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ABSTRACT decided locally by each AS, and is not directly observable from
Routing policies are typically partitioned into a few classes that available BGP datar.] Thoszle pOlICfler? ?Ct glc(;bally_acrosshthe ent_lre
capture the most common practices in use today [1]. Unfortunately, §ystem [4]. Hence the topo ogy o t glnter- omain graph s n.ot., n
it is known that the reality of routing policies [2] and peering rela- itself, enough to mod_el the reality of mter-dom{:un routing. PO"C'QS
tionships is far more complex than those few classes [1,3]. We take also need to be considered to capture the reality of the path choices

the next step of searching for the appropriate granularity at which Made by each AS.

policies should be modeled. For this purpose, we study how and Policies are not _easily (_je_fined [1] as they encompass the bus_i-
where to configure per-prefix policies in an AS-level model of the €SS and engineering decisions made by each AS, both commercial

Internet, such that the selected paths in the model are consisten{ag"e_emen_ts (b_usiness re_Iations_hips) and_technical "’?Spe‘“s (router
with those observed in BGP data from multiple vantage points. conflguratlon, inter-domain roqtlng behavua!t,c)._ In this paper,

By comparing business relationships with per-prefix filters, we W€ @m to capture the appropriate level of detail about policies to
investigate the role and limitations of business relationships as abe used in a model of the Internet. Our ultimate objective, which

model for policies. We observe that popular locations for filter- is.not achigyed yetin this paper, IS to build a model of th.e.lnternet
ing correspond twalleyswhere no path should be propagated ac- W'th a_s_uff|C|entIy detailed view of the AS-evel c_on_nectlwty and
cording to inferred business relationships. This result reinforces 'tz policies so z;s to be able to have useful predictive capabilities
the validity of thevalley-freeproperty used for business relation- 2P0ut BGP paths.

ships inference. However, given the sometimes large path diversity

So far, models of the network structure have been mostly inter-
ASs have, business relationships do not contain enough informa-domain level models that do not care about details of the ASs [5-7].
tion to decide which path will be chosen as the best. To mode

| However ASs are not simple nodes in a graph. Rather they consist
how individual ASs choose their best paths, we introduce a new

of routers spanning often large geographic regions. The internal
abstractionnext-hop atomsNext-hop atoms capture the different strqcture of an ASloesmatter. I_t influences inter-domain routing,
sets of neighboring ASs an AS uses for its best routes. We showfor msta_nce via hot-potato rout_lng [8,9]. Fu_rther, there are_mu_ltlple
that a large fraction of next-hop atoms correspond to per-neighbor connections between ASs, typically from different routers in differ-
path choices. A non-negligible fraction of path choices, however,

ent locations, which adds to the diversity of known routes [10, 11].
correspond to hot-potato routing and tie-breaking within the BGP 1€ main goal of this paper is to study the granularity of rout-
decision process, very detailed aspects of Internet routing.

ing policies in the Internet as they are observed from BGP data
from multiple vantage points. We do not blindly rely on exist-

Categories and Subject Descriptors: C.2.2 [Computer-Com- ing notions of routing policies such as business relationship infer-
munication Networks]: Network Protocols—Routing Protocols ence [5,12,13]. Rather, we rely purely on what we observe in BGP
C.2.5 [Computer-Communication Networks]: Local and Wide- data and attempt to learn as much as possible about the “correct”
Area Networks—ternet (e.g., TCP/IP) level-of-detail needed to model actual routing policies. Our main
General Terms: Algorithms, Experimentation, Measurement concern is not to shrug off existing approaches, but to pinpoint their
Keywords: BGP, inter-domain routing, routing policies advantages and disadvantages and how they are related to one an-
other.
1. INTRODUCTION Our approach is similar to that of [14], as we build an AS con-

The Internet is composed of a large number of independently nectivity graph that enables the propagation o_f all rou_tes presentin
administered networks (Autonomous Systems or ASs), coupled by ©PSeérved BGP paths. To match observed routing, we introduce “ag-
the inter-domain routing protocol (BGP) into a single globe span- nostic” policies, since itis impossible to infer all of the details of an

ning entity. Inter-domain routing is controlled by diverse policies, AS'S Policies without access to router configurations. However, we
go beyond the agnosticism of [14] as we compare inferred policies

with business relationships. The gained insights are important for
our study of the right granularity to model routing policies.

Permission to make digital or hard copies of all or part of thikfor Our work reveals two dimensions to policies: (i) which routes are
personal or classroom use is granted without fee providatidbpies are allowed to propagate across inter-domain links (route filtering); and
not made or distributed for profit or commercial advantage aatidbpies (i) which routes among the most preferred ones are actually cho-

bear this notice and the full citation on the first page. Toyooiherwise, to sen (route choice) and thus observed by BGP monitors. In terms

republish, to pg/St onfservers orto redistribute to listgunes prior specific ¢ e first dimension we show that the granularity of business
ermission and/or a fee. . . . . .
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tionships provide the right abstraction to prevent unnecessary paths 10000
from propagating in a model of the Internet. For the second dimen-
sion, however, the classes of neighbors defined by business rela-
tionships are not precise enough. When only business relationships 1000
are used as policies in a model of the Internet, there are still many
possible candidate paths among which the best path can be cho-
sen. Business relationships are not sufficient to determine among
all possible valid paths, which one should be chosen as best by the
model to be consistent with observed BGP data.

To crystallize the choice of paths an AS makes, we introduce a 10
new conceptnext-hop atomsNext-hop atoms capture the different
sets of neighboring ASs that each AS chooses for its best routes.
We show that a large fraction of next-hop atoms correspond to per- 1
neighbor path choices. A non-negligible fraction of path choices,
however, correspond to hot-potato routing and tie-breaking within
the BGP decision process, very detailed aspects of Internet routing. Figure 1: Number of quasi-routers per AS.

The remainder of this paper is structured as follows. Section 2
introduces the BGP data used and presents our AS-topology model2 2 AS_Level Connectivity
Section 3 analyzes the known bounds for policies studied in the lit-
erature. In Section 4, we search for the right granularity to model
policies: we infer per-prefix filter rules (Section 4.1) and compare
them with business relationships (Section 4.4). The insights gained
are important for Section 5 where we discuss the difference be-
tween routing policies and path choices. In Section 5 we come
up with a new abstraction that captures the selection of paths by
ASs: next-hop atoms. The related work is described in Section 6.
Finally, Section 7 concludes and discusses further work.

100

Number of ASs

1 2 3 4 5 6 7 8 9
Number of quasi-routers in AS

As already shown in [7,14], for an AS topology model to capture
route diversity, ASs cannot be considered atomic entities. In order
to represent the intra-domain routing diversity, we allow each AS
to consist of multiple quasi-routers. duasi-router represents a
group of routers within an AS, all making the same choice about
their best routes. Thus the “quasi-router topology” does not rep-
resent the physical router topology of a network, rather the logical
partitioning of its observed path choices. An AS has to be mod-
eled with multiple quasi-routers if it receives and chooses as best
multiple paths towards at least one prefix.

2. AS-TOPOLOGY MODEL Figure 1 provides the number of quasi-routers per AS that are
required to capture BGP path diversity. In any data analysis results
of this paper, we do not consider stub ASs, i.e., ASs that appear as
the last AS hop on any AS path in our data (pure originating'AS)
Among the 3535 remaining ASs, 267 require more than a single
quasi-router. Only 2 ASs need as many as 8 and 9 quasi-routers to
account for their observed routing diversity. Typically, well-known
tier-1 ASs require several quasi-routers. This is consistent with [10]
which showed, based on active measurements, that tier-1 ASs have
2.1 Data high path diversity. On the other hand, a low number of quasi-

Different techniques exist to collect BGP feeds from an AS. One routers per AS is due both to the sampling of the available paths of
of the most common techniques is to rely on a dedicated worksta- the observed BGP paths, as well as the loss of BGP routing diver-
tion running a software router that peers with a BGP router inside sity inside ASs [19].
the AS. We refer to each peering session from which we can gather  Diversity of the AS paths is strongly related to the AS-level con-
BGP data as anbservation pointand the AS to which we peeras  nectivity. Figure 2, in which we consider the sam&36 ASs as in
theobservation AS Figure 1, shows a scatterplot of the relationship between the num-

We use BGP data from more thayBD0 BGP observation points,  ber of required quasi-routers and the number of neighboring ASs.
including those provided by RIPE NCC [15], Routeviews [16], We observe that ASs that do not have many neighbors also tend to
GEANT [17], and Abilene [18]. The observation points are con- have a small number of quasi-routers. Highly connected ASs on the
nected to more than 700 ASs, and in 30% of these ASs we haveother hand may have many quasi-routers, although this is not nec-
feeds from multiple locations. essarily always true. Some ASs have hundreds of neighbors, yet a

As we are currently notinterested in the dynamics of BGP we use single quasi-router is enough to account for their routing diversity.

a static view of the routes observed at a particular pointintime. The  As previously stated, there are two reasons why an AS requires
table dumps provided by the route monitors are taken at slightly several quasi-routers: (i) the AS receives and selects as best mul-
different times. We use the information provided in these dumps tiple paths towards a given prefix from a given neighbor; and (ii)
regarding when a route was learned to extract those routes that werghe AS receives and selects as best different paths towards a pre-
valid table entries on Sun, Nov., 13, 2005, at 7:30am UTC and have fix but from different neighbors. From Figure 2, we can observe
not changed for at least one hour. In future work we are planning that highly connected ASs have a far larger number of neighbors
to also incorporate the AS-path information from BGP updates.  than quasi-routers. ASs thus select a very small subset of best paths

Our dataset contains routes with780,222 different AS-paths ~ compared to the number of paths they may receive from their neigh-
between 3271351 different AS-pairs. An AS-level topology is  bors, for any prefix. Note that the first reason why an AS might
derived from the AS-paths. If two ASs are next to each other on need several quasi-routers does not seem to be common. For only
a path we assume they have an agreement to exchange data and

are therefore neighbors in the AS-topology graph. We are able to 1Aithough being transit domains, some ASs may only have one AS
identify 21,159 ASs and 503 AS-level edges. neighbor after removing stub ASs.

To study the granularity of policies, we need a topology model
of the Internet. The measured routing data, used throughout this
paper, is described in Section 2.1. Section 2.2 describes some prop
erties of the AS connectivity observed in this data, which precedes
our explanation in Section 2.3 of how the AS graph of our model is
built from the observed paths.
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10 inter-domain link with any of their neighboring ASs. Only 386 ASs
require more than one inter-domain link per neighbor, and 41 ASs
more than 2 inter-domain links. As seen from BGP data, only a
very small fraction of the ASs choose their best paths from several
neighbors at the same time towards any of their prefixes.

3. BOUNDS ON POLICY GRANULARITY

To find an appropriate way to model policies in the Internet, it
is important to start with realistic bounds that define the finest and
coarsest granularities at which policies are applied in the Internet.
c There are two ends to this spectrum. The finest granularity is the
0 one of BGP atoms [20, 21], which are sets of prefixes originated

! 1o 100 1000 10000 by a given AS that receive equivalent treatment by routers in the
Number of neighboring ASs h ey
Internet. BGP atoms are as fine as the set of policies that the ob-
Figure 2: Relationship between number of neighboring ASs served BGP paths encounter, which can be as fine as on a per-prefix
and number of quasi-routers. basis. The coarsest granularity does not depend on the originated
prefixes, but only on the neighbors from which routes are received.
623 pairs of neighboring ASs do we observe in the data that an AS It iS the granularity of business relationships. ASs may configure
chooses from one of its neighbors more than one path towards atPolicies as coarse as per-neighboring AS, hence treating all pre-
least one prefix. Further, in only 19 cases do we observe an AS fixes, received from a given neighbor, in the same way.
receiving more than 2 distinct paths from a given neighbor towards

o wew o

Number of quasi-routers

at least one prefix. 3.1 BGP Atoms
o ] For inter-domain routing, each prefix is handled independently
2.3 Building a Quasi-Router-Level Graph from other prefixes. However, groups of prefixes may receivakeq

For our study of the granularity of routing policies we need a tréatment by a given set of BGP routers, due to the granularity of
topology model of the Internet. We capture the inter-domain con- routing policies. The analysis of BGP routing tables has shown
nectivity via an AS-topology graph as extracted from the BGP data that clusters of prefixes originated by given ASs undergo the same
(see Section 2.1). In order to represent the intra-domain routing routing policies [20, 21]. Groups of prefixes (originated by a given
diversity, we allow each AS to consist of multiple quasi-routers.  AS) that receiveequivalent treatmeriy a set of BGP routers are

To ensure the connectivity of our model is minimal, the topology calledBGP atomg20, 21]. As BGP monitors see only a sample
is built when assigning to quasi-routers AS path suffixes observed Of the outcome of routing policies through observed AS paths, not
in the data. A suffixs of an AS pathP is any substringQ such the policies themselves,BGP atomis defined as a set of prefixes
thatP = Qs The AS topology we create has as few quasi-routers that share the same set of AS paths as seen from a set of BGP
per AS as possible, and an edge exists between two quasi-routers ifOUters [21]. Two prefixes are put in the same BGP atom if their
some suffix has to be propagated between the two quasi-routers. AS- PATHis the same, as seen by all observation points. The finest

Our assignment works on a per-prefix basis. First we set all granularity of a BGP atom is a single prefix, whereas the coarsest
quasi-routers as free to be assigned paths towards the consideret$ all the prefixes originated by an AS (or a set of origin ASs in the
prefix, and set all suffixes towards this prefix as to be assigned. case of MOAS prefixes [22]). _
Then, as long as there are suffixes that are not assigned, we try to AOMS’sizes vary across and within origin ASs. A large fraction
assign them by starting with those suffixes closest to the originat- Of atoms consist of a single prefix, while some atoms consist of tens
ing AS(s) of the prefix. When assigning suffixes, we first re-use Of prefixes. As BGP atoms are defined with respect to a given set
existing connectivity between quasi-routers. If no link between the Of vantage points, policies applied by single ASs might be coarser
first two ASs on the suffix can be re-used for this prefix, we then than per BGP atom.
create a new link between a free quasi-router in the first AS on the
suffix and the next AS. Note that the creation of the topology (links
between quasi-routers) follows directly from the path assignment.
Due to space limitations, we do not explain in detail how our AS
topology is built.

The number of necessary quasi-routers in an AS is not the only
parameter that matters for allowing an AS topology model to re-
produce the paths observed in BGP data. Even though only few
quasi-routers might be necessary to account for the routing diver-
sity of an AS [14], the way quasi-routers between two ASs are con-
nected also matters. If, in general, an AS requires the same number
of inter-domain links as it has neighboring ASs, it means that even
though this AS might have many neighbors, only a single neighbor 0.2

Proportion

at a time is used as next hop AS in the best routes for any prefix. If 01 num’g‘g‘gﬁ;g&g’g}ﬁ AS X
an AS in our model has substantially more inter-domain links than 0 ,_humber of prefixes in AS -+
neighboring ASs on the other hand, it means that the considered 1 10 100
AS uses several neighboring ASs for its best routes towards some Size
prefixes.

3,150 among the 335 transit ASs of our data require a single Figure 3: Atoms structure for dataset.
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To compute atoms, we use an approach similar to [21]. We put  Only 10.1% the paths agree between the simulation and the ob-
two prefixespl andp2 in the same BGP atom if the{S- PATHis servations. For 60% of the paths, the corresponding path is not
the same, as seen by all our observation points. Figure 3 present®ven propagated to the AS that should observe that path in the sim-
the atoms structure of the dataset. The graph displays three cumu-ulations. Only 246% of the paths are learned by the right AS but
lative curves: the number of prefixes per origin AS, the number of not selected as best path by any quasi-router of that AS.
prefixes in each atom, and the number of atoms in each AS. We ob- We find these results disappointing. Introducing business rela-
serve that the distribution of the number of prefixes per origin AS is tionships does not seem to solve any inconsistencies between the
virtually the same as in [20] which relies only on RIPE NCC data. paths propagated in our model and the routes actually observed in
More than 40% of the origin ASs advertise a single prefix: at least the Internet.

40% of the atoms hence consist of a single prefix. The curve giv- . .
ing the number of prefixes per atom shows that 70% of the atoms 3.3 Atoms vs. Relationships

consist of a single prefix. The RIPE data used by [20] had 60% of  we believe that neither BGP atoms nor business relationships
single prefix atoms. give an ultimate answer to the problem of which granularity should
We believe that we observe finer atoms in the data compared pe ysed for modeling routing policies.
to [20] because our data provides a more extensive coverage of On the one hand, business relationships appear too coarse, as
the actual BGP paths. With an increasing number of paths, we they result in high inconsistencies between the paths propagated in
also observe the effect of more policies, leading to smaller atoms oyr model and the routes actually observed in the Internet. We want
due to more diverse path choices. The curve in Figure 3, show- o point out that this does not necessarily mean that business rela-
ing the number of atoms in each AS, confirms that data used in tjonships are “wrong”. However, it is unclear to what extent having
this study sees ASs that have more atoms than that observed usper-neighbor policies is responsible for this high inconsistency.
ing RIPE. In our data, about 30% of the ASs contain two or more BGP atoms, on the other hand, also have shortcomings. Two pre-
atoms, whereas [20] observed only slightly more than 25% of ASs fixes are put in the same atom if théi- PATHis the same, as seen
with two atoms or more. by all our observation points. According to this definition BGP
: : : atoms describe policiemcross manyASs, i.e., observation points.
3.2 Business Relat|onsh|ps We believe that relying on BGP atoms is therefore dangerous for
Business relationships rely on the coarsest granularity possible oyr study, as atoms do not discriminate different inter-domain links
for pOIiCies: flltel’lng rules defined on a per-neighbor basis. More and parts of the topology_ For example’ BGP atoms do not Capture
details on business relationships and their inference can be foundsijtuations where a large fraction of the policies in the Internet are
in Appendix A. defined as coarse as per-neighboring AS, while only a small subset
As business relationships are the most popular model for poli- of ASs configure policies on a per-prefix level. In this case, BGP

cies in the literature, we simulate the path choices in our model, atoms are prone to generalize and would suggest that probably all
when the only policies configured are inferred business relation- Ass have their policies defined on a per-prefix level.

ships. Then, we compare the paths chosen in the model with those
observed in BGP data. Customer-provider and peering relation-

ships are inferred by applying the CSP algorithm [23] to the data 4. IN SEARCH FOR THE RIGHT
(see Appendix A). GRANULARITY

V\_/e_ rely on C-BGP [24, 25] to compute the outcome of the BGP Given the results of Section 3, one may wonder whether business
decision process and the set of learned routes at every router Ofrelationshi s or BGP atoms are the right wav to model policies in
our AS-level topology. C-BGP computes the steady-state choice P 9 Y P

of the BGP routers after the exchange of the BGP messages hasthe Internet. Therefore, we now start our search for the appropriate

X . : granularity of policies from scratch and rely on the finest granular-
converged. This allows us to perform large-scale simulations for ible: fix filtering. We identify fi ined polici
single prefixes on topologies with more than 247 routers split gy pos|5| e pehr-pre X |t§r|ng. d el efrglfy .|ne-2gra|ned policies
among 21169 ASs in approximately 2 minutes with 300 MB of y analyzing what we see in our data of Section 2.1 and comparing

memory consumption. Each quasi-router in our model corres Ondsit to the routes selected by our model without implemented poli-
yco ption. Each qua P cies. The motivation behind this approach is to compare the ob-
to a router in the C-BGP simulation.

tained per-prefix filters with coarse-grained policies as imposed by

AS-Paths which agree 14.5% inferred business relationships. The gained insights will be impor-
AS-Paths which disagree 85.5% tant in Section 5 when we propose a new abstraction for routing
due to policies.
route not available 60.9% As it is impossible to extract information about the implemen-
route learned but not selectgfl 24.6% tation of policies only based on observed BGP data, we restrict

) ourselves to per-prefix filtering: if there is a disagreement between

Table 1: Agreement between observed and simulated routes  some observed path and the corresponding route selected in our
when business relationships are used as policies. model, a set of filter rules is identified to prevent the propagation

of “wrong” paths. Section 4.1 explains in detail how sets of filter

Table 1 shows the consistency between the path choices simu-policies are computed. Given that we restrict ourselves to filtering
lated in the model with business relationships configured as poli- policies, how much freedom do we have in placing those filters?
cies, and the paths observed in the data. For each observed pattFiltering between different AS-level peerings may have the same
we check if there is at least one quasi-router that selects the ob-effect in terms of path propagation for the observed path. Sec-
served AS path as best route in the simulation. tion 4.2 tries to estimate the amount of freedom we have in terms

2We choose to assign IP addresses such that the high order 16 bit%f equwalen_t policies when trying to achieve consistency be_tween
are set to the AS number and the low order bits are a unique ID for P€St routes in our model and observed AS paths. In Subsection 4.3,

the quasi-router. In case of a tie-break a quasi-router prefers ASwe make an important step in our search for the appropriate gran-
paths announced by quasi-routers with low IP addresses. ularity of policies. Given a large set of per-prefix filtering rules
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that has been computed exclusively based on observed data, we tryn our approach, each mismatch gives a hint about where policies
to find out if there is possible aggregation across prefixes. More are required. We now distinguish between two different cases of
precisely, we check whether there are locations on the AS connec-mismatch.

tivity graph that seem to benefit more frequently from a filter than ~ The first case of mismatch can occur when, a router does not
others. As we detect some very popular locations for filtering in select the path consistent with the assignment of Section 2.3, due
Section 4.3, we conclude that the implementation of actual rout- to the existence of some shorter AS paths. In this case, we will
ing policies is somewhere in-between per-prefix and per-neighbor introduce per-prefix BGHilters on the link from the announcing
policies. Therefore, we compare in Section 4.4 inferred business neighbors to prevent the shorter paths from being propagated to the
relationships with the per-prefix filters we detected using the ap- router. In Figure 4, both AS 1 and AS 2 will propagate routes to

proach of Section 4.1. AS 7 which are shorter than the observed AS p&ate- 5- 4- 3.
. . In the following, we denote a filtering rule in our model between
4.1 Inferring Filters AS X and ASY, whereY does not propagate a prefix towatds

We now we describe how to identify sets of per-prefix policies in by X < Y. Thus, configuring the filter rules< 1 on link 7- 1 and
order to obtain agreement between the routes selected in our model + 2 on link 7- 2 can be used to obtain the observed path at AS 7.
and those observed in the data. The guideline in this approach is The second case will occur if a router does not select the “cor-
to rely only on what we see in the data. We account for this ba- rect” AS path due to a wrong “tie-breaking” decision in our model.
sic principle as follows: First, the physical connectivity of our AS Provided some router receives multiple routes with equal AS path
topology of Section 2.3 is sufficient to make the propagation of lengths, the BGP decision process will have to break ties, e.g., by
all observed AS paths possible, if policies are to be installed prop- preferring the route learned from the neighbor with the lowest IP
erly. Second, policies are introduced on a per-prefix basis, the finestaddress. We ignore those situations since no policy is identified.
granularity for which policies can be configured. Third, we wantto Indeed, we cannot be sure whether a policy is actually needed to
make as weak assumptions as possible about where to place a polget the correct propagation. We do not want the uncertainty of the
icy. If an observed AS path is not selected in the topology model BGP decision process and its implementation to impact our study
of Section 2.3, we have a large choice about where and what policy of the granularity of policies. Reconsidering the example in Fig-
to introduce. Different policy types and different AS-level peer- ure 4, we see that AS 5 may not select the observed ik 3
ings may have the same effect in terms of path propagation for the due to a “wrong” tie-breaking decision: the C-BGP simulation will
observed AS path. Therefore, we try to identify multiple “candi- prefer the patfb- 2- 3 if the router of AS 2 has a lower IP address
date” policies first and in a later step (cf. Section 4.4) we will use than the router of AS 4.
heuristics to pinpoint likely policies. Let us now define three notions that will be used to explain the

The example in Figure 4 illustrates the many possible locations detection of filtering policies:
for policies, if the only goal is to allow for the propagation of an  Candidate filter: A per-prefix filter rule which helps to allow the

observed AS path. We observe at AS 7 an AS path- 5- 4- 3 selection of an observed path as best route in our model. In
originated by AS 3. However, reproducing the BGP route selection general, several candidate filters (e.g., a filtering combina-
in this topology without any policies will show that AS 7 selects the tion) will be needed. Additionally, shorter paths do not nec-
shorter pattv- 2- 3 to reach the prefix. In this case, a preference essarily have to be filtered at the location of the mismatch. To
policy at AS 7 or filtering at least one link both of the path<2- 3 obtain the observed path at AS 7 in Figure 4, filtering on the
and7- 1- 2- 3 will have the same effect in terms of the propagation link 2- 3 has the same effect as having filters on bt

of the observed AS paff+ 6- 5- 4- 3. Note that it is even possible and7- 2. Altogether, we identify four candidate filters in our
to apply an arbitrary subset of all “candidate” policies that will have example: 7%+~ 2,7+ 1, 1~ 2,2+ 3.

the same effect. Filtering combination: A set of filter rules for a mismatch which

satisfies two conditions: (i) Applyingll filters in this set
clears the mismatch, i.e., there will be agreement between

' prefix . . .
--"' the observed suffix path assigned to a quasi-router, and the
- route currently selected in our model; and (ii) the set of poli-
AS3 cies in this set isninimal i.e., if any policy from a filtering

combination is removed the mismatch will not disappear. In
the example in Figure 4, there are three filtering combina-

—p 0bs. route

-

; tions:
asy  fiter? As? "o sim-foute (1) 7+ 2and 7+ 1
(2) 7+ 2and 1+ 2
Figure 4: Filtering - Example. (3) 2+ 3.
However, the set of filter rules # 2, 7+~ 1 and 1+ 2 is
In order to reproduce BGP route selection in our AS-level topol- not considered as a filtering combination, as either T or
ogy, we again use C-BGP [24, 25]. As a consequence, we know 1 «+ 2 can be removed while the router of AS 7 still chooses
for every router in our model which routes it learns to reach a pre- the assigned suffix- 6- 5- 4- 3.
fix and also which route is selected as best. According to the as- Dependency graph: A data structure used to store the identi-
signment of observed AS path suffixes to quasi-routers in our AS- fied filter candidates and their dependencies for a certain pre-
topology graph (see Section 2.3), many of the routers in our model fix. Nodes in this graph represent candidate filters or mis-
are supposed to select a specific path to reach a certain prefix. How- matches whereas directed edges between nodes reflect de-
ever, without properly configured policies, the paths chosen by our pendencies. The direction of the edges is determined by our
model might not be the same as those observed in the datas-A algorithm. Basically, the algorithm recursively walks back
matchis referred to a situation where a quasi-router chooses an AS from the “mismatched AS” to the originating AS, detecting
path which is inconsistent with the path assignment of Section 2.3. filters along the way. Dependency edges are always directed
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towards filters which are closer to the originating AS. The AS. The basic idea is that the functiindCandidate$as as a pa-
idea now is that a “filter node” is not needed provided that rameter the current AS hdpand recursively calls itself on neigh-

(i) all its children nodes or (iigll its parent nodes in the de-  boring ASs from which it learns routes which are too short in terms
pendency graph are used or (iii) if there are no parent and of AS path length.

children respectively. Figure 5 shows the dependency graph  To know which routes need to be filtered, we use another param-
for the mismatch at AS 7 in Figure 4. There are five nodes, eterl, the maximum path length which an AS is allowed to propa-
with one representing the mismatch at AS 7 and the remain- gate. Provided that ABof findCandidateselects in the simulation
ing nodes the four candidate filters. Assume that filter32 a route with a strictly shorter AS path thira filter betweerh and

is used. In this case, ¢ 2 as well as % 1 are redundant, AS c — the AS from which this recursion has been called — will be
with all their children nodes (filter 2- 3) already used. added to the list of candidate filters. At the same time, we insert a
dependency edge between the new filter and the candidatedfilter
found at ASc.

In general, recursion terminates when we arrive at an originating
AS or when the current AS does not select a route shorter than the
maximum allowed path length There are many other situations
where recursion is stopped. For example, we allow the specifica-
tion of a threshold for the maximum recursion depth. Additionally,
no recursion is required if we arrive at an already visited AS hop.

The benefits of this data structure are two-fold. First, com- In our topology of Figure 4, the filters<#1 and %-2 are detected
pared to keeping all filtering combinations, the dependency while looking at neighbor AS 1 and AS 2 at recursion depth 1.
graph scales as its size is bounded by the number of links andwhile at AS 1, there will be a recursive call for AS 2 with recur-
ASs in our topology. Second, it prevents losing information sion depth 2. However, AS 2 has already been visited and thus the
about possible dependencies between detected filters rules. candidate filters have been already computed. Recursion can thus

Our algorithm to compute a set of candidate filters for a given P€ Stopped safely without losing information.
prefix is summar_iz_ed in _Figure 6. It takes as ian_Jt the obse_rved 4.2 Freedom in Filters Location
routes to a specific prefix, an AS topology including the assign- ) o .
ment of observed AS paths to quasi-routers (see Section 2.3) and Ve now apply the algorithm in Figure 6 to computendidate
the routes selected in our model when simulating BGP route prop- combinationson the AS-topology of Section 2.3. The goal is to
agation with C-BGP. For each mismatch, a set of candidate filters 9V€ an estimate of the choice we have in terms of filter candi-
is identified and inserted into the dependency graph. The result isdatés when trying to achieve consistency between best routes in

a dependency graph for the prefix, with all candidate filters being ©Ur model and observed AS paths. For this, we randomly select an
associated to at least one mismatch. extensive number of prefixes, callpdanpl e (see Table 2).

.............

1 Mismatch %
' atAS7 .

N 7] et Tk )

————— -

Figure 5: Dependency graph for mismatch in Figure 4.

foreach observed patlp to the given prefix # prefixes 50,000
start at originating AS and walk to observation AS # originating ASs 10,575
foreachhoph of pathp # distinct AS paths 2,267,296
o = suffix of p from AS h to observation AS # prefixes per AS path
s = simulated path at the router assigned for sudfix - mean 3.6
Olength = length of suffixo - standard deviation 11.8
if snot equalo # distinct AS paths to a prefi
add “mismatch’mto dependency graph - mean 161
findCandidatesy, ojength, M, 1) - standard deviation 42
# mismatches per prefix
subfindCandidates(hop, lengthl, from_policy fom, depthr) - mean 3,328
if (r > threshold) orlf == originating AS)! - standard deviation 5,191
terminate
foreach physical neighbon of h 2 . i
iengen = length of path announced from Table 2: Statistics onpsanpl e.
<
" ”'eggtg u,:IH_TER " fewto dependency graph psanpl e contains more than 2 million AS paths to,500 pre-
findCandidates( | — 1, faew r + 1) fixes. For each prefix, we have a mean of 160 distinct AS paths,
add link from from to frewin dependency graph with an average of 8 prefixes sharing a common AS path. While

1 not all termination criteria listed.
2 some neighbors can be skipped, not shown here.

Figure 6: Computing candidate policies for a prefix.

running our algorithm, we detected in total more than 10 million
mismatches, i.e., AS hops that do not select the “correct ” suffix of
an observed route. Even for a single prefix, the number of detected
mismatches is considerable, with328 on average.

To study the impact of recursion on the number of filter candi-

As shown in Figure 6, the algorithm proceeds by consecutively dates found, we run our algorithm with three different thresholds
looking at all routes observed for the prefix. For each route, we for the maximum recursion depth. The results are summarized in
walk along the AS path from the originating AS to the observation Table 3. Allowing filters only on links incident to the AS hop with
AS and check at each hop for an inconsistency, i.e., a disagree-the mismatch (recursion depth 1) results in an average 6ff82
ment between the observed suffix path and the simulated route atter candidates per mismatch. This number is surprisingly high but
the assigned quasi-router. If there is a mismatch, the funétioh can be explained by some ASs having a large number of neighbors
Candidatess called recursively to identify filter candidates. from which routes have to be filtered. With a recursion depth of 2

The recursion serves the purpose of considering filters that are(3), this increases to more than0DO (3 000) candidate filters on
not directly located at the mismatch but closer to the originating average.
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recursion  recursion  recursion
depthl  depth2  depth® e
mean 329 1,103 2,952
standard deviatior] 116 4,518 12174 >0
min 1.0 1.0 1.0 @
max 1,847 49,040 80,050 3 & S
el
1 only for a subset of 2,000 prefixes £
Table 3: Number of candidate filters per mismatch for § recursion depth 1
psanpl e. ° —— recursion depth 2

T T T T T
0 10000 20000 30000 40000 50000
# prefixes for which a filter is useful

Figure 7: Popularity of filters in psanpl e.

To measure the freedom we have in combining those candidate
filters, we use the notion dfitering combinationsiefined in Sec-
tion 4.1. We slightly modify the recursive functidimdCandidates
of our algorithm in Figure 6 to return the number of possible filter-
ing combinations. Recall that each filtering combination ensures [Percentie] 25%  50%  75% 50% 95%  100%
that no path is selected at the current AS hop which is strictly Foretnes
shorter than the maximum allowed path length. Ingeneral, thereare | (gepth1) | 236 1,888 3,604 5548 8,004 46,921
multiple “bad” neighbors from which we have to filter out shorter #prefixes
paths. The number of possible filtering combinations is the number | (depth2) || 1,480 6,237 11,389 15,523 18,896 47,082
of non-empty subsets of lines from the filtering combinations that
contain the "bad" neighbor. Table 4: Popularity of filters for recursion depth 1 and 2 in
Obviously, we only obtain a single filtering combination when psanpl e.
recursion is terminated at depth 1. However, with a maximum re-
cursion depth of 2 the average number of filtering combinations per
mismatch is already in the order of ¥, increasing to 18°%0 for candidates affect less than 236 prefixes (out of a total dd@) if
a maximum recursion depth of 3. Note that these numbers are onlya recursion depth of 1 is used. For a recursion depth of 2, this num-
rough estimates. Still, they illustrate the freedom we have in filter ber increases to,480. Selecting the, 290 most popular filtering
locations. There would be even more choice if we did not restrict locations for recursion depth Dfflters), we check how many of

ourselves to non-redundafittering combinationsand were to al- the filter candidates for recursion depth 2 would be redundant with

low other policies, e.g., local-preference. them, i.e., would not be needed to achieve agreement between ob-
. . servations and the routes in our model if the filtergfifterswere

4.3 Popularity of Filters configured. For this purpose, we take the computed dependency

In the previous section, we computed an extensive number of graph of recursion depth 2 and initially mark each filtepfiiters
candidate filters. Applying those per-prefix filters is supposed to as “covered”. Then, other filters in the dependency graph can be
ensure the propagation in our model of observed paths. The mainrecursively marked as “covered” if either all children policies or all
idea now is to check whether there are filter locations that are more parent policies are already marked. By doing so, we see that the
popular than others. We call a filter on an AS-level lppular if average ratio of covered filters is 75%. This number is surprisingly
the link is identified as a possible filtering location for many pre- high given that there are many prefixes with more thardeo fil-
fixes by our algorithm of Section 4.1. A large number of such pop- ters being detected for a maximum recursion depth of 2.
ular filters suggests that per-prefix policies are too fine and should The main lesson of this section is that a non-negligible part of our
be aggregated into coarser policy entities. filter candidates can be aggregated into coarser policy entities if the

To detect popular filters, we run the algorithm of Section 4.1 on only goal is consistency between propagation in our model and the
the observed routes psanpl e (see Table 4). Using a maximum  observed data. Higher recursion depths are not very helpful. They
recursion depth of 1 and 2 in our algorithm reveals the impact of add more noise thereby making it more difficult to identify popular
the recursion depth on the popularity of the identified filters. For locations for filtering.
each directed AS-level link, we count the number of prefixes for e . . .
which a filter candidate is identified as “useful” on that link. The 4.4  Revisiting Business Relationships
distribution of filters popularity for both recursion depths is plotted With regards to the correct granularity to model inter-domain
in Figure 7. routing policies, neither business relationships nor BGP atoms ap-

Figure 7 shows that some filters are more popular than others. pear to be the ultimate solution (see Section 3.3). In this section,
While for a recursion depth of 1, less than 5% of the detected can- we revisit business relationships and try to gain more insight into
didate filters are useful for at least, 000 prefixes (out of 5@00), their shortcomings by comparing them with popular filters (see
this is more than 30% for recursion depth 2. A similar trend is Section 4.3). The lessons we learn will be important when we de-
observed for larger recursion depths. The reason for this may bevelop a new abstraction for routing policies in Section 5.
that large recursion depths add a lot of noise, i.e., they identify can-  Business relationships have two consequences for route propa-
didate filters at locations which are unlikely to be related to the gation and selectiorpreferenceof certain routes ando-transitfor
mismatches we try to fix. some routes. First, network administrators may favor longer AS

Table 4 provides further details about the popularity of filters. paths over shorter ones due to economic reasons. In general, routes
There are some locations for filtering which seem to be very pop- learned from customers will be preferred over routes announced
ular. With a maximum recursion depth of 1, 5% of the identified over peering links and peering routes will be favored over provider
filter candidates are “useful” for more thar0®0 prefixes. routes. Second, multi-homed stub ASs want to avoid being used as

At the same time, we see filter candidates that are identified for transit. For this reason, routes learned from provider and peering
only a very small number of prefixes. 25% of the detected filter neighbors are not propagated to other provider or peering ASs.
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We first try to shed light on the impact of the-transitprinciple peer or customer AS according to the inferred AS relationships.
on route propagation. In Section 4.3 we identified filter candidates Then, we look at the corresponding AS and quasi-router in our
and found that there are some popular locations for filtering. The simulation and count the number of learned path which are of the
idea is now to compare such filter candidates with business rela- same “type” as the observed path, i.e., also a customer, provider
tionships and to find out whether some of the popular filters in our or peering path. Figure 8 shows the distribution of this number of
per-prefix approach possibly implememi-transit policies in the alternative path over all observed paths.

AS-relationship “world”. If so, this can be seen as a reason to con-
sider business relationships as some form of routing policy.

We compare business relationships with our candidate filters as
follows: as a first step, popular locations for filtering are identified.
According to Table 4, 5% of the filters found are useful for more
than 8000 prefixes. We select those filters and obtain a total of
2,290 popular filters (see Table 5).

Based on our AS-level topology, we then compute all ASs triples.
Altogether, there are more than 30 million such triples in our topol-
ogy. The next step is to identify triples which violate the so-called
valley-freeproperty. In our terminology, @alleyis a tripleA- B- C
along which no route should be propagated if tioetransitrule is
correctly enforced. Let us assume that AS C and AS A are both
providers of AS B according to the inferred business relationships. 0 50 100 150
In this case, AS B will not announce any route learned from one of # routes equally preferable as observed route
its providers to the other provider. According to Table 5, we find
more than 5 million valleys.

<
-

@©
[=}
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Figure 8: Business relationships: freedom in path choice for
observed paths at observation points.

total # of edges (directed) 117,822
total # of triples 30,351,164 For only approximately 10% of the observed paths, there is a sin-
total # of valleys 5,383,862 gle path from which to select the best one. However, for more than
g’;;ﬂ;;& gﬁgf:;'ar) filters ggf’ggg 10% of all observed paths, we obtain more than 50 paths that are
#filtered valleys 6021619 equally as good as the observed path, i.e. belong to the same type
ratio: filtered valleys to filtered triples 60.7% of path (customer, provider, peering). Given these results, we be-
# filters in at least one valley 2,283 lieve that business relationships do not reveal sufficient information
about the actugreferencepolicies used in the Internet. They only
Table 5: Business relationships vs. popular filters. tell us that customer routes are preferred over peering routes, and

peering routes over provider routes. Still, an AS may learn multiple

Now we check how popular filters and valleys are related to each customer, p_rovider or Pee“F‘g routes for the same prefix. In such
other. For this purpose, we collect all triplasB- Csuch thatany & €aseé business relationships cannot tell which one of the equally

popular filter appears as eith&r B or B- C. This results in 991268 good routes shoqld he ;elected as best. . .
filtered triples. Surprisingly, 6@% of the filtered triples are val- To cc_)nclud_e Fhls sect|o_n, we s_tate that th‘? main p'tObI(.am mh_erent
leys according to our inferred business relationships. At the same© relationship inference is the incomplete information it provides
time, almost all popular filters (283) are applied on AS-level about the actual preference of paths.
links which are part of valleys. Popular filters hence frequently
correspond to a non-transit policy, a situation where according to 5. FROM ROUTING POLICIES TO PATH
business relationships no path should be propagated. Henceforth,
we conclude that the popular filters we identified suggest that the CHOICES
valley-free property used to infer business relationships is indeed Section 4 showed that modeling policies both as per-prefix fil-
correct. ters and as business relationships has severe drawbacks. On the
However, the question remains of why using inferred business one hand, relying on business relationships is more scalable as less
relationships exhibits this high level of disagreement when compar- configuration is required in the model. Unfortunately, inferred rela-
ing the routes selected in our model with those observed in the data.tionships are not enough to lead to correct path choices. Per-prefix
As mentioned above, business relationships impact route propagadfiltering, on the other hand, allows for models highly consistent
tion in two ways:no-transitandpreference Given our results, we with observed path choices, but it is not scalable as its granularity
believe that an insufficient or incorrect implementation ofnibe- is the finest possible. If we now want to answer the question of what
transit principle is not the actual reason for these inconsistencies. is the right granularity to implement routing policies in an Internet-
Therefore, we now study the effectiveness of business relationshipswide model, we realize that do not have a definitive answer. Our
in preferring the “correct” observed path. conclusion so far is that business relationships are, in general, the
For this purpose, we again take the AS-topology of Section 2.3 right way to set routing policies in a model. However, predicting
and use business relationships inferred with the CSP algorithm [23]. path choices requires more details about routing policies: one also
Then, we run a simulation with C-BGP to compute the selected has to guess which path to select as best from a set of equivalent
routes for every router to each prefix. The goal is to find out how paths, all permitted by policies.
much choice each router has to select a best path. In spite of busi- To make the discussion more concrete, we need to introduce
ness relationships, a router may still have the choice between a sesome concept that will crystallize this choice of the paths some AS
of equally preferred routes. Therefore, we determine for each ob- performs. We call it th@ext-hop atomA next-hop atom NHbf an
served path whether the observing AS learns it from a provider, AS X is a subset of X's neighbors thAtchooses as next-hops for
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its best routes towards a given set of BGP athr#dl BGP atoms 100 E—

for which we see that an AS uses the same set of neighbors for its /
best routes belong to the same next-hop atom. The amaxdthop %0 /
atomsis to capture the distinct sets of neighboring ASs an AS re- 80 y.
quires to describe its path choices towards groups of prefixes. Note § /
that next-hop atoms do not reveal why some AS prefers some paths 5 70
to others. Next-hop atoms only describe the choice ASs make, not §> /
the reasons for their choice. g 60
Figure 9 illustrates an example of the choice of paths made by g /
AS X towards five different BGP atoms. AS X is composed of two %0
quasi-routersQRx1 andQRx2. It has three neighboring ASs: A, 20
B and C, each composed of a single quasi-router. The best path,
AS X chooses towards BGP atom 1, has as next-hop AS A. To 30 h " P B

reach atoms 2 and 3, X uses as its next hop AS B, whereas the best
paths towards both atom 4 and 5 go through AS B and C. In this
example, AS X requires two quasi-routers because it has to choose Figure 10: Number of next-hop atoms per AS.
two different best paths towards atoms 4 and 5.

Number of different next-hop atoms

‘Bapawm‘ ‘Bapawmz‘ ‘Bapmm‘ ‘Bepa.om4‘ ‘BGP atom 5 Figure 10 shows the distribution of the number of next-hop atoms
per AS, over the 535 transit ASs considered in Section 2.1. We
observe that about 40% of the585 ASs have a single next-hop
atom. Modeling routing policies for those ASs is trivial: they se-
lect, for all prefixes, the same set of neighbors. For the remaining
60% of the transit ASs, there can be between a few next-hop atoms
up to hundreds. As already mentioned, one expects that the larger
the AS, the more diverse its set of path choices, hence the larger its
set of next-hop atoms. Figure 11 confirms this belief by giving, for
each of the 335 transit ASs, the relationship between the num-
ber of neighboring ASs and the number of next-hop atoms. A vast
majority of the ASs (94%) fall on the =y line, i.e., have exactly
as many next-hop atoms as they have neighbors. Only some highly
connected ASs have far more next-hops atoms than neighbors (up
Figure 9: Example of path choices and next-hop atoms. to 13 times).

In the case of the example in Figure 9, XShas three different 10000
next-hop atomsNH; contains next-hop A towards BGP atom 1,
NH, contains next-hop B towards BGP atom 2 and 3 (since AS
X chooses its best routes towards BGP atom 2 and 3 via AS B),
andNHs; contains next-hops B and C towards BGP atom 4 and 5
(because AS X chooses its best routes towards BGP atom 4 and 5
via AS B and AS C). Among all possible combinations of next-hop
ASs, only a subset will actually be used to send traffic towards BGP
atoms. In our example, we only need three distinct combinations
of neighboring ASs towards the five considered BGP atoms. A
next-hop atom captures the coarsest granularity (across prefixes)
at which an AS chooses its best paths in distinct ways (among its
neighbors).

The reason to define next-hop atoms in terms of BGP atoms is 1 10 100 1000 10000
that BGP atoms define the finest granularity at which sets of pre- Number of neighbors
fixes share the same path choices. One might choose to use prefixegjgyre 11: Relationship between number of next-hop atoms
instead of BGP atoms. and neighbors.

Now that we have the concept of next-hop atoms to capture the
granularity at which ASs select their paths, we can study the ob-
served granularity at which ASs choose their paths. The simplest
way an AS can select its best paths is by always using the same
set of neighbors for all prefixes. Such an AS would have the same
next-hop atom towards all prefixes. Single-homed ASs are in this

S . i ) - ASs any next-hop atom contains. Among all next-hop atoms from
situation as they have a single neighbor from which to choose their . . . ) )
; - our 3 535 transit ASs, more than 75% contain a single neighboring
paths. Large transit providers on the other hand are expected to

. . AS (see Figure 12). Only for those next-hop atoms can we con-
have a large number of different next-hop atoms due to their larger .. - L e
. figure per-neighbor policies. For the remaining next-hop atoms,
number of neighbors.

preferring a single over all others does not work. In that case, it

3The definition of next-hop atoms can be trivially extended to next- cannot be only ocal - pr ef that decides about the choice of the
hop routers if more detailed information about ASs is available. best path, but other rules like MED, IGP cost or other tie-breaking
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Number of next-hop atoms

One might conclude from Figure 11 that since the vast majority
of ASs have as many next-hop atoms as neighbors, per-neighbor
path choices are the rule. This is only true to some extent. Fig-
ure 11 does not give any information about how many neighboring
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steps of the BGP decision process. One cannot hope to model such
detailed information about path choices by routers, especially by
relying only on BGP data from a limited set of vantage points.
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10 Figure 13: Number of neighboring ASs in next-hop atoms for

0 tier-1 providers.
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Assuming any kind of consistency of such policies across ASs is
Figure 12: Neighboring ASs in next-hop atoms. questionable, especially as in practice, policies are often config-
ured on a per-router, per-peering, or per-prefix basis [1]. bsde

Even though per-neighbor path preferences appear quite com-BGP routes do not have to make those high-level policies visible.
mon in the Internet, a non-negligible fraction of the path choices  Our work is similar to [7,14] in allowing the propagation of mul-
are made not by routing policies, but by tie-breaking within the tiple paths across ASs. The authors in [7] aimed at predicting AS
BGP decision process. paths between any pair of ASs without direct access to the con-

To further illustrate the complexity of path choices made by ASs, cerned end-points and relied on a new inference of business rela-
we study 5 large tier-1 providers in our data. As tier-1 providers tionships, as well as other information to predict the AS paths used
have large networks and many neighbors, we would expect thembetween any pair of ASs. [14] showed that to reproduce the diver-
to have complex path choices. Figure 13 provides the number of sity of the BGP paths observed from multiple vantage points, it is
neighboring ASs in the next-hop atoms of 5 tier-1 providers we se- necessary to allow different routing entities inside each AS to store
lected: UUNET (AS701), AT&T (AS7018), LEVEL3 (AS3356), and propagate the routing diversity known to ASs. Another insight
AOL (AS1668), and OPENTRANSIT (AS5511). We observe huge of this paper is that agnosticism about policies in the Internet helps
differences in the fraction of next-hop atoms that are made of a sin- to build a model which is completely consistent with observed BGP
gle neighbor (per-neighbor path choices). UUNET has more than data and which has good predictive capabilities. The authors used
85% of its next-hop atoms consisting of a single neighbor: its path per-prefix filtering policies to force their model to select the paths
choices are hence very coarse. AOL on the other hand, has less thaobserved by BGP.

5% of its next-hop atoms consisting of a single neighbor. AOL's

next-hop atom granularity reflects its business as content provider.7. CONCLUSION

AOL is more likely to choose to leverage its path diversity so as to
optimize the performance of the paths. OPENTRANSIT is closer
to AOL than the other 3 tier-1 providers. UUNET and AT&T have
a small fraction of next-hop atoms made of several neighboring
ASs. LEVELS stands in the middle of those 5 tier-1 providers in
the granularity of its path choices.

Modeling how ASs select their path hence depends on the kind
of AS being considered. Capturing the full diversity of paths prop-
agated in the Internet, therefore, is not sufficient. We also have to
find out what rule of the BGP decision process was used to decide
about the path to reach a given prefix. We do not expect this to be
an easy task, as itimplies inferring very detailed information about
AS network engineering.

In this paper we searched for an appropriate granularity for mod-
eling policies in the Internet. We explored the impact of routing
policies on an AS-level model of the Internet. Additionally, we
studied how and where to configure policies in this model in such a
way that the routes in the model be consistent with paths observed
by BGP from multiple vantage points.

By comparing business relationships with per-prefix filters, we
investigated the role and limitations of business relationships as a
model for policies. We observed there is a large freedom in the
location of filters in the model if the goal is to obtain path choices
consistent with observed BGP data. We also observed that the pop-
ular locations where filtering is necessary in our model correspond
to the valleyswhere no path should be propagated according to
business relationships inference. This result reinforces the valid-
6. RELATED WORK ity of the valley-freeproperty used for business relationships infer-

Inference of business relationships between ASs [5, 12, 13] hasence. However, business relationships do not help to decide which
been the most widely studied dimension of routing policies. Rout- paths among the candidates should be chosen by each AS: after en-
ing policies are typically partitioned into a few classes that capture forcing policies in the model in the form of business relationships,
the most common practices in use today [1]. Unfortunately, it is much choice is left as to which route to choose as the best among
also known that the reality of routing policies [2] and peering rela- the candidates. Business relationships do not contain enough infor-
tionships is far more complex than those few typical classes [1, 3]. mation about the path choices made by ASs. To capture the way
The current approaches for business relationships inferencerrely o individual ASs choose their best paths, we introduced a new ab-
a top-down approach. They first define a set of policies and then straction: next-hop atoms. Next-hop atoms capture the different
try to match those policies with their observations of the system. sets of neighboring ASs an AS uses for its best routes. We showed
Yet, policies as used by ISPs have to realize high-level goals [1]. that a large fraction of next-hop atoms correspond to per-neighbor
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path choices. A non-negligible fraction of path choices however do

not correspond to simple per-neighbor preferences, but hot-potato

routing and tie-breaking within the BGP decision process, which
are very detailed aspects of Internet routing.

[15] “RIPE’s Routing Information Service,”
http://ww.ripe.net/ris/.

[16] “University of Oregon RouteViews Project,”
http://www.routeviews.org/.

The work carried out in this paper provides another step towards [17] Intel-DANTE, “Intel-DANTE Monitoring Project,”

a model that may allow prediction of AS paths under “what-if”
scenarios. In future work we will validate the policies we derived
by testing their predictive capabilities and also by comparing them
to actual policies configured by ASs as in [26].
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APPENDIX
A. RELATIONSHIP INFERENCE

Previous work on inference of AS business relationships (e.g.,
[5]) relies on two main assumptions. First, there is a unique busi-
ness contract negotiated between any two ASs. The relationship
associated with any directed link of the AS topology is one of the
following: peer-peer, customer-to-provider (C2P) or provider-to-
customer (P2C) Second, routes of an AS received from any of its
provider or peer-peer neighbor cannot be propagated to any other
provider or peer-peer neighbor. In the literature, this is called the
“valley-free” property.

Inferring business relationships can be formulated as the Max-
TOR problem [12]. Given a set of AS paths, assign a unique label
to each link in the AS topology such that the number of valley-free
paths is maximum. MaxTOR is a NP-complete problem that was
tackled in the past by many heuristics because of its size. More-
over, as reported in [27], if a solution to MaxTOR withbusiness
relationships exists (optimal or not), then there are at leasif3

4two ASs may also establish a mutual-transit relationship (sibling
or SIB



ferent solutions leading to the same number of valley-free paths. Paths AS graph . CSP models |
This means that any given solution has a very small probability of all vertices Flljnzztasgt'?lﬁ variables _no-cons
being realistic, even if it produces the exact maximum number of 4681 770] 21160 580911] 965859 54193 7718
valley-free paths. RIPE subset (2)

As inferred relationships can produce up to 99% of observed 1972727] 21016 48162 415523 46 489 1673
valley-free paths, the propagation of observed paths remains pos- Route-views subset ( 3)
sible in an AS topology model when relationship filters are incor- 1682568 21060 47170] 476668 45197 1973

porated. However, as there is an exponential number of solutions
with the same number of valley-free paths, a large freedom remains
in the choice of relationship filters. Many approaches tackled the
MaxTOR problem by splitting each path into AS triples. From the
several approaches, we selected four:

Table 6: Datasets used to infer business relationships.

ASs and only 20% more AS relationships. Altogether, it contains
) roughly twice as many sub-paths of length 2 (AS triples) as the two
* gao [S]: The greedy approach recognizes valley-free AS paths g psets. Additional input paths increase the difficulty of MaxTOR
by using sequences of AS degrees in paths. When valleys oc-5nd make it more restrictive on potential solutions. Still, many so-
cur in AS paths, some conflicting relationships are supposed | tjons maximizing the same number of valley-free paths exist. We

to support a mutual-transit relationship (label "SIB"). now evaluate the solutions produced by the different algorithms.
e sark [12]: This algorithm uses topology leaf-pruning as seen

from. each observation poir.1t to infer per-\(antage-point AS relations valley-free maich
rankings. Then a relationship for each link is inferred. When PEER C2P  SIB/| triples paths| CAIDA Tier-1
ranking of ASs is not decisive enough, some links are labeled UNK match
with the "Unknown" relation. sark heuristic
csp [23]: This approach takes advantage of the Constraint | 1 [ 25688 32703 520 815 27.3| 5438 84.2
Satisfaction framework. A Max2CSP problem is derived from 2| 13786 34006 370| 84.6 299| 663 82.7
MaxTOR where each relation is a variable and each sub-path | 3 r11563'0t' 31188 352] 855 328| 613 857
: H H gao neuristic
ofllet_ngth 2A(,tASb triples) r|]ntr|odu_;:r$s a constraint bte_tvxzegn two 1112971 44757 1688 883 10001 926 557
relations. A tabu-search algorithm runs on a restricted space | 5 | ‘5p00 41453 1509 90.6  100.0| 935 66.9
of feasible solutions (unlikely relations and customer cycles | 3 | 5361 40333 1476 90.5 100.0| 94.2 69.2
are forbidden). ) _ _ caida heuristic
e caida [26]: Another recent algorithm claims to find more 1] 3367 38128 229] 70.5 96.1 [ 100.0 80.0
realistic solutions with a partial validation of the results. The 2| 3367 38128 229| 73.0 96.3 | 100.0 80.0
objective function to maximize in the MaxTOR problem is 3| 3367 38128 229| 8.4 974 | 1000 80.0
modified to incorporate information on degree of ASs. This csp heuristic
mathematical program is solved by using Semi-Definite Pro- 1118326 40585 01 999 993 950 94.7
- : L - 2| 9219 38943 0 99.9 99.3 955 94.0
gramming and then uses a post-processing heuristic that tries | 3 | go59 39120 ol 999 993| 945 94.7

to maximize the number of peering links.

To compare the four algorithngmg, sark cspandcaida, we use Table 7: Evaluation of solutions provided by algorithms.

as input our full dataset (labeléi)) and subsets of AS paths gath- )

ered at Route-views and RIPE (label@land(3)). For each data- Thesarkalgorithm produces a small number of vaIIey-freg paths
set, we report in Table 6 the size of the AS topology, the number of (see Tablg 7). However, the solutions r_na_tch well the relationships
distinct AS paths of length 2 (triples) and the size of the MAX2csp from the tier-1 (about 80%). Thgaoheuristic has 100% of valley-
models solved by thespalgorithm. Note that AS paths of length 1~ frée paths. Some relationships are semtaual-transif having as

(2 AS hops) are always valley-free. In particular, relationships sup- effect tg cancel valleys pext to this kind of links. This glgorlthm
ported by links observed only in paths of length 1 can be treated determines an unrealistically large numbemaitual-transitrela-

separately and removed from the input data (indicatedoasons tionships. Note that solutions match well the relationships of the
in the table). tier-1 (about 65%). Theaidasolution was not produced using our

We evaluate the number of valley-free paths and the number of datasets. Its evaluation on each dataset produces a large number of
valley-free AS triples for each of the 4 inference algorithms and for Valley-free paths (more than 96% of our paths are valley-free) and
the 3 input datasets in Table 7. Note that we were not able to run the@ 900d match with the relationships of the tier-1 (80%). Finally, the
caidaalgorithm on our data and therefore downloaded an existing cSPheuristic produces solutions with the largest number of valley-
solution from CAIDA for November 7th, 2005 (solution only based €€ paths (up to 99%) and the best match with the relationships of
on traditional RIPE and Route-Views data). For each solution, we OUr tier-1 (about 94%). Even if solutions produced by any algo-
report the number of peer-peer links and customer-provider links rithm have a large number of valley-free AS triples, the remaining
inferred, as well as the number@fhknownor mutual-transitinks. freedom in the choice of relationships does not favor all algorithms.
Also, to obtain an understanding of the correctness of the solutions, Only few paths are valley-free or the values of auatchindicators
we validate the inference with two indicator€aida-matchand (of realism) are not high enough. Indeed, for the three datasets,
Tier-1-match Caida-matchis the percentage of relationships that ©nly solutions provided by thespandgaoalgorithms are close to
are inferred as being of the same type by both the considered heu-{he caidaone. Since some solutions of thaidaalgorithm have
ristic on our data and the downloadeaidasolution. Tier-1-match been validated using information about business relationships of
is the percentage of relationships that are of the same type by bothMany ASs, we consider those producedcspas realistic enough
the considered heuristic on our data and those we know to be thefor our goal. We thus rely on thespalgorithm to run our model
real relationships for a tier-1 in November 2005. of path propagation, because of its potential accuracy and its large

Our full dataset has twice as many unique AS paths as the RIPENumber of valley-free paths.
or Route-views subsets, but approximately the same number of
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