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ABSTRACT 
We introduce multiple topic tracking (MTT) for iScore to better 

recommend news articles for users with multiple interests and to 

address changes in user interests over time. As an extension of the 

basic Rocchio algorithm, traditional topic detection and tracking, 

and single-pass clustering, MTT maintains multiple interest 

profiles to identify interesting articles for a specific user given 

user-feedback. Focusing on only interesting topics enables iScore 

to discard useless profiles to address changes in user interests and 

to achieve a balance between resource consumption and 

classification accuracy. Also by relating a topic’s interestingness 

to an article’s interestingness, iScore is able to achieve higher 

quality results than traditional methods such as the Rocchio 

algorithm. 

We identify several operating parameters that work well for MTT. 

Using the same parameters, we show that MTT alone yields high 

quality results for recommending interesting articles from several 

corpora. The inclusion of MTT improves iScore’s performance by 

9% to 14% in recommending news articles from the Yahoo! News 

RSS feeds and the TREC11 adaptive filter article collection. And 

through a small user study, we show that iScore can still perform 

well when only provided with little user feedback.  

Categories and Subject Descriptors 
H3.3.1 [Information Storage and Retrieval]: Content Analysis 

and Indexing, Retrieval Models, Search Process 

General Terms 
Algorithms, Management, Performance, Design, Experimentation, 

Human Factors. 

Keywords 
News filtering, personalization, news recommendation 

1. INTRODUCTION 
An explosive growth of online news has taken place in the last 

few years. Users are inundated with thousands of news articles, 

only some of which are interesting. A system to filter out 

uninteresting articles would aid users that need to read and 

analyze many news articles daily, such as financial analysts, 

government officials, and news reporters.  

In [1], iScore is introduced to address how interesting articles can 

be identified in a continuous stream of news articles. Instead of 

applying the most obvious approach for news filtering: using, 

which is to learn keywords of interest for a user [2-4], iScore tries 

to identify the multitude of characteristics that make an article 

interesting for a specific user. In iScore, a variety of features are 

extracted, ranging from topic relevancy to source reputation. The 

combination of multiple features yields higher quality results for 

identifying interesting articles for different users than traditional 

methods, such as the Rocchio algorithm [5].  

Despite incorporating other article features in addition to 

relevancy to topics of interest, iScore performs poorly with users 

that have very general interests as opposed to very specific 

interests. iScore addresses relevancy by using the output of 

classifiers (e.g., Rocchio) that maintain a single interest profile. 

Unfortunately, iScore suffers when a user has a set of interests 

that are orthogonal to one another that cannot be accurately 

represented by a single interest profile. In this paper, we extend 

iScore to address this shortcoming by extending the traditional 

Rocchio algorithm by using multiple profile vectors instead of a 

single profile vector. This is a similar technique used in topic 

detection and tracking (TDT) [6], but applied to an online 

personalized news recommendation setting. And unlike in a TDT 

environment, where new topics are identified and continually 

tracked by identifying their related articles, identifying interesting 

articles for a specific user is different for two reasons: first, not all 

topics are of equal interest to a user; second, a user’s interest in a 

topic continually changes overtime. A topic that may have been 

interesting in the past may not be interesting in the future. 

Addressing these two distinctions between TDT and news 

recommendation and the shortfall of the existing iScore system, 

we make the following contributions: 

1. Instead of identifying all new topics and tracking all 

articles for those topics as in TDT, we focus on the 

specific users interests, which are under continuous 

evolution. Focusing on only evolving user interests 

instead of all topics allows for more efficient resource 

utilization. 

2. We show that the use of multiple profile vectors yield 

significantly better results than traditional methods, 

such as the Rocchio algorithm, for identifying 

interesting articles. Additionally, the addition of 

tracking multiple topics as a new feature in iScore, 

improves iScore classification performance. 

3. For a specific user as a case study, we analyze the 

operating parameters for our algorithm for their 
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resource usage and classification performance. 

4. We show that multiple topic tracking yields 

significantly better results than the best results from the 

last TREC adaptive filtering run. 

2. RELATED WORK 

2.1 News Recommendation Systems 
In this paper, we extend iScore [1] to better handle multiple user 

interests. iScore is a recommendation system in a limited user 

environment. In addition to iScore, there are a variety of different 

news recommendation systems. 

Work by [7] ranks news articles and new sources based on several 

properties in an online method. They claim that important news 

articles are clustered. They also claim that mutual reinforcement 

between news articles and news sources can be used for ranking, 

and that fresh news stories should be considered more important 

than old ones. In our approach, we rank news articles based on 

various properties in an online method, but instead of ranking 

articles using mutual reinforcement and article freshness, we study 

a different variety of features. Additionally, when training our 

classifiers, we also take into account that the most recent news 

articles are more important than older ones. 

Other systems perform clustering or classification based on the 

article’s content, computing such values as TF-IDF weights for 

tokens. A near neighbor text classifier [4] uses a document vector 

space model. A personalized multi-document summarization and 

recommendation system by [8] recommends articles by suggesting 

articles from the same clusters in which past interesting articles 

are located. Another clustering approach, MiTAP [9] monitors 

infectious disease outbreaks and other global events. Multiple 

information sources are captured, filtered, translated, summarized, 

and categorized by disease, region, information source, person, 

and organization. However, users must still browse through the 

different categories for interesting articles. Unlike [8] and [9], the 

multiple topic tracking (MTT) presented here and used by iScore 

clusters news articles in an online fashion as documents arrive and 

as the user interacts with iScore. Instead of pre-computing clusters 

of all documents, iScore only computes centroids of clusters of 

interesting articles as articles arrive on the document stream. In 

other words, the clusters are user-specific, as interesting articles 

differ from user to user. Furthermore, in MTT, each cluster, which 

represents a topic of interest, has an associated interestingness 

value which is continually updated. Using this topic 

interestingness and an article’s relationship with the topic, MTT 

infers the article’s own interestingness. Also, unlike other cluster-

based recommendation systems, iScore’s MTT metric discards 

uninteresting or unhelpful clusters over time to improve the 

quality of the results and resource usage. 

2.2 Adaptive Information Filtering 
Our work in iScore is closely related to the adaptive filtering task 

in TREC, which is the online identification of news articles that 

are most relevant to a set of topics. The task is different from 

identifying interesting articles for a user because an article that is 

relevant to a topic may not necessarily be interesting. However, 

relevancy to a set of topics of interest is a prerequisite for 

interestingness. The report by [10] summarizes the results of the 

last run of the TREC filtering task. In the task, topic profiles are 

continually updated as new articles are processed. The profiles are 

used to classify a document’s relevancy to a topic. Like much of 

the work in the task, we use adaptive thresholds and incremental 

profile updates. 

In [11], the authors use a variant of the Rocchio algorithm, in 

which they represent documents as a vector of TF-IDF values and 

maintain a profile for each topic of the same dimension. The 

profile is adapted by adding the weighted document vector of 

relevant documents and by subtracting the weighted vector of 

irrelevant documents. Other methods explored in TREC11 include 

using a second-order perceptron, an SVM [12], a Winnow 

classifier [12], language modelling [13], probabilistic models of 

terms and relevancy [14], and the Okapi Basic Search System 

[15]. iScore’s MTT, like Rocchio  and [11], represents documents 

as vectors of TF-IDF values but instead of maintaining a single 

profile, MTT maintains multiple profiles to represent the distinct 

topics that the user is interested in and relates the topic’s own 

interestingness to the article’s interestingness. 

2.3 Ensembles 
Other works, like ours, have leveraged multiple existing 

techniques to build better systems for specific tasks. For example, 

in [16], the authors combine two popular webpage duplication 

identification methods to achieve better results. Another example 

is by [17], which combines the results from multiple outlier 

detection algorithms that are applied using different sets of 

features.  

A closely related ensemble work by [18] combines multiple 

ranking functions over the same document collection through 

probabilistic latent query analysis, which associates non-identical 

combination weights with latent classes underlying the query 

space. The overall ranking function is a linear combination of the 

different ranking functions. In contrast to [18], we combine 

functions that are not necessarily ranking functions in isolation 

that can be used for ranking. Each function is designed to capture 

a different aspect of interestingness and need to be combined to 

generate meaningful scores for interestingness. MTT is another 

aspect of interestingness that is easily added to the iScore 

framework. 

2.4 Topic Detection and Tracking 
Topic detection and tracking (TDT) identifies new events and 

groups news articles that discuss the same event. Formally, TDT 

consist of five separate tasks: (1) topic tracking, (2) first story 

detection, (3) topic detection, (4) topic link, and (5) story 

segmentation [6]  

Many TDT systems, like [19], [20], and [21] are simply a 

modification of a single pass clustering algorithm. They compare 

a news story against a set of profile vectors kept in memory. If the 

story does not match any of the profiles by exceeding a similarity 

threshold, the story is flagged as a new event and a new profile is 

created using the document vector of the news story. Otherwise, 

the news story is used to update the existing profiles. Other work, 

such as [22], add simple semantics of locations, names, and 

temporal information to the traditional term frequency vectors 

used in previous work.  

Although we make use of a similar single-pass clustering 

algorithm, there are several subtle differences between identifying 

interesting articles and TDT. First, not all topics are of equal 

interest to a user. Instead of identifying all new topics and 

tracking all articles for those topics as in TDT, we focus on the 



specific users interests, which are under continuous evolution. 

Additionally, we use the interestingness of topics when evaluating 

the interestingness of news articles that belong to their respective 

topics. Furthermore, a user’s interest in a topic continually 

changes over time. A topic that may have been interesting in the 

past may not be interesting in the future. Consequently, we 

discard old profile vectors that are no longer of interest to reduce 

resource consumption, to speed up document evaluation, and to 

improve the quality of results.  

3. iScore Architecture 
In iScore, news articles are processed in a streaming fashion, 

much like the document processing done in the TREC adaptive 

filter task. Articles are introduced to the system in chronological 

order of their publication time. Once the system classifies an 

article, an interestingness judgment is made available to the 

system by the user.  

The article classification pipeline consists of four phases, shown 

in Figure 1. In the first phase, for an article d, a set of feature 

extractors generate a set of feature scores F(d) ={f1(d), 

f2(d),…,fn(d)}. In [1], we implemented several topic relevancy 

features, uniqueness measurements and other features, such as 

source reputation, freshness, the subjectivity, and the polarity of a 

news article. Then a classifier C generates an overall classification 

score, or an iScore I(d): 

 ))(),...,(),(()( 21 dfdfdfCdI n=  (1) 

In [1], we found that a naïve Bayesian classifier can identify 

interesting articles well. Next, the adaptive thresholder thresholds 

the iScore to generate a binary classification, indicating the 

interestingness of the article to the user. The adaptive thresholder 

tries to find the optimal threshold that yields the best metric result, 

such as F-measure (where β = 0.5) or TREC11’s utility metric 

T11SU. In the final phase, the user examines the article and 

provides his own binary classification of interestingness (i.e., 

tagging) I′(d). This feedback is used to update the feature 

extractors, the classifier, and the thresholder. The process 

continues similarly for the next document in the pipeline. Because 

of iScore’s extensibility, multiple topic tracking (MTT) is added 

to the system as a new feature extractor.  

4. MULTIPLE TOPIC TRACKING 

4.1 Motivation 
Many information filtering algorithms are based on the Rocchio 

algorithm, which represents topics and documents as vectors. 

Each value of the vector is a TF-IDF value for its respective term 

[5]. A single profile vector p is maintained. For each document, 

the cosine similarity, or the cosine of the angle between the 

document vector v1 and the profile vector is measured. 
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The document is classified as relevant or interesting if the 

similarity is greater than some threshold. The profile vector is 

updated by adding the vector of interesting documents to the 

profile vector. There are variations of the Rocchio algorithm, such 

as subtracting irrelevant document vectors from the profile vector 

[11]. 

The Rocchio algorithm tries to find the single ideal query, or 

vector, that would find all interesting articles, by using the 

centroid of the cluster that would contain all interesting articles. 

However, because of the diversity of interests even for a single 

user, finding a single ideal query is not possible [23]. If a user has 

a wide range of interests, using one vector to represent his 

interests would dilute the sensitivity of the Rocchio algorithm. 

Figure 2 illustrates this problem. Although the cluster of all the 

interesting documents would contain interesting documents, it 

would also contain many uninteresting articles due to its size. If 

the user is interested in many orthogonal topics, then the 

encompassing cluster would be much larger and would also 

contain many more uninteresting articles as well. 

Instead, in MTT, a set of more narrow queries or profile vectors 

that more accurately represent a user’s interests than a single 

vector is maintained. For example, in Figure 2, MTT maintains 

smaller topic clusters instead of the larger encompassing cluster, 

improving classification precision. In other words, a set of experts 

 

Figure 1: Article classification pipeline. 

 

Figure 2: Failure of identifying relevant documents for 

multiple topic s. 



is generated and maintained (one for each specific interesting 

topic) instead of referring to a single general expert. Using 

specialized profiles instead of a single general profile reduces 

classification bias by focusing more on specific topics; at the same 

time, using multiple vectors keeps classification variance low.  

Also the traditional Rocchio algorithm and TDT algorithms do 

not take into account the different degrees of interest among 

different topics. By focusing on individual topics, MTT can learn 

the user’s level of interest for a specific topic and relate the 

topic’s interestingness to related articles; thereby, improving the 

quality of news recommendation results. By associating a level of 

interest for specific topics, MTT can also learn when a user’s 

interests have changed. Topics that were of interest in the past 

may no longer be interesting in the future. Topics that have grown 

to be uninteresting to the user can be discarded. 

4.2 Algorithm 
In MTT, each document and profile vector is represented as a TF-

IDF vector, where each value of the vector is the TF-IDF value of 

the vector element’s corresponding stemmed term. Terms are 

stemmed using the Porter algorithm [24] and stop-words are 

ignored. Initially, the set of profiles P is empty. Until an 

interesting article arrives on the document stream, each article is 

scored with a 0. When an interesting article does arrive, a new 

profile vector p1 is created using the article’s TF-IDF vector and 

added to P. Each subsequent article on the document stream with 

a document vector d is processed as follows: 

1. Find the profile vector with the maximum similarity 

with d. This profile represents the closest topic of 

interest to the document and is denoted as pmax. 

2. The score for a document is the product of the precision 

of pmax for predicting interesting articles and the 

similarity between pmax and d. In other words: 

 ),cos(*)()( maxmax dppprecisiondfMTT =  (3) 

The precision of pmax describes how well pmax can 

accurately identify interesting articles. The precision 

describes how interesting the user finds the topic that 

the profile vector represents. By multiplying the 

interestingness of the topic with the document’s 

similarity to the topic, we relate the interestingness of 

the containing topic to the document.  

3. If the article is interesting and the similarity between d 

and pmax is less than the cluster threshold tcluster, a new 

profile is generated using d. However, if the similarity is 

greater than or equal to tcluster, then pmax is updated as 

follows: 

 dpp += maxmax  (4) 

Intuitively, a new profile is created because a new topic 

has been encountered. Each profile vector is simply the 

centroid of the cluster of its related articles. 

4. If the article is not interesting and the similarity between 

d and pmax is greater than the classification threshold 

tclassification, then pmax is updated as follows: 

 dpp *maxmax γ−=  (5) 

Because the profile misclassifies the article as 

interesting, the cluster is updated to remove the 

influence of terms that are not useful for predicting 

interestingness. This technique is similar to query 

zoning [25], where a select set of non-relevant articles 

that have some relationship to a user’s interests is used 

for updating profile vectors. 

As more documents are processed, it is possible that many profiles 

may be kept and maintained, making MTT expensive. However, 

there are two discard methods that can reduce resource 

consumption and improve the quality of results. The first method 

discards profiles whose topics are no longer interesting. 

Mentioned earlier, each profile vector has an associated precision 

for identifying interesting articles, which is defined as: 
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In other words, the precision of a profile p is the percentage of 

articles that belong to p that are truly interesting. Profiles that 

have a precision less than the threshold tprecision, are discarded 

because the topic that the profile represents is no longer 

interesting to the user.  

The second method discards profiles whose topics are no longer 

written about. At most M profiles are maintained in memory. 

When a new profile must be created, then an old profile must be 

discarded and the least recently used profile is selected for 

discard. A profile is considered “used” when an interesting article 

best matches the profile. 

5. EXPERIMENTAL RESULTS 
iScore is implemented with an assortment of tools in Java. The 

system pipeline is implemented with the IBM UIMA framework 

[26], using classifiers from LingPipe [27], OpenNLP [28], and 

Weka [29].  

We evaluate iScore against three data sets. The first data set is a 

collection of 35,256 news articles from all Yahoo! News RSS 

feeds, collected between June and August 2006. The classification 

task is to identify which articles come from which RSS feed. The 

43 RSS feeds considered for labeling are feeds of the form: “Top 

Stories <category>”, “Most Viewed <category>”, “Most 

Emailed <category>”, and “Most Highly Rated <category>.” 

Because user evaluation is difficult to collect and such data is 

often sparse, the Yahoo! news articles and their source feeds are 

used for their resemblance to user labeled articles. For example, 

RSS feeds such as “Most Viewed Technology” is a good proxy of 

what the most interesting articles are for technophiles Other 

categories, such as “Top Stories Politics,” are collections of news 

stories that the Yahoo! political news editors deem to be of 

interest to their audience, so the feed also would serve well as a 

proxy for interestingness. 

The second data set consists of news articles from the web 

collected between August 2006 to January 2007. Users are asked 

to tag articles that they read as interesting or not interesting using 

a web browser plug-in. Web pages of the referring page of the 

tagged page are also downloaded to determine the articles that the 

user did not read, which could be used to infer uninterestingness 

for the user. After manually discarding junk web pages (i.e., non-

news articles), a total of 13,281 web pages remain with six users 

who tagged at least 49 interesting articles. Using this data set, the 

classification task is to identify the interesting news articles for 

each of the six users from each user’s own pool of articles that he 

had access to. Unfortunately, this data set is small compared to the 



other data sets, but it should provide some insight on the relative 

performance of classifiers on real-world data.  

The final data set comes from the TREC11 adaptive filter task, 

which uses the Reuters RCV1 corpus and a set of assessor manual 

taggings for 50 topics, such as “Economic Espionage.” The 

corpus is a collection of 723,432 news articles from 1996 to 1997. 

Although the TREC adaptive filter work addresses topic relevancy 

and not necessarily interestingness, the task is done in a similar 

online and adaptive fashion as in iScore, and the topics may serve 

as reasonable proxies for a set of users.  

We use precision, recall, and F-measure, where β = 0.5, which 
weights precision more than recall, for system evaluation: 
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F-measure is 0 when the number of articles retrieved is 0. 

TREC11’s T11SU is also used for comparing the performance of 

iScore with the work done in TREC11: For systems that retrieve 

no articles, the system would have a T11SU score of 0.33.  
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Statistical significance tests are applied where appropriate using 

the t-test at p ≤ 0.1. 

5.1 Case Study: Operating Parameters 
To find good values for the operating parameters: tcluster, 

tclassification, tprecision, γ, and M, we evaluate the memory 

consumption and the quality of results produced by MTT with 

various parameters for the “Politics Top Stories” RSS feed. For 

simplicity and to evaluate MTT in isolation, we use the pipeline 

shown in Figure 3 instead of the complete iScore pipeline. The 

adaptive thresholder optimizes for F-measure (β = 0.5). 

We first evaluate the effect of tcluster on MTT by varying tcluster 

while holding tprecision, tclassification, M, and γ at 0.5, 0.5, ∞., and 0, 

respectively. The results are shown in Figure 4a. As tcluster 

increases, articles are discouraged from clustering. Consequently, 

the average number of profiles held increases as tcluster increases. 

Low tcluster values cause fewer clusters to be formed, causing MTT 

to behave similarly as Rocchio when tcluster is low. The figure also 

shows that any tcluster value greater than 0.6, there is no significant 

increase in the quality of results while there is an increase in 

memory consumption. From this observation, we use 0.6 for tcluster 

for all subsequent experiments.  

Next we evaluate the effect of tprecision on MTT by varying tprecision 

while holding tcluster, tclassification, M, and γ at 0.6, 0.5, ∞., and 0, 

respectively. Figure 4b shows that there is little variation in 

performance overall when tprecision is varied. However, there is a 

slight increase in performance when tprecision increases from 0.3 to 

0.5. There is also a decrease in memory consumption in the same 

range. Overall, fewer profile vectors are kept in memory but the 

profiles are more precise in identifying interesting articles when 

tprecision is increased. Performance peaks when tprecision =0.5, with 

performance slightly decreasing for any values beyond 0.5 with 

very little decrease in memory consumption. Consequently, for all 

later experiments, we use 0.5 for tprecision.  

Next we evaluate tclassification on MTT by varying tclassification while 

holding tcluster, tprecision, M, and γ at 0.6, 0.5, ∞., and 0, respectively. 

As tclassification increases, the average number of profiles held in 

memory increases. Profiles are discarded when they generate too 

many false positives due to the minimum precision discard 

mechanism. Higher tclassification  values make it more difficult for 

the profiles to generate false positives (while generating many 

more false negatives), so fewer profiles are discarded. Figure 4c 

shows that a good value for tclassification  is 0.4. Values less than 0.4 

cause profiles to generate too many false positives and are 

consequently discarded, so fewer profiles are kept, decreasing the 

number of topics that can be tracked. However, too high of a 

value for tclassification will lead to too many false negative 

classifications, as shown in the decrease in recall in Figure 4c. 

Interestingly, there is also a decrease in precision for too high 

tclassification  values. This is most likely due to noise caused by 

anomalous taggings that would normally be removed when low 

precision profiles are discarded. It is also due to changes in user 

interests which are immediately addressed by removing low 

precision profiles as well. For all subsequent experiments, we use 

0.4 for tclassification.. 

Next we evaluate the effect of M, which is the maximum number 

of profiles kept in memory, while holding tcluster, tprecision, 

tclassification, and γ at 0.6, 0.5, 0.4, and 0, respectively. Figure 4d 

shows that that as the number of maximum profiles increase, the 

quality of results improve, with significantly higher precision. 

However, it is inconclusive to determine if it is better to leave the 

number of profiles unbounded because the number of profiles 

kept in memory for “Politics Top Stories” is at most 500. It is 

difficult to determine the tradeoff in memory consumption with 

performance, given the results in Figure 4d. So for all subsequent 

experiments, we leave the number of profiles kept in memory to 

be unbounded, or M=∞. 

Finally, we evaluate the effect of γ, which controls how much of 

an effect that misclassified uninteresting articles have (compared 

to interesting articles), by varying γ, while holding tcluster, tprecision, 

tclassification, and M at 0.6, 0.5, 0.4, and ∞., respectively. Figure 4e 

shows that there is very little effect caused by γ. There is only a 

slight increase in performance when γ =0.5. However, there is a 

significant change in memory consumption, as γ increases. Since 

the profiles are actually the centroids of clusters of interesting 

documents, using a large γ value, changes the natural document 

clusters. As more documents are processed, new clusters must be 

generated since the natural clusters no longer exist. However, 

using a small non-zero γ value can help reduce the noise in the 

clusters and improve the classification quality. For all subsequent 

experiments, we use 0.5 for γ.  

 

Figure 3: MTT evaluation pipeline. 



A similar case study was performed for the “Technology Top 

Stories” RSS feed. Good values found for the feed are tcluster = 0.7, 

tprecision = 0.8, tclassification = 0.4, and M = ∞. Using these values, 

varying γ had no effect. The parameter configuration seems to be 

user-dependent. However, for simplicity, we use the good 

parameters found for the “Politics Top Stories” feed for all 

subsequent experiments. 

5.2 Overall Performance 
Given the results from the case study for finding good operating 

parameters for the “Politics Top Stories” RSS feed, we applied 

MTT with the same parameters to all the other RSS feeds. In this 

experiment as well, the adaptive thresholder optimizes for F-

measure. We use tcluster=0.6, tprecision=0.5, tclassification=0.4, M=∞, 

and γ =0.5. The mean average results are shown in Figure 5.  
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Figure 4: Operating parameters for Politics Top Stories from the Yahoo! RSS Feeds 



In Figure 5a, we compare the overall performance of various 

classifiers after processing 10,000 documents, including Rocchio 

and the Rocchio variant from [11], which performed the best in 

the TREC11 adaptive filter task. The figure shows that MTT 

performs significantly better than the Rocchio variant, with a 

mean average F-measure (where β=0.5) of 0.500, performing 40% 

better. MTT also outperforms Rocchio by 82%. According to the 

t-test, MTT’s improvements over Rocchio and its variant are 

statistically significant (p = 2.7E-11 over Rocchio, p = 1.6E-06 

over the Rocchio variant).  

We also evaluate MTT when it is included in the complete iScore 

pipeline. We evaluate two iScore systems, one with the complete 

feature set from [1] and one with a reduced feature set with the 

highest correlated features to interestingness. The reduced feature 

set contains all the features from [1] except for freshness, new n-

gram anomaly detection, and n-gram and tokenized language 

modelling anomaly detection. Figure 5a shows iScore with MTT 

has a similar F-measure performance as MTT alone, with iScore 

yielding greater recall and lower precision. Figure 5a also shows 

that the inclusion of MTT into iScore results in a statistically 

significant increase of 9% in F-measure (p = 0.09). Closer 

examination of each individual RSS feed shows positive 

improvement for most RSS feeds in Figure 6. RSS feeds with a 

lower average number of profiles held in memory due to very few 

interesting articles are more likely to yield the most negative 

improvement.  

Figure 5b shows the performance of the classifiers over time as 

well as the mean average number of profiles held in memory. The 

F-measure dramatically increases after processing 10,000 articles. 

The figure also shows statistically significant improvements (p < 

0.02) that MTT and iScore with MTT have over Rocchio, the 

Rocchio variant, and iScore without MTT. After processing 

25,000 documents, the average F-measure performance of iScore 

with MTT is higher than iScore without MTT (p = 0.12). 

Although, it seems that MTT alone performs better than iScore 

with MTT after processing 25,000 documents, the t-test shows 

that that increase is not statistically significant (p = 0.23) for both 

feature sets. The figure also shows that the average number of 

profiles held increases linearly as more documents are processed. 

This behavior is expected since new topics continually appear and 

the maximum number of profiles is left unbounded for these 

experiments so no unused interesting topics are discarded. Further 

study with a larger corpus is necessary to determine a good 

maximum, if any. 

5.3 User Study 
In addition to the Yahoo! RSS feed articles, we also compare the 

performance of MTT and iScore with Rocchio and the Rocchio 

variant on a collection of web pages tagged by users using a web 

browser plug-in. In our experiments where positive user taggings 

are sparse, we find that the adaptive thresholder performs better 

than when it optimizes for T11SU instead of F-measure, so in this 

set of experiments, the adaptive thresholder optimizes for T11SU. 

Also due to the scarcity of negative user taggings compared to the 

size of the entire data collection, we infer additional negative user 

taggings for articles that the user did not read but were accessible 

from the referring page of an article tagged by the user. 

Consequently, for each user, interesting news articles are to be 

predicted from a pool of articles consisting of articles that the user 

actually tagged and articles that were accessible from referring 

pages of tagged articles. We use the same operating parameters 

found in our case study for the “Politics Top Stories” RSS feed. 

The results of the user study are shown in Figure 7. In Figure 7a, 
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Figure 5: Performance over time of iScore and MTT using the Yahoo! RSS Feeds. Figure 5a shows the overall performance of the 

classifiers after processing 10,000 documents. Figure 5b shows the performance of the classifiers over time. 
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Figure 6: Overall improvement (after processing 10,000 

documents) of iScore by including MTT for individual RSS 

feeds. Each column is an individual RSS feed. 



MTT has higher precision than the Rocchio variants but has much 

lower recall. As a result, MTT’s F-measure performance is lower 

than the Rocchio variants. iScore with MTT performs 10% better 

than Rocchio in terms of F-measure. And the inclusion of MTT 

improves iScore by 2%. However, the comparison of the results is 

difficult to determine because the t-test indicates that the 

comparisons are not statistically significant with p ≥ 0.25. More 
users are necessary to make a definitive judgment, which is likely 

to be similar to the statistically significant judgments made with 

the Yahoo data set. Closer inspection of each individual user 

shows F-measure improvement to iScore for most users when 

MTT is included into iScore’s feature set, as shown in Figure 7b.  

Although a smaller and potentially noisier data set, this limited 

user study shows that iScore with MTT can work well even with a 

limited number of user taggings. For the Yahoo data set, each 

RSS feed has an average of 655 tagged articles. In contrast, this 

limited study, as shown in Figure 7b, has a much smaller 

collection of taggings with user tagging an average of 95 

interesting articles.  

Although iScore with MTT performs better than traditional 

techniques, it performs poorer in this data set than in the Yahoo! 

data set, which is most likely due to the noise in the data 

collection caused by the inference of additional negative user 

taggings. Also the web pages contain peripheral information in 

addition to the news story, such as navigation menus and links to 

other web pages, which make processing the content of the news 

story more difficult.  

5.4 TREC Filtering 
Although the TREC11 adaptive filter task is to retrieve all articles 

relevant to a query, regardless of its interestingness to a user, we 

want to see how well MTT and iScore performs against other 

adaptive filters from TREC11. MTT and the full iScore feature set 

are compared with the best filters from each participating group in 

TREC11 against the TREC11’S RCV1 corpus in Figure 8. As in 

the user tagging collection, the taggings in the TREC collection 

are very sparse relative to the size of the collection, so the 

adaptive thresholder optimizes for T11SU as well. We use the 

same operating parameters found in our case study for the 

“Politics Top Stories” RSS feed. Figure 8a shows that MTT has 

an F-measure 37.8% better than the best performing filter in 

TREC11 [11]. MTT also yields higher precision and recall. When 

MTT is incorporated into iScore, F-measure improves by 9% but 

is not statistically significant (p = 0.25). According to [1], the 

features other than topic relevancy features are not useful for 

identifying interesting articles to the TREC topics. The addition of 

irrelevant features causes the statistically significant difference in 

performance between MTT alone and iScore with MTT (p < 0.01) 

while only improving iScore slightly when added as an additional 

feature.  

Figure 8b shows the performance of iScore and MTT along with 

the top three adaptive filters from Figure 8a. TREC only reports 

T11SU performance over time instead of F-measure, so T11SU is 

shown in Figure 8b. The figure shows that MTT performs much 

better over time than all the other classifiers. Although Figure 8a 

does not show statistically significant improvement in iScore with 

the addition of MTT, Figure 8b does show statistically significant 

improvement of 14% (p = 0.04) for documents after time period 6. 

Comparing Figure 5b and Figure 8b, the memory consumption in 

the TREC data is much less than in the Yahoo! data. Despite the 

larger size of the TREC corpus, user interests in the TREC data 

set are much narrower than that of the Yahoo! data so fewer 

profile vectors are necessary to represent the entire range of user 

interests. 

6. DISCUSSION AND FUTURE WORK 
Interestingly, MTT alone yields statistically similar F-measure 

performance as iScore using the implemented features from [1] 

along with MTT. MTT alone may be sufficient if precision is 

desired over recall. But if a balance of recall and precision is 

needed, then iScore with MTT would be better than MTT alone. 

Also, there are use cases where MTT may be insufficient. MTT 

excels at identifying new interesting articles for topics that have 

already been seen. However, MTT would fail at identifying “flash 

point” articles that discuss new interesting topics that are 

unrelated to the previously interesting topics. On the other hand, 

the iScore framework allows for future features to be added to the 

classification pipeline, such as those that would help identify 

“flash point” articles, in addition to MTT as another feature.  
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Figure 7: Performance of iScore and other classifiers in the user tagging collection. Figure 7a shows the overall performance of the 

classifiers. Figure 7b shows the overall of iScore by including MTT for individual users along with the number of tagged articles for 

each user.  



The inclusion of MTT into iScore has improved the classification 

of interesting documents for most users and data sets by 9 to 14% 

overall. However, there is room for further study. More news 

articles from the Yahoo! RSS feeds are being collected, so that 

iScore can be evaluated over a larger corpus (greater than 100,000 

articles). In our case study, due to the size of the Yahoo! RSS feed 

used to evaluate MTT and the number of relevant articles in the 

TREC11 adaptive task, the resource usage behavior of MTT when 

the maximum number of profiles is varied could not be accurately 

determined. A larger Yahoo! RSS feed collection would help 

determine a good value, if any. More user taggings of articles by 

volunteers are being collected to improve the quality of the user 

tagging data set as well.  

Additionally, in the presented experiments, the parameters were 

static for all users. In our case study, it was shown that two 

different users can have two different near-optimal parameters 

configurations. Using the parameter configuration found here as 

starting points and given the expected behavior of MTT for 

various parameters, optimal parameters tailored for specific users 

with specific memory constraints and quality requirements can be 

dynamically learned as more documents are processed so that 

maximum performance for each user can be achieved with MTT. 

7. CONCLUSION 
Multiple Topic Tracking (MTT), inspired by the Rocchio 

algorithm and single-pass clustering algorithms used in topic 

detection and tracking, is shown to be an effective technique to 

classifying news articles as interesting or not interesting for 

specific users. By explicitly and distinctly tracking multiple topics 

of user interest and their degree of interestingness, MTT addresses 

the shortcomings of the Rocchio algorithm’s usage of a single 

query to find all interesting articles from across multiple topics 

and its inability to quickly adapt to changes in user interests.  

Through a case study for a single RSS feed, we found reasonably 

good operating parameters for MTT. Using these parameters, 

MTT and iScore with MTT is able to perform 25% to 45% better 

than existing Rocchio variants when recommending interesting 

articles from the Yahoo! News RSS feeds. For the TREC adaptive 

filter task, MTT overall performs 37.8% better the best adaptive 

filter from TREC11. MTT also outperforms the same filter over 

time as more documents are processed in terms of TREC11’s 

T11SU metric. The inclusion of MTT can improve iScore’s 

performance by 9% to 14% overall. 

Although more users are necessary to make a more definitive 

conclusion on the performance of MTT and iScore in our small 

user study, iScore with MTT outperforms Rocchio and its variant. 

Also through our limited user study, we show that iScore can still 

work relatively well even with very few positively tagged articles.  
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Figure 8: Performance of iScore and MTT in the TREC11 adaptive filter task. Figure 8a shows the overall performance of the 
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