo structure, V Sm, does not have this property, i.e., it does not hold that both
V Sm ≥ V and V Sm ≥ V ′. We prove the lemma by induction on the position of o in this sequence.

The base case is that o′′ is the first operation in the sequence, i.e., o′′ = om. There are three options
regarding V Sm: (a) V Sm[j] ≥ V ′[j] and V Sm[i] 6≥ V [i]; (b) V Sm[i] ≥ V [i] and V Sm[j] 6≥ V ′[j]; and
(c) V Sm[i] 6≥ V [i] and V Sm[j] 6≥ V ′[j]. We deal with each case separately.

(a) V Sm[j] ≥ V ′[j] and V Sm[i] 6≥ V [i]. Since Vm[i] ≥ V [i], the i-th entry is incremented during
om. By Lemma 16 the i-th entry cannot be incremented from V Sm[i] more than once during om. Thus,
Vm[i] = V [i] and V Sm[i] = V [i] − 1. According to the check on line 47, the announcement that
causes this increment, must have V [i] − 1 as the operation sequence number, and thus must be the
announcement of o. Therefore, o appears in C and as any such operation it is inserted by om toMnew

on line 49. Since V Sm is adopted on line 45, and then the entries can only be incremented on line 48,
the version vector that o is expected to sign includes a value in the l-th entry which is at least V Sm[j],
and since V Sm[j] ≥ V ′[j] > V [j], it cannot be V . Thus, (o,E) is inserted toMnew and E 6= H(V).

(b) V Sm[i] ≥ V [i] and V Sm[j] 6≥ V ′[j]. Since Vm[j] ≥ V ′[j], the l-th entry is incremented during
om. By Lemma 16 the l-th entry cannot be incremented from V Sm[j] more than once during om. Thus,

25

Vm[j] = V ′[j] and V Sm[j] = V ′[j] − 1. According to the check on line 47, the announcement that
causes this increment, must have V ′[j] − 1 as the operation sequence number, and thus must be the
announcement of o′. Therefore, o′ appears in C and as any such operation it is inserted by om toMnew

on line 49. Since V Sm is adopted on line 45, and then the entries can only be incremented on line 48,
the version vector that o′ is expected to sign includes a value in the i-th entry which is at least V Sm[i],
and since V Sm[i] ≥ V [i] > V ′[i], it cannot be V ′. Thus, (o′, E) is inserted toMnew and E 6= H(V ′).

(c) V Sm[i] 6≥ V [i] and V Sm[j] 6≥ V ′[j]. Since Vm[j] ≥ V ′[j] and Vm[i] ≥ V [i] and by Lemma 16
om can increment each entry of the version vector at most once, it must be that V Sm[i] = V [i]− 1, and
V Sm[j] = V ′[j] − 1. Therefore, om must see both o and o′ in C. One of them appears after the other
in C. If o appears before o′, then the version vector o′ expected to sign will have V [i] in the i-th entry,
and the proof continues just as in case (b). If o appears after o′, then o will be expected to sign a version
vector with V ′[j] in the l-th entry, and the proof continues just as in case (a).

Assume that the lemma holds for operations with position up to k−1 in the sequence we constructed.
Observe the k-th operation o′′ in the sequence, which received VS and MS from the previous one in
the sequence. Since the version vector upon commit, Vnew is always greater then VS , from line 50, the
version vector committed by the k−1’th operation in the sequence is greater then Vm. According to the
induction assumption, this means that this operation includes o′ or o with the incorrect expected version
vector. o receivesMS from the k − 1-th operation in the sequence and thenMS is included inMnew.
Next, all received proofs are verified. Since o′′ commits, it does not fail. Thus, the server does not send
the correct proofs for o and o′, and the incorrect entry inMnew must remain there, which completes the
proof of the lemma.

Corollary 18. If operation o signs (V,M) and operation o′ signs (V ′,M′), s.t. V [i] > V ′[i] and
V ′[j] > V [j], then no operation om signs (Vm,Mm) s.t. (Vm,Mm) ≥ (V ′,M′) and (Vm,Mm) ≥
(V,M)

Proof. Assume for the purpose of contradiction that there exists such operation om. By definition of the
order on (version vector, list of missing proofs) pairs, Vm ≥ V and Vm ≥ V ′. By Lemma 17, one of the
following holds: (a) (o,E) ∈Mm and E 6= H(V); (b) (o′, E) ∈Mm and E 6= H(V ′);

If (a) holds, by Lemma 13, Vm[i] = V [i] (the lemma talks about the sequence number in the an-
nouncement of o, which is V [i]−1). By definition of the order on (version vector, list of missing proofs)
pairs, since (Vm,Mm) ≥ (V,M), either (o,E) ∈ M or E = H(V). The later does not hold in (a),
and the former would contradict the check on line 51 that does not allow a client to include its own
operations in theM.

Similarly, if (b) holds, by Lemma 13, Vm[j] = V ′[j]. By definition of the order on (version vector,
list of missing proofs) pairs, since (Vm,Mm) ≥ (V ′,M′), either (o′, E) ∈ M′ or E = H(V ′). The
later does not hold in (b), and the former would contradict the check on line 51 that does not allow a
client to include its own operations in theM.

Lemma 19. If the server follows the protocol, then an operation o by client Ci commits with a version
vector V that is equal to the vector committed by the the preceding operation that was appended to C
by the server, in all entries but the i-th entry, where it is greater by 1. Or, if o is the first operation to be
appended to C in the execution, then V has 1 in the i-th entry and 0 in all other entries.

Proof. If the server executes Algorithm 5, then every operation is appended to C. Observe the order of
these insertions. We can think of an operation as having a sequence number according to the number of
operations that were appended to C before it. We call this sequence number k and prove the lemma by
induction on k. Base case: k = 0. In this case, it receives C = {o} and VS = (0, . . . , 0). First, Vnew

becomes VS , and when o is encountered in C, the i-th entry is incremented. Since it is encountered in

26

C exactly once (the server is correct), then the vector is 1 in the i-th entry and 0 in all the rest, like in
VS , the lemma holds. Suppose that the lemma holds for all operations having a sequence number up to
k − 1 and and consider the k-th operation.

The k-th operation o receivesMS , VS and C from the server. This information was committed by
operation oS . If o is the only operation in C, then since the server is correct, C is always pruned up to and
including oS . Thus, the fact that o is the only operation in C means that oS immediately precedes o in
the sequence, i.e., oS is the k− 1-th operation in that sequence. Like in the base case, VS is adopted and
then the i-th entry is incremented exactly once. If o is not the only operation in C, then since the server
is correct, the operation that precedes o in C is the k − 1-th operation in our sequence, and we denote it
o′. By induction assumption, all operations in C differ one from another by only one entry, where they
are greater by 1 from the preceding operation. oS precedes the first operation in C when the server is
correct, as was explained above. Therefore, o′ signs exactly the version vector which o expects it to sign
(i.e., o′ is inserted toMnew with the hash of the correct version vector). V , the version vector signed by
o differs only in the i-th entry from this vector, since o is the last in C and o′ immediately precedes it.
Therefore, the lemma holds in this case as well.

Theorem 20. The concurrent protocol emulates n SWMR registers on a Byzantine server with fork-
linearizability.

Proof. Let σ be the sequence of events observed by the clients in the protocol. We first exclude from
σ the invocations of operations that were not completed. We construct the sets σi (for i = 1 . . . n)
as required by the definition of fork-linearizability. We include in σi the last operation of client Ci,
oi, which committed (Vi,Mi). Then, we include all operations o′ that committed with (V ′,M′) s.t.
(Vi,Mi) ≥ (V ′,M′). We now create the sequences πi from σi by sorting σi according to the order
relation on (version vector, missing proof list) pairs. Since every operation inserted into πi has an
associated (version vector, missing proof list) pair which is less or equal to (Vi,Mi), according to
Lemma 18 all operations in πi are totally ordered according to this relation.

Requirement 1 of fork-linearizability is preserved by Lemma 12, the last committed operation of Ci

was inserted into πi, and all previous operations are less than the last according to the order on (version
vector, list of missing proofs) pairs (Lemma 12) and thus were also included.

For any two operations o by client Ci and o′ by client Cj in πi s.t. o′ started after o has completed in
σ, we show that o was ordered before o′ in πi. Let (V,M) and (V ′,M′) be the data committed by o and
o′ respectfully. If these are operations by the same client, i.e., i = j, then this holds from Lemma 12,
which says that (V,M) ≤ (V ′,M′) and thus o would be ordered before o′ in πi. Otherwise, i 6= j,
and then since o′ starts after o has already completed, it must be that o′[j] > o[j] (o could not see the
announcement for o′). Since (V,M) and (V ′,M′) are ordered, it must be that (V ′,M′) ≥ (V,M),
and thus, o′ is ordered in πi after o. Thus, the order of πi preserves real-time order (requirement 2 of
fork-linearizability).

Suppose that o which committed (V,M) was included in groups πi and πj . Let oi be the last
operation of Ci in πi, which committed with (Vi,Mi). By construction of πi, (Vi,Mi) ≥ (V,M). All
operations o′ that committed (V ′,M′) s.t. (V ′,M′) ≤ (V,M) were also included into πi due to the
transitivity of the order on (version vector, list of missing proofs) pairs. For the same reason, the same
group of operations were included into πj as well. Thus, requirement 4 of fork-linearizability holds.

For requirement 3 of fork-linearizability, we need to show that πi sequential specification holds. For
any πi, let or ∈ πi be a read operation by client Cr from register l which commits with (Vr,Mr) and
receives Xinfo = (H(ox), x, Vx,Mx, ϕx) from the server, and ow be the write operation by Cl which is
ox if ox is a write operation, or otherwise (if ox is a read) the latest write operation that precedes ox, s.t.
ow commits with (Vw,Mw). By Lemma 12, it holds that (Vr,Mr) ≥ (Vw,Mw). Thus, ow ∈ πi by

27

transitivity of the order of (version vector, list of missing proofs) pairs as before. Last, we must show
that there is no write operation o′w in πi, s.t. o′w starts after ow ends, ends before or starts, and writes to
l (i.e., an operation by Cl).

By definition of ow, it equals ox if ox is a write operation, or it is the latest write operation that
precedes ox if ox is a read operation. In both cases, o′w, which is a write operation that starts after ow

ends, must start after ox ends. By Lemma 15, Vr[r] > V ′
w[r]; and (b) Vr[l] < V ′

w[l]. By Corollary 18,
no operation om signs (Vm,Mm) s.t. (Vm,Mm) ≥ (V ′

w,M′
w) and (Vm,Mm) ≥ (Vr,Mr). Let oi be

the last operation of Ci in πi, which committed with (Vi,Mi). By construction of πi, if both o′w and or

are included into πi, this would mean that (Vi,Mi) ≥ (Vr,Mr) and (Vi,Mi) ≥ (V ′
w,M′

w), which is
impossible according to Corollary 18.

It is left to show that when the server is correct, (a) every admissible execution is complete, i.e.,
every operation eventually ends, and (b) that the execution is linearizable. (a) follows from the fact that
the communication links are reliable, the fact that write operations are never blocked by the server, and
since the queue of operations waiting to be processed by one of the server procedures, is managed as a
FIFO queue. Thus, even if a read operation is blocked waiting for a write to complete, the write will
eventually complete, the read will be inserted into the FIFO queue, and eventually processed. Since this
read waits for one specific write, the one that was scheduled before it in C by the server, next time it will
get to execute the server code it will not be blocked, and since a message from the server will eventually
arrive back to the client, the operation will end (the code of the client never blocks).

Additionally, it can be easily shown that no checks in the client’s code are violated if the server
follows the protocol. One check worth noticing is the check that makes sure that there at most one
operation by each client inMnew. It might happen that an operation receives (o,E) inMS s.t. o is an
operation by Cj , and there a later operation o′ by Cj , which appears in C and thus inserted intoMnew.
Notice, that in this case, o must have committed, since the client executes operations sequentially. When
the server constructs set P , it will see that the latest committed operation by Cj , denoted oj at the server,
equals to o, and will include a proof for it in its REPLY message. Thus, before o′ is included inMnew, o
will be removed from there by the verify-proofs procedure. Notice that the expected version vectors are
correct when the server is correct, as explained in Lemma 19.

To show (b), we will show that a read operation always returns the value written by the latest
completed operation by the writer. Suppose for the purpose of reaching a contradiction that this is not
the case, and the read operation or by client Cr of register l, returns information written by operation
ox of client Cl, and there is a write operation ow that is a later operation by Cl that completed before or

starts. According to Lemma 15, the version vector Vr committed by or is incomparable with the version
vector Vw committed by ow. This contradicts Lemma 19 from which follows that every two operations
have comparable version vector when the server is correct.

Acknowledgments

We thank Idit Keidar, Gregory Chockler, Eshcar Hillel, and Marko Vukolić for many helpful discussions
and valuable comments.

References

[ACKM06] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi, Byzantine disk Paxos: Optimal re-
silience with Byzantine shared memory, Distributed Computing 18 (2006), no. 5, 387–408.

28

[AW04] H. Attiya and J. Welch, Distributed computing: Fundamentals, simulations and advanced
topics, second ed., Wiley, 2004.

[BEG+94] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor, Checking the correctness of
memories, Algorithmica 12 (1994), 225–244.

[CDvD+03] D. Clarke, S. Devadas, M. van Dijk, B. Gassend, and G. E. Suh, Incremental multiset
hash functions and their application to memory integrity checking, Advances in Cryptol-
ogy: ASIACRYPT 2003 (C. S. Laih, ed.), Lecture Notes in Computer Science, vol. 2894,
Springer, 2003.

[CSG+05] D. Clarke, G. E. Suh, B. Gassend, A. Sudan, M. van Dijk, and S. Devadas, Towards
constant bandwidth overhead integrity checking of untrusted data, Proc. 26th IEEE Sym-
posium on Security & Privacy, 2005.

[FKM02] K. Fu, F. Kaashoek, and D. Mazières, Fast and secure distributed read-only file system,
ACM Transactions on Computer Systems 20 (2002), no. 1, 1–24.

[Fu98] K. E. Fu, Group sharing and random access in cryptographic storage file systems, Master
Thesis, MIT LCS, 1998.

[Her91] M. Herlihy, Wait-free synchronization, ACM Transactions on Programming Languages
and Systems 11 (1991), no. 1, 124–149.

[HLM03] M. Herlihy, V. Luchangco, and M. Moir, Obstruction-free synchronization: Double-ended
queues as an example, Proc. 23rd Intl. Conference on Distributed Computing Systems
(ICDCS), 2003, pp. 522–529.

[HW90] M. P. Herlihy and J. M. Wing, Linearizability: A correctness condition for concurrent
objects, ACM Transactions on Programming Languages and Systems 12 (1990), no. 3,
463–492.

[JCT98] P. Jayanti, T. D. Chandra, and S. Toueg, Fault-tolerant wait-free shared objects, Journal of
the ACM 45 (1998), no. 3, 451–500.

[Lam86] L. Lamport, On interprocess communication, Distributed Computing 1 (1986), no. 2, 77–
85, 86–101.

[LKMS04] J. Li, M. Krohn, D. Mazires, and D. Shasha, Secure untrusted data repository (SUNDR),
Proc. 6th Symp. Operating Systems Design and Implementation (OSDI), 2004, pp. 121–
136.

[LT89] N. A. Lynch and M. R. Tuttle, An introduction to input/output automata, CWI Quaterly 2
(1989), no. 3, 219–246.

[Lyn96] N. A. Lynch, Distributed algorithms, Morgan Kaufmann, San Francisco, 1996.

[MAD02] J.-P. Martin, L. Alvisi, and M. Dahlin, Minimal Byzantine storage, Proc. 16th International
Conference on Distributed Computing (DISC 2002) (D. Malkhi, ed.), Lecture Notes in
Computer Science, vol. 2508, Springer, 2002, pp. 311–325.

[MS02] D. Mazières and D. Shasha, Building secure file systems out of Byzantine storage, Proc.
21st ACM Symposium on Principles of Distributed Computing (PODC), 2002, pp. 108–
117.

29

[OR06] A. Oprea and M. K. Reiter, On consistency of encrypted files, Proc. 20th International
Conference on Distributed Computing (DISC 2006) (S. Dolev, ed.), Lecture Notes in Com-
puter Science, vol. 4167, 2006, pp. 254–268.

[PSL80] M. Pease, R. Shostak, and L. Lamport, Reaching agreement in the presence of faults,
Journal of the ACM 27 (1980), no. 2, 228–234.

30

