
UC Berkeley
UC Berkeley Previously Published Works

Title
Liquid Simulation on Lattice-Based Tetrahedral Meshes

Permalink
https://escholarship.org/uc/item/67g011m3

ISBN
978-1-59593-624-0

Authors
Chentanez, Nuttapong
Feldman, Bryan E
Labelle, Francois
et al.

Publication Date
2007

Supplemental Material
https://escholarship.org/uc/item/67g011m3#supplemental

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/67g011m3
https://escholarship.org/uc/item/67g011m3#author
https://escholarship.org/uc/item/67g011m3#supplemental
https://escholarship.org
http://www.cdlib.org/

Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2007)
D. Metaxas and J. Popovic (Editors)

Liquid Simulation on Lattice-Based Tetrahedral Meshes

Nuttapong Chentanez, Bryan E. Feldman, François Labelle, James F. O’Brien, Jonathan R. Shewchuk

University of California, Berkeley

Abstract
We describe a method for animating incompressible liquids with detailed free surfaces. For each time step, semi-
Lagrangian contouring computes a new fluid boundary (represented as a fine surface triangulation) from the
previous time step’s fluid boundary and velocity field. Then a mesh generation algorithm called isosurface stuffing
discretizes the region enclosed by the new fluid boundary, creating a tetrahedral mesh that grades from a fine res-
olution at the surface to a coarser resolution in the interior. The mesh has a structure, based on the body centered
cubic lattice, that accommodates graded tetrahedron sizes but is regular enough to aid efficient point location
and to save memory used to store geometric properties of identical tetrahedra. Although the mesh is warped to
conform to the liquid boundary, it has a mathematical guarantee on tetrahedron quality, and is generated very
rapidly. Each successive time step entails creating a new triangulated liquid surface and a new tetrahedral mesh.
Semi-Lagrangian advection computes velocities at the current time step on the new mesh. We use a finite volume
discretization to perform pressure projection required to enforce the fluid’s incompressibility, and we solve the
linear system with algebraic multigrid. A novel thickening scheme prevents thin sheets and droplets of liquid from
vanishing when their thicknesses drop below the mesh resolution. Examples demonstrate that the method cap-
tures complex liquid motions and fine details on the free surfaces without suffering from excessive volume loss or
artificial damping.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling, Physically Based Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism, Animation; I.6.8 [Simulation and Modeling]: Types of Simulation, Animation

Keywords: natural phenomena, physically based animation, computational fluid dynamics, tetrahedral mesh

1. Introduction
Convincingly animating the complex motion of a liquid’s
surface has proven challenging for both hand and computer-
based methods. Currently, the most successful methods use
computer simulation of the physical laws that govern real-
world liquids. However, real liquids exhibit characteristics,
such as fine surface detail and thin structures, that stress the
capabilities of even the most sophisticated simulation meth-
ods.

The most commonly used methods for simulating incom-
pressible liquids employ regular hexahedral grids or mesh-
less collections of points, but some recent methods use un-
structured tetrahedral meshes [FOK05, KFCO06, ETK∗07].
Tetrahedral meshes offer advantages over regular grids: they
more easily conform to complex boundaries, and tetrahedron
sizes can be graded to focus computational effort where it is
most beneficial. Tetrahedral meshes have been successful
in simulations with no free surfaces—for instance, where a
gas flows through a static simulation domain. But simulat-

ing free surfaces is substantially harder because the meshes
must track the movement of those surfaces, and substantially
more tetrahedra are usually necessary to faithfully track the
surface detail and discretize the thin features that arise.

Moreover, dynamic liquids often form droplets, filaments,
or thin sheets, which can disappear because of the finite res-
olution of the mesh. These artifacts are often called volume
loss. In real life, surface tension prevents liquids such as
water from forming arbitrarily small structures, but faithful
simulation of surface tension effects on thin sheets exacts a
prohibitive computational cost for the amount of water typ-
ically used in animations. For thin features, surface tension
acts at a scale that is well below the finest feasible resolution
in a simulation used for animation.

We address these problems with several techniques that
are, to our knowledge, novel in fluid animation: a fast al-
gorithm for generating semi-regular, graded, guaranteed-
quality tetrahedral meshes that conform to a liquid’s bound-
ary; a novel thickening strategy for reducing volume loss

Copyright c© 2007 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit
is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM
Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.
Eurographics/ACM SIGGRAPH Symposium on Computer Animation 2007, San Diego, California, August 03 - 04, 2007
c© 2007 ACM 978-1-59593-624-4/07/0008 $ 5.00

mailto:permissions@acm.org

220

Chentanez, Feldman, Labelle, O’Brien, and Shewchuk / Liquid Simulation on Lattice-Based Tetrahedral Meshes

Figure 1: Two views of a liquid pouring down a pair of
chutes into a transparent container.

and preventing the artifact of disappearing droplets or sheets
of fluid; and the use of algebraic multigrid to speed up
the pressure projection step commonly used to enforce the
divergence-free velocity property of incompressible fluids.
These techniques make it feasible to use large tetrahedral
meshes.

The mesh generation algorithm we use, called isosurface
stuffing [LS07], creates a tetrahedral mesh that conforms ac-
curately to smooth liquid boundaries. It tiles space using the
vertices and the octant centers of a balanced octree that en-
closes the fluid region. If the octree were refined so that all
its leaf octants had the same size, the vertices in the interior
of the tetrahedral mesh would lie on a body centered cubic
lattice. Instead, the octree is refined so that the liquid sur-
face (where high resolution is needed) is covered with fine
leaf octants (all of the same size), but coarser leaf octants
appear in the liquid interior, keeping the number of elements
(and thus the computational cost) from exploding. The mesh
vertices near the surface are warped, and some tetrahedra are
subdivided, so that the mesh boundary conforms to the fluid
surface. Isosurface stuffing is fast, and it guarantees that all
the tetrahedra have good quality, with their dihedral angles
bounded between 10.7◦ and 164.8◦. We exploit the semi-

regular structure of the mesh to obtain significant savings in
memory and computation by reusing geometric information
for identical tetrahedra and by using the octree for point lo-
cation (needed for semi-Lagrangian advection).

To track the moving fluid surface we use semi-Lagrangian
contouring (SLC), first developed by Strain [Str99, Str01]
and then extended to three dimensions by Bargteil et
al. [BGOS06]. At the beginning of a time step, SLC com-
putes a new fluid boundary, in the form of a high-resolution
surface triangulation, from the previous time step’s fluid
boundary and velocity field. From the new fluid boundary,
isosurface stuffing creates a new tetrahedral mesh. The sur-
face triangulation is used for rendering and as part of SLC,
and the tetrahedral mesh is used for computing the fluid ve-
locities in the current time step.

Although semi-Lagrangian contouring tracks a fluid’s free
surface well, sheets, filaments, and droplets of fluid that be-
come thinner than the grid’s finest resolution are lost, as
with any grid-based level set tracking method. This behavior
leads to noticeable volume loss and ugly artifacts of disap-
pearing liquid. To combat this problem, we propose a sim-
ple particle-based method that mimics some of the effects of
surface tension, albeit at a much coarser scale, without the
excessive cost of simulating surface tension in a physically
accurate way.

Our particle-based method thickens regions where the
fluid is dangerously thin by redistributing mass from nearby
thin regions (which causes tendrils of liquid to break up
rather than become thinner) and adding some thickness arti-
ficially. A few parameters allow the user to control the ef-
fects of the thickening algorithm.

Finally, we show how an algebraic multigrid solver can be
used to efficiently perform the pressure projection required
to ensure that the fluid behaves incompressibly. Our alge-
braic multigrid solver proved to be easy to implement, de-
spite the complex free surfaces. It significantly outperforms
the commonly used alternative of preconditioned conjugate
gradients.

Our results, like the example shown in Figure 1, show that
tetrahedral meshes can be used to animate liquids that fea-
ture substantial surface detail and thin sheets of liquid. The
graded tetrahedron sizes and the use of a triangular surface
mesh even finer than the boundary of the tetrahedral mesh
make it possible to capture fine simulation detail at the sur-
face, while using a computationally feasible number of tetra-
hedra.

2. Related Work
Fluid simulation by numerical methods has been widely
adopted by the visual effects industry. Early computer
graphics techniques for simulating smoke and water [FM96,
Sta99, FF01] are still commonly used. These methods have
been extended to more exotic materials and phenomena, in-
cluding fire [NFJ02], explosions [FOA03], viscoelastic ma-
terials [GBO04], and bubbles [ZYP06]. Techniques are

c© Association for Computing Machinery, Inc. 2007.

Chentanez, Feldman, Labelle, O’Brien, and Shewchuk / Liquid Simulation on Lattice-Based Tetrahedral Meshes

221

available to model the interaction of fluids with rigid bod-
ies [CMT04], deformable bodies [CGFO06], thin mem-
branes [GSLF05], and other fluids [LSSF06]. Treuille et
al. [TLP06] use model reduction techniques to make fluid
simulations run in real time.

It is difficult to realistically simulate free liquid surfaces
with good detail, stability, and speed. Methods to enhance
detail without losing too much speed include vorticity con-
finement [FSJ01] and vortex particles [SRF05]. Thürey
et al. [TKPR06] propose methods for maintaining detail
when applying control forces to guide a simulation toward
keyframes.

Although most papers discuss regular hexahedral grids
and Eulerian discretization, some focus on more flexible ge-
ometric structures. Losasso et al. [LGF04] use an octree
to simulate gases and liquids. Klingner et al. [KFCO06]
use an unstructured tetrahedral mesh for gases and smoke.
Some authors eschew grids entirely in favor of meshless
collections of Lagrangian particles [CD97,DC96,MKN∗04,
PTB∗03, TPF89].

We choose semi-structured tetrahedral grids. Mesh gen-
eration is a huge field, too large to summarize here; see Bern
and Eppstein [BE92] and Owen [Owe98] for surveys. We
use isosurface stuffing [LS07] because no other boundary-
conforming meshing algorithm offers the same combination
of speed, numerical robustness, and guaranteed quality.

Surface tracking is crucial both for simulation (determin-
ing where the liquid is) and for generating a surface to ren-
der. Methods based on grids and isosurfaces, such as the par-
ticle level set method (PLS) [EMF02] and semi-Lagrangian
contouring (SLC) [BGOS06] are largely successful at creat-
ing high-quality surfaces. Their main difficulty is the disap-
pearance of features smaller than the resolution of the grid.
Proposals for coping with this volume loss include replac-
ing the thin sheets with particles [GSLF05, KCC∗06]. Our
approach is to combine SLC with a variation of the particle-
based surface tracking method of Zhu and Bridson [ZB05].

3. Simulation Methods
Our simulation steps are illustrated in Figure 2. At the begin-
ning of time step t, we have a triangulation St of the liquid
surface and a tetrahedral mesh Mt that approximates the vol-
ume bounded by St . A time step consists of the following
operations.
1. Create a new surface mesh St+1 for the next time step

by a combination of semi-Lagrangian contouring and our
thickening method.

2. Generate a tetrahedral mesh Mt+1 that approximates the
volume bounded by the liquid surface St+1, with some
additional thickening.

3. Advect the fluid velocity field from Mt to Mt+1 using
generalized semi-Lagrangian advection [FOKG05]. Up-
date the velocities on Mt+1 by explicit time integration of
the external forces, and apply pressure correction to make
the velocities divergence-free.

Isosurface
stuffing

Simulation
+ SLC

St Mt St+1 Mt+1

Isosurface
stuffing

Figure 2: Each time step uses one surface triangulation
and one tetrahedral mesh. A new time step’s surface St+1 is
created by semi-Lagrangian advection: tracing paths back-
ward in time through the velocity field on Mt to locate a point
relative to St . The isosurface stuffing algorithm generates
a tetrahedral mesh Mt+1 (with coarser surface resolution)
from St+1. Velocities are interpolated/extrapolated from Mt .

The following sections discuss these steps in detail. Many
of the components we use are taken from prior work, and we
focus on how to integrate and change the components so they
work together.

3.1. Governing Equations and Discretization
Inviscid, incompressible liquids are governed by the Euler
equations,

∂u
∂t

=−(u ·∇)u+
f
ρ
− ∇p

ρ
, (1)

subject to the volume conservation constraint

∇·u = 0, (2)

where u is the fluid velocity field, p is the pressure field,
t is time, ρ is density (which we will assume constant
everywhere), f is a field of external forces, and ∇ =
[∂/∂x,∂/∂y,∂/∂z]T.

We integrate Equation (1) forward in time using operator
splitting; itegrating each term of Equation (1) separately as
follows.

u∗ = Advect(ut), (3)

u∗∗ = u∗+
h
ρ

f, (4)

∇2 p =
ρ

h
∇·u∗∗,and (5)

ut+1 = u∗∗− h
ρ
∇p, (6)

where h is the length of a time step, ut and ut+1 are velocity
fields at two successive time steps whose domains are two
successive tetrahedral meshes Mt and Mt+1, and u∗ and u∗∗

are intermediate velocity fields over Mt+1.
To implement Equation (3), velocities are advected by the

method of Feldman et al. [FOKG05], a generalization of the
semi-Lagrangian advection method of Stam [Sta99]. Specif-
ically, we assign velocities to the new mesh Mt+1, where ve-
locities are stored at face barycenters, by tracing the path of
each barycenter backward in time through the piecewise lin-
ear velocity field defined over Mt . When we reach the end
of a path, we determine the velocity at the endpoint by inter-
polation on Mt , and assign it to the barycenter in Mt+1. (To

c© Association for Computing Machinery, Inc. 2007.

222

Chentanez, Feldman, Labelle, O’Brien, and Shewchuk / Liquid Simulation on Lattice-Based Tetrahedral Meshes

Figure 3: Top: A wave of liquid flowing over a hemispher-
ical obstacle. Center: Cutaway view of the tetrahedra en-
closed by the green box in the top image. Bottom: Portions
of the surface triangulation and tetrahedral mesh, respec-
tively, enclosed by the yellow box in the top image.

be precise, we only assign the scalar component of velocity
normal to the face.)

Equations (5) and (6) together perform pressure correc-
tion, which ensures that ut+1 satisfies the volume conserva-
tion (divergence-free velocity) condition, Equation (2). Ob-
serve that Equation (5) entails the solution of a Poisson equa-
tion. We discretize it with a finite volume method, yielding
a system of linear equations.

We take our methods for discretizing the derivative op-
erators and interpolating the velocities from Klingner et
al. [KFCO06]. We summarize them briefly here; see the
original work for details. We store one pressure value at the

center of each tetrahedron. At the center of each triangu-
lar face, we store one scalar value representing the normal
component of the velocity.

The gradient of the pressure normal to a face f is denoted

∇p ·n f =
p2 − p1

d f
, (7)

where p1 and p2 are the pressures at the centers of the two
tetrahedra adjoining f , and d f is the perpendicular distance
between those centers. The average divergence within a
tetrahedron is denoted

(∇·u)avg =
1
V

4

∑
i=1

ziAisi, (8)

where V is the volume of the tetrahedron, and for each tetra-
hedron face indexed i ∈ {1,2,3,4}, Ai is the area of face i,
zi is the velocity component normal to face i, and si is a sign
(+1 or −1) that orients face i’s normal outward.

To interpolate velocities within a tetrahedral mesh, we
first compute a velocity vector at each tetrahedron center
from its four face normal velocities, following Elcott et
al. [ETK∗07]. As the authors point out, this step does
not cause artificial smoothing. To interpolate at an ar-
bitrary point, we use generalized barycentric interpolation
[WSHD04] over dual cells of the mesh.

When we trace paths backward through time for semi-
Lagrangian advection (to advect both the free surface and
the velocities), we find that using a smoothed version of the
velocity field for integrating the path does not produce objec-
tionable artifacts. We take advantage of this observation to
speed up advection substantially: we compute velocity vec-
tors at the primal mesh vertices by generalized barycentric
interpolation; then based on these vectors, we use standard
barycentric interpolation (which is appreciably faster) over
the tetrahedra to perform backward tracing.

However, once we have traced a path back to its endpoint
one time step earlier, we use the more expensive generalized
barycentric interpolation to evaluate the velocity at the end-
point. If we were to use standard barycentric interpolation
for this evaluation, successive errors would accumulate over
time, manifesting as artificial damping of the velocity field,
as Klingner et al. [KFCO06] report.

We differ from Klingner et al. by storing pressures and
velocities at the barycenters of the tetrahedra and triangu-
lar faces, instead of at the circumcenters. The gradient and
interpolation operators were designed with the geometric
properties of circumcenters in mind, but we find that stor-
ing quantities at the barycenters works well in practice.

3.2. Surface Tracking by Semi-Lagrangian Contouring
Surface tracking is the act of computing an updated liquid
boundary St+1 from the previous time step’s boundary St
and the velocity field ut defined over the mesh Mt . We use
semi-Lagrangian contouring (SLC), devised for two dimen-
sions by Strain [Str01] then extended to three dimensions by

c© Association for Computing Machinery, Inc. 2007.

Chentanez, Feldman, Labelle, O’Brien, and Shewchuk / Liquid Simulation on Lattice-Based Tetrahedral Meshes

223

Bargteil et al. [BGOS06] (who also provide an open-source
implementation). We briefly review the method here.

SLC begins by defining a signed distance function f (p)
over R3 that is positive inside St , negative outside, and zero
on the boundary. See Bargteil et al. for details on how to use
an octree to approximate the signed distance function. (The
function is exact near the surface, but at a distance we ap-
proximate by interpolating over the octree.) Note that f (p) is
the function used as an input to isosurface stuffing (described
in Section 3.3) to construct the graded tetrahedral mesh Mt ,
which approximately fills the surface St = {p : f (p) = 0}.
(The resolution of Mt is chosen so its boundary edges gen-
erally have twice the length of the edges of St .)

The next step is to implicitly construct a second signed
distance function f +(p) that represents the liquid surface af-
ter it moves for the duration of a time step. The final step is
to use Marching Cubes to construct a high-resolution trian-
gulated approximation St+1 of the surface {p : f +(p) = 0}.

To calculate the function f +(p) at a given point p, we use
the same semi-Lagrangian advection method, described in
Section 3.1, that we use to advect the velocity field: trace a
path from p backward in time through the velocity field ut
defined over Mt . We also modify the function f +(p) to pre-
vent penetration of obstacles, as described in Section 3.3.1,
and to thicken the liquid where necessary, as described in
Section 3.4.

3.3. Mesh Generation
The tetrahedral meshes we use for simulation conform to the
volume occupied by the fluid, as Figure 3 shows. This ap-
proach has several merits. First, it simplifies the handling of
boundary conditions during pressure correction, as the mesh
boundary is the fluid boundary. Second, computation is only
expended on the region occupied by fluid. Lastly, because
the mesh is recreated each frame, we can grade the mesh
so that it is fine near the surface, where we want detail, but
coarse in the interior, speeding up every part of our simula-
tion method.

Our mesh generation algorithm, called isosurface stuff-
ing [LS07], takes a signed distance field as its input, and
produces a mesh whose boundary approximates the field’s
zero-surface, so the algorithm enjoys a natural marriage
with a level-set surface tracking method, in our case semi-
Lagrangian contouring. It builds a balanced octree that cov-
ers the liquid surface with leaf octants, all the same size.
This octree serves as a skeleton for a tetrahedral background
grid inspired by the Delaunay triangulation of the body cen-
tered cubic lattice. (Producing the background grid is not
quite as simple as subdividing each octant into tetrahedra;
some tetrahedra span two octants.) Vertices of the back-
ground grid that are too close to the liquid surface are warped
so that they lie on the surface. New vertices are added where
edges of the background grid cut the surface. Finally, some
background tetrahedra are subdivided into smaller tetrahedra
to accommodate the new vertices, using stencils of precom-
puted tetrahedra in the same fashion that Marching Cubes

uses stencils of precomputed triangles. All the vertices on
the boundary of the final mesh lie on the surface of the liq-
uid.

Isosurface stuffing is extremely fast and numerically ro-
bust because it does little geometric computation (compared
to most meshing algorithms). The tetrahedra it produces are
mathematically guaranteed to have high quality. (See the
original paper [LS07] for details.) It is these features that
collectively make it feasible to generate a new, large mesh
for every time step.

3.3.1. Modifications for Obstacles
Our simulations include interactions with solid obstacles
such as walls and containers. Semi-Lagrangian contour-
ing generally produces a signed distance function that does
not perfectly conform to obstacles, because of numerical er-
rors and the discretization of time and the velocity field. To
prevent liquid from penetrating a rigid obstacle, we build a
signed distance function for the obstacle. The input to our
mesher is a function that is the minimum of two signed dis-
tance functions—one that is positive inside the liquid, and
one that is negative inside the obstacle.

The opposite problem can occur too: persistent thin gaps
between a liquid and an obstacle. We fix these problems
after the mesh is built. Vertices that are within one eighth
of the edge length of the leaf octants from an obstacle are
“snapped” onto the obstacle boundary by orthogonal projec-
tion. We have found that snapping vertices this way does not
introduce badly shaped tetrahedra.

We classify a face of the mesh as a liquid-obstacle inter-
face if all of its vertices lie on the obstacle. All other bound-
ary faces are liquid-air interfaces. When we build the lin-
ear system for the discretization of Equation (5), we treat
liquid-obstacle faces with closed, non-slip boundary condi-
tions, and we treat liquid-air faces with open boundary con-
ditions, following Klingner et al. [KFCO06].

3.3.2. Exploiting Properties of the Mesh
Isosurface stuffing makes it feasible to use a large number
of tetrahedra (in our examples, about 1–3 million). Besides
its speed and numerical robustness, a more subtle benefit is
that its meshes are semi-structured: in the interior, they use
only four shapes of tetrahedra (in graded sizes). In our sim-
ulations, roughly two thirds of the tetrahedra have one of
these four shapes. Therefore, many tetrahedra have the same
volume, face areas, and face normals (possibly scaled by a
power of two), which are needed for our finite volume dis-
cretization (Section 3.1). We save a substantial amount of
memory by not storing these quantities for tetrahedra having
standard shapes. Thus we realize some of the storage savings
usually associated with structured grids, without sacrificing
grading or boundary conformity.

Another way we exploit the structure of our meshes is by
using the octree for point location. When we perform semi-
Lagrangian advection of the velocities, we need to trace each

c© Association for Computing Machinery, Inc. 2007.

224

Chentanez, Feldman, Labelle, O’Brien, and Shewchuk / Liquid Simulation on Lattice-Based Tetrahedral Meshes

Figure 4: A comparison of images taken from animations generated with our thickening scheme (top) and without (bottom).
The example with no thickening suffers from visible holes and artifacts where thin structures vanish. Observe the difference in
liquid volume between the last frames of the two sequences: without thickening, the simulation has lost appreciable volume.

face barycenter of the new mesh Mt+1 backward in time
through the velocity field defined over the old mesh Mt .
Likewise, advection of the surface also entails tracing a path
through Mt . The first step in doing so is to find the tetrahe-
dron in Mt that contains the starting point. We walk down the
octree until we reach the finest octant containing the point,
then we use standard walking point location to home in on
the right tetrahedron.

Occasionally, a path is traced right outside the mesh Mt ,
so we need to extrapolate velocities. For this task, we use
the efficient octree extrapolation technique of Losasso et
al. [LGF04] on our mesh generator’s octree.

3.4. Thickening
Like other grid level-set surface tracking methods, semi-
Lagrangian contouring cannot resolve sheets or tendrils of
fluid that become thinner than the leaf octants of the octree
used store the signed distance function. The visual results
can include small droplets spontaneously vanishing, large
holes opening up in thin sheets of liquid, and rapid loss of
total fluid volume, as shown in the bottom row of Figure 4.
Moreover, the resolution of the tetrahedral mesh Mt is typi-
cally a factor of two coarser than the resolution of the surface
St . Although this sampling strategy allows us to maintain
finely detailed surfaces, it can create circumstances where
Mt has no tetrahedra near a thin part of the fluid volume
bounded by St , so the fluid cannot be simulated.

To solve both problems, we have developed a thickening
technique that modifies the signed distance function f (p) in
regions where the fluid is thin. We heuristically detect these
regions and place particles approximately on their medial
axes. The radii of the particles are proportional to the dis-
tance from the medial axis to the surface (Section 3.4.1).
These particles thicken the liquid by modifying the signed
distance function f (p) (Sections 3.4.2 and 3.4.3). A second-

order Runge-Kutta method advects the particles forward
through the velocity field u.

We use different thickening approaches for surface track-
ing and mesh generation, because we desire different behav-
ior from each. For surface tracking, we prefer a smooth sur-
face to a bumpy one, even at the cost of some volume loss.
For meshing, we do not want to leave any of the surface St
hanging outside the simulation mesh Mt , but bumps in the
mesh surface are harmless and do not affect the appearance
of the rendered liquid surface.

Given that we use particles in thin regions, why do we not
use them everywhere as a replacement for semi-Lagrangian
contouring? In our experience, particle level set meth-
ods tend to create bumpy surfaces. These can be fixed by
smoothing, albeit with a concomitant loss of detail. We
turned to SLC because it gives us better detail for a fixed
resolution grid.

3.4.1. Medial Axis Estimation
The medial axis of a surface is the set of centers of spheres
that touch the surface at more than one point, but are en-
tirely enclosed by the surface [Blu67]. Three-dimensional
medial axes are unstable and difficult to compute. Several
researchers, such as Foskey et al. [FLM03], propose simpli-
fied approximations of the medial axis, but even these are
computationally expensive. We do not need much accuracy,
and we need the approximation only in thin regions, so we
have found the following simple strategy to be adequate.

For each vertex xi of St , shoot a ray from xi in the neg-
ative normal direction −ni as illustrated in Figure 5, and
check if the ray hits St again within a “thinness” threshold
γ. If so, compute the midpoint mi between xi and the first
point where the ray intersects St . The point mi is a candi-
date that may be near the medial axis of the thin region. We
estimate the minimum distance di from mi to St , using the

c© Association for Computing Machinery, Inc. 2007.

Chentanez, Feldman, Labelle, O’Brien, and Shewchuk / Liquid Simulation on Lattice-Based Tetrahedral Meshes

225

Figure 5: Finding points that lie approximately on the me-
dial axis. In this example, m1 is used but m2 is rejected.

signed distance function for St , and throw away mi if di is
substantially shorter than the distance from xi to mi (see Fig-
ure 5). For surface thickening, we choose γ to be 1.2 times
the edge length of the smallest leaf octant of the octree that
represents St (and the signed distance function). For mesh
thickening, we choose γ to be 1.2 times the edge length of
the mesh generator’s smallest leaf octants.

3.4.2. Mesh Thickening
Given the surface St , we define its signed distance function
f (p). From f (p) and the particles sampled near the medial
axis of St , we create a “thickened” function f ∗(p), which
isosurface stuffing takes as input to generate the mesh Mt .

The thickened function f ∗ is the sum of the original func-
tion f and an offset function that thickens f ∗(p) enough so
that Mt encloses the entire liquid surface St . The offset is

offset(p) = ∑i W (p−mi,h)(γmesh −di)
∑i W (p−mi,h)

,

where γmesh and h are respectively 0.6 times and 4 times
the edge length of the mesh generator’s smallest leaf octant.
Following Müller et al. [MCG03], W is the kernel

Wpoly6(z,h) =
315

64πh9

{
(h2 −|z|2)3 0 ≤ z ≤ h,
0 otherwise.

3.4.3. Surface Thickening
We compute the next surface St+1 by thickening the signed
distance function f (p) for St . Thickening of f (p) for St is
done differently then the thickening method used for input to
the meshing algorithm (Section 3.4.2) because our goal for
the surface is to prevent liquid disappearance while main-
taining a smooth surface and avoiding creating too much
extra volume. We prevent excessive volume gain by redis-
tributing the volume in medial axis particles from one lo-
cation to another, in a way that tends to make thin regions
break apart.

After the medial axis particles have been advected, we
divide them into two groups, Qsmall and Qbig. Qsmall con-
tains particles with di ≤ βslc and Qbig contains those with
di > βslc, where di is the thickness defined in Section 3.4.1,
and βslc depends on the size of the background contouring
grid (see below). For each particle qs ∈ Qsmall, we look for
the subset Qnear of particles in Qbig that are within a dis-
tance of rredis from qs. We then redistribute the radius of qs

to the particles in Qnear by uniformly incrementing the ra-
dius of particles in Qnear by ds/|Qnear|. Although it might
seem more sensible to distribute volume instead of radius,
or to non-uniformly distribute based on distance from qs,
our strategy is fast and works well in practice.

After the redistribution step, we increment the radius of
the particles in Qbig by rib (see below). We delete from
Qsmall the particles that found nearby Qbig particles in the
step above, and increase the radius of the remaining parti-
cles in Qsmall by ris, thereby thickening the liquid slightly in
the thin regions.

In the animations we present in Section 4, βslc is 0.5γ, rib
is 0.25 times the smallest grid size, and ris is 0.15 times the
smallest grid size. By choosing rredis to be between 0 and 3
times the smallest grid size, we control how difficult it is to
break thin sheets of liquid apart.

After we update the radius of the particles, we construct
an implicit function Lpar defined by the particles’ positions
and radii, as described by Zhu and Bridson [ZB05]. We
unite Lpar with the signed distance function f generated by
the original SLC method by defining a new signed distance
function

f ∗∗(p) = max(f (p),Lpar(p)),

whose zero-surface is triangulated by Marching Cubes to
yield the new surface St+1.

3.5. Algebraic Multigrid for Incompressibility
We enforce the incompressibility of the fluid by solving
Poisson’s equation (5), yielding a pressure field p such that
the final velocity field ut+1, computed by Equation (6), is
divergence-free. Discretizing Equation (5) yields a large,
sparse, symmetric linear system, which we solve efficiently
using algebraic multigrid.

Multigrid speeds up a standard iterative method by us-
ing it to compute a quick, inaccurate solution, then correct-
ing the error in the approximate solution with help from
an approximate solution to a coarser version of the prob-
lem, which can be solved more quickly. The coarser ver-
sion is recursively solved by using an even coarser version
of the problem. The base case is a linear system small
enough to solve quickly with a direct method. See Mc-
Cormick [McC87] or Trottenberg et al. [TOS01] for a de-
tailed description of multigrid.

Suppose the system we wish to solve is Aqxq = bq, where
xq is unknown. The hierarchy of linear systems is Akxk = bk,
with k ranging from 1, the coarsest system, to q, the finest.
Each Ak in some sense approximates the finest matrix Aq.

Multigrid uses a sequence of linear prolongation oper-
ators Pk,k−1 that expand a coarse solution (with few un-
knowns) to a finer one (with more), and a sequence of linear
restriction operators Rk−1,k that reduce a fine solution to a
coarser one (with some loss of information). In the origi-
nal, geometric formulation of multigrid, the fine and coarse

c© Association for Computing Machinery, Inc. 2007.

226

Chentanez, Feldman, Labelle, O’Brien, and Shewchuk / Liquid Simulation on Lattice-Based Tetrahedral Meshes

solutions are nodal values on regular grids of two different
resolutions, prolongation is done (exactly) by interpolating,
and restriction is done (approximately) by projection. The
matrices for the coarser levels, Ak are formed by applying
the discretization stencils on the coarsened meshes.

V-cycle multigrid begins by applying a relaxation oper-
ator S(Ak,xk,bk), which returns an approximation solution
(usually with poor accuracy) to the system Akxk = bk. We
use two Gauss-Seidel iterations. Next, it computes the resid-
ual of the system, restricts it to the next coarser grid, and
recursively solves the coarse problem on the restricted resid-
ual. It prolongs the coarse solution and adds it, as a correc-
tive term, to the fine solution. Finally, the relaxation operator
is applied again. We use full-cycle multigrid, which uses V-
cycle multigrid as a subroutine as follows.
VCYCLEMULTIGRID(xk,bk,k)

if k = 1
xk← A−1

1 bk
else

xk← S(Ak,xk,bk)
rk−1← Rk−1,k(bk−Akxk)
wk−1← 0
VCYCLEMULTIGRID(wk−1,rk−1,k−1)
xk← xk + Pk,k−1wk−1
xk← S(Ak,xk,bk)

FULLCYCLEMULTIGRID(x,b)
rq← b−Ax
for k← q to 2

rk−1← Rk−1,krk

z1← A−1
1 r1

for k← 2 to q
zk← Pk,k−1zk−1
VCYCLEMULTIGRID(zk,rk,k)

x← x + zq

Simulation domains with sinuous shapes make it diffi-
cult to geometrically coarsen a mesh in a way suitable for
multigrid—clustering unstructured tetrahedra does not cre-
ate larger tetrahedra. This problem can occur even for regu-
lar hexahedral grids on irregularly shaped domains. We cir-
cumvent this problem with algebraic multigrid, which uses
only the finite volume matrices, and not the geometry, to
construct the prolongation and restriction operators. From
the prolongation and restriction operators the system matri-
ces can be defined by Ak−1 = Rk−1,kAkPk,k−1.

To form the restriction and prolongation operators, we
partition the level k variables into coarse and fine variables.
Coarse variables survive into the coarser level k − 1; fine
variables do not. Pk,k−1 is a matrix that prolongs a level k−1
solution by assigning each fine level k variable the average
of the values of its coarse neighbors from the level k−1 so-
lution. (Variables i and j are neighbors if Ai j is non-zero.)
Some researchers advocate using weighted averages based
on matrix coefficients [McC87], but we find that simple av-
erages converge faster. They also save memory and time
by obviating the need to compute weights. For restriction,
we use the popular Galerkin projection method [TOS01], in
which Rk−1,k = PT

k,k−1.

Sim Mesh SLC Tets (M) Tris (M)
Chutes 61 59 350 1.0 2.1
Spray (T) 37 53 169 0.8 1.4
Spray (NT) 40 54 176 0.8 1.4
Angel 30 24 276 1.0 1.4
Dam Break 49 42 196 1.3 1.2

Table 1: Simulation times for our examples, in seconds per
frame of animation. Sim denotes the time used for veloc-
ity advection and pressure correction. Mesh is the time for
mesh generation. SLC is the time used by the surface tracker.
The last two columns show the average numbers, in millions,
of tetrahedra in the simulation mesh and triangles in the sur-
face triangulation. (T) and (NT) indicate thickening and no
thickening.

Each level k variable must have at least one neighbor la-
beled coarse (possibly itself). A good partition has coarse
variables that support good interpolation of values from the
coarser to the finer level, but also keep the number of coarse
variables modest, so that the coarser linear system is as small
as possible. The following greedy algorithm for labeling
variables, though not optimal, strikes a good balance be-
tween simplicity and effectiveness in practice.

1. Assign each variable a counter storing its number of
neighbors.

2. Select a variable at random; label it coarse.
3. Label the neighbors of the new coarse variable fine.
4. For each unlabeled neighbor of each new fine variable,

decrement the count of its number of unlabeled neigh-
bors.

5. Select the unlabeled variable that neighbors a fine vari-
able and has the most unlabeled neighbors. Label it
coarse.

6. Repeat steps 3 to 5 until every variable is labeled.

Our algebraic multigrid scheme is not novel, but we are
not aware of its prior use in graphics for fluid animation. Our
simulations use between 0.8 million and 1.3 million tetra-
hedra. For these systems, our algebraic multigrid solver is
between 1.8 and 2.1 times faster than a preconditioned con-
jugate gradient solver. In a test with a five million tetra-
hedron mesh, our solver was three times faster than pre-
conditioned conjugate gradients. We believe that the solver
would work similarly well for fluid simulations with other
discretizations, and that the performance benefit would grow
for larger systems.

4. Results and Discussion
We have a prototype implementation, written in C++,
which we used to animate several scenarios, depicted in Fig-
ures 1, 4, 6, and 7 (also seen in Figure 3). We ran the sim-
ulations single-threaded on 2.8 or 3.2 GHz Intel processors
with 3 or 4 GB of memory. All figures were rendered by
PIXIE.

Table 1 shows the running times. The cost of velocity ad-
vection and pressure projection is roughly equal to the cost

c© Association for Computing Machinery, Inc. 2007.

Chentanez, Feldman, Labelle, O’Brien, and Shewchuk / Liquid Simulation on Lattice-Based Tetrahedral Meshes

227

Figure 6: A sequence beginning with a fluid configuration in the shape of an angel. Once the simulation begins, the structure
falls, creating a complex splash pattern.

Figure 7: A sequence wherein a block of liquid is released at one side of a closed container. The wave of water flows over an
obstacle and crashes against the far side of the container.

of mesh generation. The running times of the spray exam-
ples with and without thickening show that the cost of thick-
ening is negligible. In all our simulations, surface tracking
dominates the overall cost. More than a third of the surface
tracking time is in a fast marching method that approximates
the signed distance function. Most of the remaining time is
spent tracing the velocity field backward. We believe there is
substantial room for speed improvement through faster algo-
rithms for signed distance approximation and path tracing.
For example, it might be possible to exploit temporal co-
herence to avoid recomputing the signed distance field from
scratch at every time step, and our point location and path
tracing does not take advantage of spatial locality.

Our methods are not without flaws. Some of our examples
exhibit a small amount of volume loss. However, we are not
aware of a liquid simulation method that preserves volume
perfectly. Our thickening scheme has adjustable parameters
that allow a user to reduce this effect, although excessive use
of the thickening scheme can result in volume gain artifacts.
Another imperfection is that our discretization of the Poisson
operator is not linearly consistent, so our free surfaces move
even when gravity is the only force applied to a pool of wa-
ter. This artifact is not apparent in dynamic scenes, but it is
visible in scenes with very slow moving water. The octree
method of Losasso et al. [LGF04] exhibits similar artifacts
when the octree grades from coarse to fine along a direction
orthogonal to the direction of gravity.

Future work includes adding viscoelasticity to a simula-
tion. This goal requires additional differential operators,
defined in a consistent and stable manner. It is probably
straightforward to extend our methods to multiple-phase liq-
uids, as the meshing algorithm can create high-quality tetra-

hedra on both sides of an interface. We could also couple our
liquids to moving rigid bodies using the methods of Klingner
et al. [KFCO06] and Chentanez et al. [CGFO06], who also
use tetrahedral meshes.

Acknowledgments
We thank the Berkeley graphics group for helpful criticism
and comments, and Adam Bargteil for comments and help
with the SLC code. This work was supported in part by Cal-
ifornia MICRO 03-067 and 04-066, by the National Science
Foundation under Awards CCF-0430065 and CCF-0635381,
by generous support from Apple Computer, Pixar Animation
Studios, Intel Corporation, Sony Computer Entertainment
America, the Hellman Family Fund, and by two Alfred P.
Sloan Research Fellowships.

References
[BE92] BERN M., EPPSTEIN D.: Mesh generation and optimal

triangulation. In Computing in Euclidean Geometry, Du D.-Z.,
Hwang F., (Eds.), vol. 1 of Lecture Notes Series on Computing.
World Scientific, Singapore, 1992, pp. 23–90.

[BGOS06] BARGTEIL A. W., GOKTEKIN T. G., O’BRIEN J. F.,
STRAIN J. A.: A semi-Lagrangian contouring method for fluid
simulation. ACM Transactions on Graphics 25, 1 (Jan. 2006),
19–38.

[Blu67] BLUM H.: A transformation for extracting new descrip-
tors of shape. Models for the Perception of Speech and Visual
Form (1967), 362–380.

[CD97] CANI M.-P., DESBRUN M.: Animation of deformable
models using implicit surfaces. IEEE Transactions on Visualiza-
tion and Computer Graphics 3, 1 (Jan. 1997), 39–50.

[CGFO06] CHENTANEZ N., GOKTEKIN T. G., FELDMAN B. E.,
O’BRIEN J. F.: Simultaneous coupling of fluids and deformable

c© Association for Computing Machinery, Inc. 2007.

228

Chentanez, Feldman, Labelle, O’Brien, and Shewchuk / Liquid Simulation on Lattice-Based Tetrahedral Meshes

bodies. In 2006 Symposium on Computer Animation (Sept.
2006), pp. 83–89.

[CMT04] CARLSON M., MUCHA P. J., TURK G.: Rigid fluid:
Animating the interplay between rigid bodies and fluid. ACM
Transactions on Graphics 23, 3 (Aug. 2004), 377–384. Special
issue on Proceedings of SIGGRAPH 2004.

[DC96] DESBRUN M., CANI M.-P.: Smoothed particles: A new
paradigm for animating highly deformable bodies. In Computer
Animation and Simulation ’96 (Aug. 1996), pp. 61–76.

[EMF02] ENRIGHT D. P., MARSCHNER S. R., FEDKIW R. P.:
Animation and rendering of complex water surfaces. ACM Trans-
actions on Graphics 21, 3 (July 2002), 736–744. Special issue
on Proceedings of SIGGRAPH 2002.

[ETK∗07] ELCOTT S., TONG Y., KANSO E., SCHRÖDER P.,
DESBRUN M.: Stable, circulation-preserving, simplicial fluids.
ACM Transactions on Graphics 26, 1 (Jan. 2007).

[FF01] FOSTER N., FEDKIW R.: Practical animation of liquids.
In Computer Graphics (SIGGRAPH 2001 Proceedings) (Aug.
2001), pp. 23–30.

[FLM03] FOSKEY M., LIN M., MANOCHA D.: Efficient com-
putation of a simplified medial axis. In 8th Symposium on Solid
Modeling and Applications (June 2003), pp. 96–107.

[FM96] FOSTER N., METAXAS D.: Realistic animation of liq-
uids. In Graphics Interface 1996 (May 1996), pp. 204–212.

[FOA03] FELDMAN B. E., O’BRIEN J. F., ARIKAN O.: An-
imating suspended particle explosions. ACM Transactions on
Graphics 22, 3 (July 2003), 708–715. Special issue on Proceed-
ings of SIGGRAPH 2003.

[FOK05] FELDMAN B. E., O’BRIEN J. F., KLINGNER B. M.:
Animating gases with hybrid meshes. ACM Transactions on
Graphics 24, 3 (Aug. 2005), 904–909. Special issue on Proceed-
ings of SIGGRAPH 2005.

[FOKG05] FELDMAN B. E., O’BRIEN J. F., KLINGNER B. M.,
GOKTEKIN T. G.: Fluids in deforming meshes. In 2005 Sympo-
sium on Computer Animation (July 2005), pp. 255–259.

[FSJ01] FEDKIW R., STAM J., JENSEN H. W.: Visual simulation
of smoke. In Computer Graphics (SIGGRAPH 2001 Proceed-
ings) (Aug. 2001), pp. 15–22.

[GBO04] GOKTEKIN T. G., BARGTEIL A. W., O’BRIEN J. F.:
A method for animating viscoelastic fluids. ACM Transactions
on Graphics 23, 3 (Aug. 2004), 463–468. Special issue on Pro-
ceedings of SIGGRAPH 2004.

[GSLF05] GUENDELMAN E., SELLE A., LOSASSO F., FEDKIW

R.: Coupling water and smoke to thin deformable and rigid
shells. ACM Transactions on Graphics 24, 3 (Aug. 2005), 973–
981. Special issue on Proceedings of SIGGRAPH 2005.

[KCC∗06] KIM J., CHA D., CHANG B., KOO B., IHM I.: Prac-
tical animation of turbulent splashing water. In 2006 Symposium
on Computer Animation (Sept. 2006), pp. 335–344.

[KFCO06] KLINGNER B. M., FELDMAN B. E., CHENTANEZ

N., O’BRIEN J. F.: Fluid animation with dynamic meshes. ACM
Transactions on Graphics 25, 3 (Aug. 2006), 820–825. Special
issue on Proceedings of SIGGRAPH 2006.

[LGF04] LOSASSO F., GIBOU F., FEDKIW R.: Simulating water
and smoke with an octree data structure. ACM Transactions on
Graphics 23, 3 (Aug. 2004), 457–462. Special issue on Proceed-
ings of SIGGRAPH 2004.

[LS07] LABELLE F., SHEWCHUK J. R.: Isosurface stuffing: Fast
tetrahedral meshes with good dihedral angles. ACM Transactions

on Graphics 26, 3 (Aug. 2007). Special issue on Proceedings of
SIGGRAPH 2007.

[LSSF06] LOSASSO F., SHINAR T., SELLE A., FEDKIW R.:
Multiple interacting liquids. ACM Transactions on Graphics 25,
3 (Aug. 2006), 812–819. Special issue on Proceedings of SIG-
GRAPH 2006.

[McC87] MCCORMICK S. F.: Multigrid Methods. Society for
Industrial and Applied Mathematics, Philidelphia, 1987.

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. In 2003 Sym-
posium on Computer Animation (Aug. 2003), pp. 154–159.

[MKN∗04] MÜLLER M., KEISER R., NEALEN A., PAULY M.,
GROSS M., ALEXA M.: Point based animation of elastic, plastic
and melting objects. In 2004 Symposium on Computer Animation
(July 2004), pp. 141–151.

[NFJ02] NGUYEN D., FEDKIW R., JENSEN H.: Physically based
modeling and animation of fire. ACM Transactions on Graphics
21, 3 (Aug. 2002), 721–728. Special issue on Proceedings of
SIGGRAPH 2002.

[Owe98] OWEN S. J.: A survey of unstructured mesh genera-
tion technology. In 7th International Meshing Roundtable (July
1998), pp. 239–267.

[PTB∗03] PREMOŽE S., TASDIZEN T., BIGLER J., LEFOHN A.,
WHITAKER R.: Particle-based simulation of fluids. Computer
Graphics Forum 22, 3 (Sept. 2003), 401–410.

[SRF05] SELLE A., RASMUSSEN N., FEDKIW R.: A vortex par-
ticle method for smoke, water, and explosions. ACM Transac-
tions on Graphics 24, 3 (July 2005), 910–914. Special issue on
Proceedings of SIGGRAPH 2005.

[Sta99] STAM J.: Stable fluids. In Computer Graphics (SIG-
GRAPH ’99 Proceedings) (Aug. 1999), pp. 121–128.

[Str99] STRAIN J. A.: Semi-Lagrangian methods for level set
equations. Journal of Computational Physics 151, 2 (May 1999),
498–533.

[Str01] STRAIN J. A.: A fast semi-Lagrangian contouring
method for moving interfaces. Journal of Computational Physics
169, 1 (May 2001), 1–22.

[TKPR06] THÜREY N., KEISER R., PAULY M., RÜDE U.:
Detail-preserving fluid control. In 2006 Symposium on Computer
Animation (Sept. 2006), pp. 7–12.

[TLP06] TREUILLE A., LEWIS A., POPOVIĆ Z.: Model reduc-
tion for real-time fluids. ACM Transactions on Graphics 25, 3
(Aug. 2006), 826–834. Special issue on Proceedings of SIG-
GRAPH 2006.

[TOS01] TROTTENBERG U., OOSTERLEE C. W., SCHÜLLER

A.: Multigrid. Academic Press, London, 2001.
[TPF89] TERZOPOULOS D., PLATT J., FLEISCHER K.: Heating

and melting deformable models (from goop to glop). In Graphics
Interface 1989 (June 1989), pp. 219–226.

[WSHD04] WARREN J., SCHAEFER S., HIRANI A. N., DES-
BRUN M.: Barycentric coordinates for convex sets. Advances in
Computational and Applied Mathematics, 2004.

[ZB05] ZHU Y., BRIDSON R.: Animating sand as a fluid. ACM
Transactions on Graphics 24, 3 (Aug. 2005), 965–972. Special
issue on Proceedings of SIGGRAPH 2005.

[ZYP06] ZHENG W., YONG J.-H., PAUL J.-C.: Simulation of
bubbles. In 2006 Symposium on Computer Animation (Sept.
2006), pp. 325–333.

c© Association for Computing Machinery, Inc. 2007.

