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ABSTRACT
Routing policies are typically partitioned into a few classes that
capture the most common practices in use today [1]. Unfortunately,
it is known that the reality of routing policies [2] and peering rela-
tionships is far more complex than those few classes [1,3]. We take
the next step of searching for the appropriate granularity at which
policies should be modeled. For this purpose, we study how and
where to configure per-prefix policies in an AS-level model of the
Internet, such that the selected paths in the model are consistent
with those observed in BGP data from multiple vantage points.

By comparing business relationships with per-prefix filters, we
investigate the role and limitations of business relationships as a
model for policies. We observe that popular locations for filter-
ing correspond tovalleyswhere no path should be propagated ac-
cording to inferred business relationships. This result reinforces
the validity of thevalley-freeproperty used for business relation-
ships inference. However, given the sometimes large path diversity
ASs have, business relationships do not contain enough informa-
tion to decide which path will be chosen as the best. To model
how individual ASs choose their best paths, we introduce a new
abstraction:next-hop atoms. Next-hop atoms capture the different
sets of neighboring ASs an AS uses for its best routes. We show
that a large fraction of next-hop atoms correspond to per-neighbor
path choices. A non-negligible fraction of path choices, however,
correspond to hot-potato routing and tie-breaking within the BGP
decision process, very detailed aspects of Internet routing.

Categories and Subject Descriptors: C.2.2 [Computer-Com-
munication Networks]: Network Protocols—Routing Protocols;
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks—Internet (e.g., TCP/IP)
General Terms: Algorithms, Experimentation, Measurement
Keywords: BGP, inter-domain routing, routing policies

1. INTRODUCTION
The Internet is composed of a large number of independently

administered networks (Autonomous Systems or ASs), coupled by
the inter-domain routing protocol (BGP) into a single globe span-
ning entity. Inter-domain routing is controlled by diverse policies,
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decided locally by each AS, and is not directly observable from
available BGP data. Those policies act globally across the entire
system [4]. Hence the topology of the inter-domain graph is not, in
itself, enough to model the reality of inter-domain routing. Policies
also need to be considered to capture the reality of the path choices
made by each AS.

Policies are not easily defined [1] as they encompass the busi-
ness and engineering decisions made by each AS, both commercial
agreements (business relationships) and technical aspects (router
configuration, inter-domain routing behavior,etc.). In this paper,
we aim to capture the appropriate level of detail about policies to
be used in a model of the Internet. Our ultimate objective, which
is not achieved yet in this paper, is to build a model of the Internet
with a sufficiently detailed view of the AS-level connectivity and
its policies so as to be able to have useful predictive capabilities
about BGP paths.

So far, models of the network structure have been mostly inter-
domain level models that do not care about details of the ASs [5–7].
However ASs are not simple nodes in a graph. Rather they consist
of routers spanning often large geographic regions. The internal
structure of an ASdoesmatter. It influences inter-domain routing,
for instance via hot-potato routing [8,9]. Further, there are multiple
connections between ASs, typically from different routers in differ-
ent locations, which adds to the diversity of known routes [10,11].

The main goal of this paper is to study the granularity of rout-
ing policies in the Internet as they are observed from BGP data
from multiple vantage points. We do not blindly rely on exist-
ing notions of routing policies such as business relationship infer-
ence [5,12,13]. Rather, we rely purely on what we observe in BGP
data and attempt to learn as much as possible about the “correct”
level-of-detail needed to model actual routing policies. Our main
concern is not to shrug off existing approaches, but to pinpoint their
advantages and disadvantages and how they are related to one an-
other.

Our approach is similar to that of [14], as we build an AS con-
nectivity graph that enables the propagation of all routes present in
observed BGP paths. To match observed routing, we introduce “ag-
nostic” policies, since it is impossible to infer all of the details of an
AS’s policies without access to router configurations. However, we
go beyond the agnosticism of [14] as we compare inferred policies
with business relationships. The gained insights are important for
our study of the right granularity to model routing policies.

Our work reveals two dimensions to policies: (i) which routes are
allowed to propagate across inter-domain links (route filtering); and
(ii) which routes among the most preferred ones are actually cho-
sen (route choice) and thus observed by BGP monitors. In terms
of the first dimension we show that the granularity of business
relationships is largely consistent with observed paths. AS rela-
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tionships provide the right abstraction to prevent unnecessary paths
from propagating in a model of the Internet. For the second dimen-
sion, however, the classes of neighbors defined by business rela-
tionships are not precise enough. When only business relationships
are used as policies in a model of the Internet, there are still many
possible candidate paths among which the best path can be cho-
sen. Business relationships are not sufficient to determine among
all possible valid paths, which one should be chosen as best by the
model to be consistent with observed BGP data.

To crystallize the choice of paths an AS makes, we introduce a
new concept:next-hop atoms. Next-hop atoms capture the different
sets of neighboring ASs that each AS chooses for its best routes.
We show that a large fraction of next-hop atoms correspond to per-
neighbor path choices. A non-negligible fraction of path choices,
however, correspond to hot-potato routing and tie-breaking within
the BGP decision process, very detailed aspects of Internet routing.

The remainder of this paper is structured as follows. Section 2
introduces the BGP data used and presents our AS-topology model.
Section 3 analyzes the known bounds for policies studied in the lit-
erature. In Section 4, we search for the right granularity to model
policies: we infer per-prefix filter rules (Section 4.1) and compare
them with business relationships (Section 4.4). The insights gained
are important for Section 5 where we discuss the difference be-
tween routing policies and path choices. In Section 5 we come
up with a new abstraction that captures the selection of paths by
ASs: next-hop atoms. The related work is described in Section 6.
Finally, Section 7 concludes and discusses further work.

2. AS-TOPOLOGY MODEL
To study the granularity of policies, we need a topology model

of the Internet. The measured routing data, used throughout this
paper, is described in Section 2.1. Section 2.2 describes some prop-
erties of the AS connectivity observed in this data, which precedes
our explanation in Section 2.3 of how the AS graph of our model is
built from the observed paths.

2.1 Data
Different techniques exist to collect BGP feeds from an AS. One

of the most common techniques is to rely on a dedicated worksta-
tion running a software router that peers with a BGP router inside
the AS. We refer to each peering session from which we can gather
BGP data as anobservation point, and the AS to which we peer as
theobservation AS.

We use BGP data from more than 1,300 BGP observation points,
including those provided by RIPE NCC [15], Routeviews [16],
GEANT [17], and Abilene [18]. The observation points are con-
nected to more than 700 ASs, and in 30% of these ASs we have
feeds from multiple locations.

As we are currently not interested in the dynamics of BGP we use
a static view of the routes observed at a particular point in time. The
table dumps provided by the route monitors are taken at slightly
different times. We use the information provided in these dumps
regarding when a route was learned to extract those routes that were
valid table entries on Sun, Nov., 13, 2005, at 7:30am UTC and have
not changed for at least one hour. In future work we are planning
to also incorporate the AS-path information from BGP updates.

Our dataset contains routes with 4,730,222 different AS-paths
between 3,271,351 different AS-pairs. An AS-level topology is
derived from the AS-paths. If two ASs are next to each other on
a path we assume they have an agreement to exchange data and
are therefore neighbors in the AS-topology graph. We are able to
identify 21,159 ASs and 58,903 AS-level edges.
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Figure 1: Number of quasi-routers per AS.

2.2 AS-Level Connectivity
As already shown in [7,14], for an AS topology model to capture

route diversity, ASs cannot be considered atomic entities. In order
to represent the intra-domain routing diversity, we allow each AS
to consist of multiple quasi-routers. Aquasi-router represents a
group of routers within an AS, all making the same choice about
their best routes. Thus the “quasi-router topology” does not rep-
resent the physical router topology of a network, rather the logical
partitioning of its observed path choices. An AS has to be mod-
eled with multiple quasi-routers if it receives and chooses as best
multiple paths towards at least one prefix.

Figure 1 provides the number of quasi-routers per AS that are
required to capture BGP path diversity. In any data analysis results
of this paper, we do not consider stub ASs, i.e., ASs that appear as
the last AS hop on any AS path in our data (pure originating AS)1.
Among the 3,535 remaining ASs, 267 require more than a single
quasi-router. Only 2 ASs need as many as 8 and 9 quasi-routers to
account for their observed routing diversity. Typically, well-known
tier-1 ASs require several quasi-routers. This is consistent with [10]
which showed, based on active measurements, that tier-1 ASs have
high path diversity. On the other hand, a low number of quasi-
routers per AS is due both to the sampling of the available paths of
the observed BGP paths, as well as the loss of BGP routing diver-
sity inside ASs [19].

Diversity of the AS paths is strongly related to the AS-level con-
nectivity. Figure 2, in which we consider the same 3,535 ASs as in
Figure 1, shows a scatterplot of the relationship between the num-
ber of required quasi-routers and the number of neighboring ASs.
We observe that ASs that do not have many neighbors also tend to
have a small number of quasi-routers. Highly connected ASs on the
other hand may have many quasi-routers, although this is not nec-
essarily always true. Some ASs have hundreds of neighbors, yet a
single quasi-router is enough to account for their routing diversity.

As previously stated, there are two reasons why an AS requires
several quasi-routers: (i) the AS receives and selects as best mul-
tiple paths towards a given prefix from a given neighbor; and (ii)
the AS receives and selects as best different paths towards a pre-
fix but from different neighbors. From Figure 2, we can observe
that highly connected ASs have a far larger number of neighbors
than quasi-routers. ASs thus select a very small subset of best paths
compared to the number of paths they may receive from their neigh-
bors, for any prefix. Note that the first reason why an AS might
need several quasi-routers does not seem to be common. For only

1Although being transit domains, some ASs may only have one AS
neighbor after removing stub ASs.
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Figure 2: Relationship between number of neighboring ASs
and number of quasi-routers.

623 pairs of neighboring ASs do we observe in the data that an AS
chooses from one of its neighbors more than one path towards at
least one prefix. Further, in only 19 cases do we observe an AS
receiving more than 2 distinct paths from a given neighbor towards
at least one prefix.

2.3 Building a Quasi-Router-Level Graph
For our study of the granularity of routing policies we need a

topology model of the Internet. We capture the inter-domain con-
nectivity via an AS-topology graph as extracted from the BGP data
(see Section 2.1). In order to represent the intra-domain routing
diversity, we allow each AS to consist of multiple quasi-routers.

To ensure the connectivity of our model is minimal, the topology
is built when assigning to quasi-routers AS path suffixes observed
in the data. A suffixs of an AS pathP is any substringQ such
thatP = Qs. The AS topology we create has as few quasi-routers
per AS as possible, and an edge exists between two quasi-routers if
some suffix has to be propagated between the two quasi-routers.

Our assignment works on a per-prefix basis. First we set all
quasi-routers as free to be assigned paths towards the considered
prefix, and set all suffixes towards this prefix as to be assigned.
Then, as long as there are suffixes that are not assigned, we try to
assign them by starting with those suffixes closest to the originat-
ing AS(s) of the prefix. When assigning suffixes, we first re-use
existing connectivity between quasi-routers. If no link between the
first two ASs on the suffix can be re-used for this prefix, we then
create a new link between a free quasi-router in the first AS on the
suffix and the next AS. Note that the creation of the topology (links
between quasi-routers) follows directly from the path assignment.
Due to space limitations, we do not explain in detail how our AS
topology is built.

The number of necessary quasi-routers in an AS is not the only
parameter that matters for allowing an AS topology model to re-
produce the paths observed in BGP data. Even though only few
quasi-routers might be necessary to account for the routing diver-
sity of an AS [14], the way quasi-routers between two ASs are con-
nected also matters. If, in general, an AS requires the same number
of inter-domain links as it has neighboring ASs, it means that even
though this AS might have many neighbors, only a single neighbor
at a time is used as next hop AS in the best routes for any prefix. If
an AS in our model has substantially more inter-domain links than
neighboring ASs on the other hand, it means that the considered
AS uses several neighboring ASs for its best routes towards some
prefixes.

3,150 among the 3,535 transit ASs of our data require a single

inter-domain link with any of their neighboring ASs. Only 386 ASs
require more than one inter-domain link per neighbor, and 41 ASs
more than 2 inter-domain links. As seen from BGP data, only a
very small fraction of the ASs choose their best paths from several
neighbors at the same time towards any of their prefixes.

3. BOUNDS ON POLICY GRANULARITY
To find an appropriate way to model policies in the Internet, it

is important to start with realistic bounds that define the finest and
coarsest granularities at which policies are applied in the Internet.
There are two ends to this spectrum. The finest granularity is the
one of BGP atoms [20, 21], which are sets of prefixes originated
by a given AS that receive equivalent treatment by routers in the
Internet. BGP atoms are as fine as the set of policies that the ob-
served BGP paths encounter, which can be as fine as on a per-prefix
basis. The coarsest granularity does not depend on the originated
prefixes, but only on the neighbors from which routes are received.
It is the granularity of business relationships. ASs may configure
policies as coarse as per-neighboring AS, hence treating all pre-
fixes, received from a given neighbor, in the same way.

3.1 BGP Atoms
For inter-domain routing, each prefix is handled independently

from other prefixes. However, groups of prefixes may receive equal
treatment by a given set of BGP routers, due to the granularity of
routing policies. The analysis of BGP routing tables has shown
that clusters of prefixes originated by given ASs undergo the same
routing policies [20,21]. Groups of prefixes (originated by a given
AS) that receiveequivalent treatmentby a set of BGP routers are
calledBGP atoms[20, 21]. As BGP monitors see only a sample
of the outcome of routing policies through observed AS paths, not
the policies themselves, aBGP atomis defined as a set of prefixes
that share the same set of AS paths as seen from a set of BGP
routers [21]. Two prefixes are put in the same BGP atom if their
AS-PATH is the same, as seen by all observation points. The finest
granularity of a BGP atom is a single prefix, whereas the coarsest
is all the prefixes originated by an AS (or a set of origin ASs in the
case of MOAS prefixes [22]).

Atoms’ sizes vary across and within origin ASs. A large fraction
of atoms consist of a single prefix, while some atoms consist of tens
of prefixes. As BGP atoms are defined with respect to a given set
of vantage points, policies applied by single ASs might be coarser
than per BGP atom.
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To compute atoms, we use an approach similar to [21]. We put
two prefixesp1 andp2 in the same BGP atom if theirAS-PATH is
the same, as seen by all our observation points. Figure 3 presents
the atoms structure of the dataset. The graph displays three cumu-
lative curves: the number of prefixes per origin AS, the number of
prefixes in each atom, and the number of atoms in each AS. We ob-
serve that the distribution of the number of prefixes per origin AS is
virtually the same as in [20] which relies only on RIPE NCC data.
More than 40% of the origin ASs advertise a single prefix: at least
40% of the atoms hence consist of a single prefix. The curve giv-
ing the number of prefixes per atom shows that 70% of the atoms
consist of a single prefix. The RIPE data used by [20] had 60% of
single prefix atoms.

We believe that we observe finer atoms in the data compared
to [20] because our data provides a more extensive coverage of
the actual BGP paths. With an increasing number of paths, we
also observe the effect of more policies, leading to smaller atoms
due to more diverse path choices. The curve in Figure 3, show-
ing the number of atoms in each AS, confirms that data used in
this study sees ASs that have more atoms than that observed us-
ing RIPE. In our data, about 30% of the ASs contain two or more
atoms, whereas [20] observed only slightly more than 25% of ASs
with two atoms or more.

3.2 Business Relationships
Business relationships rely on the coarsest granularity possible

for policies: filtering rules defined on a per-neighbor basis. More
details on business relationships and their inference can be found
in Appendix A.

As business relationships are the most popular model for poli-
cies in the literature, we simulate the path choices in our model,
when the only policies configured are inferred business relation-
ships. Then, we compare the paths chosen in the model with those
observed in BGP data. Customer-provider and peering relation-
ships are inferred by applying the CSP algorithm [23] to the data
(see Appendix A).

We rely on C-BGP [24, 25] to compute the outcome of the BGP
decision process and the set of learned routes at every router of
our AS-level topology. C-BGP computes the steady-state choice
of the BGP routers after the exchange of the BGP messages has
converged.2 This allows us to perform large-scale simulations for
single prefixes on topologies with more than 21,547 routers split
among 21,169 ASs in approximately 2 minutes with 300 MB of
memory consumption. Each quasi-router in our model corresponds
to a router in the C-BGP simulation.

AS-Paths which agree 14.5%
AS-Paths which disagree 85.5%

due to
route not available 60.9%
route learned but not selected 24.6%

Table 1: Agreement between observed and simulated routes
when business relationships are used as policies.

Table 1 shows the consistency between the path choices simu-
lated in the model with business relationships configured as poli-
cies, and the paths observed in the data. For each observed path,
we check if there is at least one quasi-router that selects the ob-
served AS path as best route in the simulation.

2We choose to assign IP addresses such that the high order 16 bits
are set to the AS number and the low order bits are a unique ID for
the quasi-router. In case of a tie-break a quasi-router prefers AS
paths announced by quasi-routers with low IP addresses.

Only 10.1% the paths agree between the simulation and the ob-
servations. For 60.9% of the paths, the corresponding path is not
even propagated to the AS that should observe that path in the sim-
ulations. Only 24.6% of the paths are learned by the right AS but
not selected as best path by any quasi-router of that AS.

We find these results disappointing. Introducing business rela-
tionships does not seem to solve any inconsistencies between the
paths propagated in our model and the routes actually observed in
the Internet.

3.3 Atoms vs. Relationships
We believe that neither BGP atoms nor business relationships

give an ultimate answer to the problem of which granularity should
be used for modeling routing policies.

On the one hand, business relationships appear too coarse, as
they result in high inconsistencies between the paths propagated in
our model and the routes actually observed in the Internet. We want
to point out that this does not necessarily mean that business rela-
tionships are “wrong”. However, it is unclear to what extent having
per-neighbor policies is responsible for this high inconsistency.

BGP atoms, on the other hand, also have shortcomings. Two pre-
fixes are put in the same atom if theirAS-PATH is the same, as seen
by all our observation points. According to this definition BGP
atoms describe policiesacross manyASs, i.e., observation points.
We believe that relying on BGP atoms is therefore dangerous for
our study, as atoms do not discriminate different inter-domain links
and parts of the topology. For example, BGP atoms do not capture
situations where a large fraction of the policies in the Internet are
defined as coarse as per-neighboring AS, while only a small subset
of ASs configure policies on a per-prefix level. In this case, BGP
atoms are prone to generalize and would suggest that probably all
ASs have their policies defined on a per-prefix level.

4. IN SEARCH FOR THE RIGHT
GRANULARITY

Given the results of Section 3, one may wonder whether business
relationships or BGP atoms are the right way to model policies in
the Internet. Therefore, we now start our search for the appropriate
granularity of policies from scratch and rely on the finest granular-
ity possible: per-prefix filtering. We identify fine-grained policies
by analyzing what we see in our data of Section 2.1 and comparing
it to the routes selected by our model without implemented poli-
cies. The motivation behind this approach is to compare the ob-
tained per-prefix filters with coarse-grained policies as imposed by
inferred business relationships. The gained insights will be impor-
tant in Section 5 when we propose a new abstraction for routing
policies.

As it is impossible to extract information about the implemen-
tation of policies only based on observed BGP data, we restrict
ourselves to per-prefix filtering: if there is a disagreement between
some observed path and the corresponding route selected in our
model, a set of filter rules is identified to prevent the propagation
of “wrong” paths. Section 4.1 explains in detail how sets of filter
policies are computed. Given that we restrict ourselves to filtering
policies, how much freedom do we have in placing those filters?
Filtering between different AS-level peerings may have the same
effect in terms of path propagation for the observed path. Sec-
tion 4.2 tries to estimate the amount of freedom we have in terms
of equivalent policies when trying to achieve consistency between
best routes in our model and observed AS paths. In Subsection 4.3,
we make an important step in our search for the appropriate gran-
ularity of policies. Given a large set of per-prefix filtering rules
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that has been computed exclusively based on observed data, we try
to find out if there is possible aggregation across prefixes. More
precisely, we check whether there are locations on the AS connec-
tivity graph that seem to benefit more frequently from a filter than
others. As we detect some very popular locations for filtering in
Section 4.3, we conclude that the implementation of actual rout-
ing policies is somewhere in-between per-prefix and per-neighbor
policies. Therefore, we compare in Section 4.4 inferred business
relationships with the per-prefix filters we detected using the ap-
proach of Section 4.1.

4.1 Inferring Filters
We now we describe how to identify sets of per-prefix policies in

order to obtain agreement between the routes selected in our model
and those observed in the data. The guideline in this approach is
to rely only on what we see in the data. We account for this ba-
sic principle as follows: First, the physical connectivity of our AS
topology of Section 2.3 is sufficient to make the propagation of
all observed AS paths possible, if policies are to be installed prop-
erly. Second, policies are introduced on a per-prefix basis, the finest
granularity for which policies can be configured. Third, we want to
make as weak assumptions as possible about where to place a pol-
icy. If an observed AS path is not selected in the topology model
of Section 2.3, we have a large choice about where and what policy
to introduce. Different policy types and different AS-level peer-
ings may have the same effect in terms of path propagation for the
observed AS path. Therefore, we try to identify multiple “candi-
date” policies first and in a later step (cf. Section 4.4) we will use
heuristics to pinpoint likely policies.

The example in Figure 4 illustrates the many possible locations
for policies, if the only goal is to allow for the propagation of an
observed AS path. We observe at AS 7 an AS path7-6-5-4-3
originated by AS 3. However, reproducing the BGP route selection
in this topology without any policies will show that AS 7 selects the
shorter path7-2-3 to reach the prefix. In this case, a preference
policy at AS 7 or filtering at least one link both of the paths7-2-3
and7-1-2-3will have the same effect in terms of the propagation
of the observed AS path7-6-5-4-3. Note that it is even possible
to apply an arbitrary subset of all “candidate” policies that will have
the same effect.

AS1 AS2

AS3

AS4

AS5

AS6

AS7
prefix

obs. route
sim. route

filter?
filter?

filter?

filter?

Figure 4: Filtering - Example.

In order to reproduce BGP route selection in our AS-level topol-
ogy, we again use C-BGP [24, 25]. As a consequence, we know
for every router in our model which routes it learns to reach a pre-
fix and also which route is selected as best. According to the as-
signment of observed AS path suffixes to quasi-routers in our AS-
topology graph (see Section 2.3), many of the routers in our model
are supposed to select a specific path to reach a certain prefix. How-
ever, without properly configured policies, the paths chosen by our
model might not be the same as those observed in the data. Amis-
matchis referred to a situation where a quasi-router chooses an AS
path which is inconsistent with the path assignment of Section 2.3.

In our approach, each mismatch gives a hint about where policies
are required. We now distinguish between two different cases of
mismatch.

The first case of mismatch can occur when, a router does not
select the path consistent with the assignment of Section 2.3, due
to the existence of some shorter AS paths. In this case, we will
introduce per-prefix BGPfilters on the link from the announcing
neighbors to prevent the shorter paths from being propagated to the
router. In Figure 4, both AS 1 and AS 2 will propagate routes to
AS 7 which are shorter than the observed AS path7-6-5- 4-3.
In the following, we denote a filtering rule in our model between
AS X and ASY, whereY does not propagate a prefix towardsX,
by X 8 Y. Thus, configuring the filter rules 78 1 on link7-1 and
7 8 2 on link7-2 can be used to obtain the observed path at AS 7.

The second case will occur if a router does not select the “cor-
rect” AS path due to a wrong “tie-breaking” decision in our model.
Provided some router receives multiple routes with equal AS path
lengths, the BGP decision process will have to break ties, e.g., by
preferring the route learned from the neighbor with the lowest IP
address. We ignore those situations since no policy is identified.
Indeed, we cannot be sure whether a policy is actually needed to
get the correct propagation. We do not want the uncertainty of the
BGP decision process and its implementation to impact our study
of the granularity of policies. Reconsidering the example in Fig-
ure 4, we see that AS 5 may not select the observed suffix5-4-3
due to a “wrong” tie-breaking decision: the C-BGP simulation will
prefer the path5-2-3 if the router of AS 2 has a lower IP address
than the router of AS 4.

Let us now define three notions that will be used to explain the
detection of filtering policies:
Candidate filter: A per-prefix filter rule which helps to allow the

selection of an observed path as best route in our model. In
general, several candidate filters (e.g., a filtering combina-
tion) will be needed. Additionally, shorter paths do not nec-
essarily have to be filtered at the location of the mismatch. To
obtain the observed path at AS 7 in Figure 4, filtering on the
link 2-3 has the same effect as having filters on both7-1
and7-2. Altogether, we identify four candidate filters in our
example: 78 2, 78 1, 18 2, 28 3.

Filtering combination: A set of filter rules for a mismatch which
satisfies two conditions: (i) Applyingall filters in this set
clears the mismatch, i.e., there will be agreement between
the observed suffix path assigned to a quasi-router, and the
route currently selected in our model; and (ii) the set of poli-
cies in this set isminimal, i.e., if anypolicy from a filtering
combination is removed the mismatch will not disappear. In
the example in Figure 4, there are three filtering combina-
tions:
(1) 78 2 and 78 1
(2) 78 2 and 18 2
(3) 28 3.

However, the set of filter rules 78 2, 78 1 and 18 2 is
not considered as a filtering combination, as either 78 1 or
1 8 2 can be removed while the router of AS 7 still chooses
the assigned suffix7-6-5-4-3.

Dependency graph: A data structure used to store the identi-
fied filter candidates and their dependencies for a certain pre-
fix. Nodes in this graph represent candidate filters or mis-
matches whereas directed edges between nodes reflect de-
pendencies. The direction of the edges is determined by our
algorithm. Basically, the algorithm recursively walks back
from the “mismatched AS” to the originating AS, detecting
filters along the way. Dependency edges are always directed
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towards filters which are closer to the originating AS. The
idea now is that a “filter node” is not needed provided that
(i) all its children nodes or (ii)all its parent nodes in the de-
pendency graph are used or (iii) if there are no parent and
children respectively. Figure 5 shows the dependency graph
for the mismatch at AS 7 in Figure 4. There are five nodes,
with one representing the mismatch at AS 7 and the remain-
ing nodes the four candidate filters. Assume that filter 283
is used. In this case, 78 2 as well as 78 1 are redundant,
with all their children nodes (filter 28 3) already used.

Mismatch 
at AS 7 

7    2

7    1 1    2

2    3

Figure 5: Dependency graph for mismatch in Figure 4.

The benefits of this data structure are two-fold. First, com-
pared to keeping all filtering combinations, the dependency
graph scales as its size is bounded by the number of links and
ASs in our topology. Second, it prevents losing information
about possible dependencies between detected filters rules.

Our algorithm to compute a set of candidate filters for a given
prefix is summarized in Figure 6. It takes as input the observed
routes to a specific prefix, an AS topology including the assign-
ment of observed AS paths to quasi-routers (see Section 2.3) and
the routes selected in our model when simulating BGP route prop-
agation with C-BGP. For each mismatch, a set of candidate filters
is identified and inserted into the dependency graph. The result is
a dependency graph for the prefix, with all candidate filters being
associated to at least one mismatch.

foreachobserved pathp to the given prefix
start at originating AS and walk to observation AS
foreachhoph of pathp

o = suffix of p from ASh to observation AS
s = simulated path at the router assigned for suffixo
olength = length of suffixo
if snot equalo

add “mismatch”m to dependency graph
findCandidates(h, olength, m, 1)

sub findCandidates(hoph, lengthl , from_policy f f rom, depthr)
if (r > threshold) or (h == originating AS)1

terminate
foreachphysical neighborn of h 2

nlength = length of path announced fromn
if nlength < l

add “FILTER ” fnew to dependency graph
findCandidates(n, l −1, fnew, r +1)

add link from f f rom to fnew in dependency graph
1 not all termination criteria listed.
2 some neighbors can be skipped, not shown here.

Figure 6: Computing candidate policies for a prefix.

As shown in Figure 6, the algorithm proceeds by consecutively
looking at all routes observed for the prefix. For each route, we
walk along the AS path from the originating AS to the observation
AS and check at each hop for an inconsistency, i.e., a disagree-
ment between the observed suffix path and the simulated route at
the assigned quasi-router. If there is a mismatch, the functionfind-
Candidatesis called recursively to identify filter candidates.

The recursion serves the purpose of considering filters that are
not directly located at the mismatch but closer to the originating

AS. The basic idea is that the functionfindCandidateshas as a pa-
rameter the current AS hoph and recursively calls itself on neigh-
boring ASs from which it learns routes which are too short in terms
of AS path length.

To know which routes need to be filtered, we use another param-
eterl , the maximum path length which an AS is allowed to propa-
gate. Provided that ASh of findCandidatesselects in the simulation
a route with a strictly shorter AS path thanl , a filter betweenh and
AS c – the AS from which this recursion has been called – will be
added to the list of candidate filters. At the same time, we insert a
dependency edge between the new filter and the candidate filterdn
found at ASc.

In general, recursion terminates when we arrive at an originating
AS or when the current AS does not select a route shorter than the
maximum allowed path lengthl . There are many other situations
where recursion is stopped. For example, we allow the specifica-
tion of a threshold for the maximum recursion depth. Additionally,
no recursion is required if we arrive at an already visited AS hop.
In our topology of Figure 4, the filters 781 and 782 are detected
while looking at neighbor AS 1 and AS 2 at recursion depth 1.
While at AS 1, there will be a recursive call for AS 2 with recur-
sion depth 2. However, AS 2 has already been visited and thus the
candidate filters have been already computed. Recursion can thus
be stopped safely without losing information.

4.2 Freedom in Filters Location
We now apply the algorithm in Figure 6 to computecandidate

combinationson the AS-topology of Section 2.3. The goal is to
give an estimate of the choice we have in terms of filter candi-
dates when trying to achieve consistency between best routes in
our model and observed AS paths. For this, we randomly select an
extensive number of prefixes, calledpsample (see Table 2).

# prefixes 50,000
# originating ASs 10,575
# distinct AS paths 2,267,296
# prefixes per AS path
- mean 3.6
- standard deviation 11.8
# distinct AS paths to a prefix
- mean 161
- standard deviation 42
# mismatches per prefix
- mean 3,328
- standard deviation 5,191

Table 2: Statistics onpsample.

psample contains more than 2 million AS paths to 50,000 pre-
fixes. For each prefix, we have a mean of 160 distinct AS paths,
with an average of 3.6 prefixes sharing a common AS path. While
running our algorithm, we detected in total more than 10 million
mismatches, i.e., AS hops that do not select the “correct ” suffix of
an observed route. Even for a single prefix, the number of detected
mismatches is considerable, with 3,328 on average.

To study the impact of recursion on the number of filter candi-
dates found, we run our algorithm with three different thresholds
for the maximum recursion depth. The results are summarized in
Table 3. Allowing filters only on links incident to the AS hop with
the mismatch (recursion depth 1) results in an average of 32.9 fil-
ter candidates per mismatch. This number is surprisingly high but
can be explained by some ASs having a large number of neighbors
from which routes have to be filtered. With a recursion depth of 2
(3), this increases to more than 1,000 (3,000) candidate filters on
average.

150



recursion recursion recursion
depth 1 depth 2 depth 31

mean 32.9 1,103 2,952
standard deviation 116 4,518 12174
min 1.0 1.0 1.0
max 1,847 49,040 80,050
1 only for a subset of 2,000 prefixes

Table 3: Number of candidate filters per mismatch for
psample.

To measure the freedom we have in combining those candidate
filters, we use the notion offiltering combinationsdefined in Sec-
tion 4.1. We slightly modify the recursive functionfindCandidates
of our algorithm in Figure 6 to return the number of possible filter-
ing combinations. Recall that each filtering combination ensures
that no path is selected at the current AS hop which is strictly
shorter than the maximum allowed path length. In general, there are
multiple “bad” neighbors from which we have to filter out shorter
paths. The number of possible filtering combinations is the number
of non-empty subsets of lines from the filtering combinations that
contain the "bad" neighbor.

Obviously, we only obtain a single filtering combination when
recursion is terminated at depth 1. However, with a maximum re-
cursion depth of 2 the average number of filtering combinations per
mismatch is already in the order of 10500, increasing to 1013,000 for
a maximum recursion depth of 3. Note that these numbers are only
rough estimates. Still, they illustrate the freedom we have in filter
locations. There would be even more choice if we did not restrict
ourselves to non-redundantfiltering combinationsand were to al-
low other policies, e.g., local-preference.

4.3 Popularity of Filters
In the previous section, we computed an extensive number of

candidate filters. Applying those per-prefix filters is supposed to
ensure the propagation in our model of observed paths. The main
idea now is to check whether there are filter locations that are more
popular than others. We call a filter on an AS-level linkpopular if
the link is identified as a possible filtering location for many pre-
fixes by our algorithm of Section 4.1. A large number of such pop-
ular filters suggests that per-prefix policies are too fine and should
be aggregated into coarser policy entities.

To detect popular filters, we run the algorithm of Section 4.1 on
the observed routes ofpsample (see Table 4). Using a maximum
recursion depth of 1 and 2 in our algorithm reveals the impact of
the recursion depth on the popularity of the identified filters. For
each directed AS-level link, we count the number of prefixes for
which a filter candidate is identified as “useful” on that link. The
distribution of filters popularity for both recursion depths is plotted
in Figure 7.

Figure 7 shows that some filters are more popular than others.
While for a recursion depth of 1, less than 5% of the detected can-
didate filters are useful for at least 10,000 prefixes (out of 50,000),
this is more than 30% for recursion depth 2. A similar trend is
observed for larger recursion depths. The reason for this may be
that large recursion depths add a lot of noise, i.e., they identify can-
didate filters at locations which are unlikely to be related to the
mismatches we try to fix.

Table 4 provides further details about the popularity of filters.
There are some locations for filtering which seem to be very pop-
ular. With a maximum recursion depth of 1, 5% of the identified
filter candidates are “useful” for more than 8,000 prefixes.

At the same time, we see filter candidates that are identified for
only a very small number of prefixes. 25% of the detected filter
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Figure 7: Popularity of filters in psample.

Percentile 25% 50% 75% 90% 95% 100%

#prefixes
(depth 1) 236 1,888 3,604 5,548 8,004 46,921
#prefixes
(depth 2) 1,480 6,237 11,389 15,523 18,896 47,032

Table 4: Popularity of filters for recursion depth 1 and 2 in
psample.

candidates affect less than 236 prefixes (out of a total of 50,000) if
a recursion depth of 1 is used. For a recursion depth of 2, this num-
ber increases to 1,480. Selecting the 2,290 most popular filtering
locations for recursion depth 1 (pfilters), we check how many of
the filter candidates for recursion depth 2 would be redundant with
them, i.e., would not be needed to achieve agreement between ob-
servations and the routes in our model if the filters inpfilterswere
configured. For this purpose, we take the computed dependency
graph of recursion depth 2 and initially mark each filter inpfilters
as “covered”. Then, other filters in the dependency graph can be
recursively marked as “covered” if either all children policies or all
parent policies are already marked. By doing so, we see that the
average ratio of covered filters is 75%. This number is surprisingly
high given that there are many prefixes with more than 60,000 fil-
ters being detected for a maximum recursion depth of 2.

The main lesson of this section is that a non-negligible part of our
filter candidates can be aggregated into coarser policy entities if the
only goal is consistency between propagation in our model and the
observed data. Higher recursion depths are not very helpful. They
add more noise thereby making it more difficult to identify popular
locations for filtering.

4.4 Revisiting Business Relationships
With regards to the correct granularity to model inter-domain

routing policies, neither business relationships nor BGP atoms ap-
pear to be the ultimate solution (see Section 3.3). In this section,
we revisit business relationships and try to gain more insight into
their shortcomings by comparing them with popular filters (see
Section 4.3). The lessons we learn will be important when we de-
velop a new abstraction for routing policies in Section 5.

Business relationships have two consequences for route propa-
gation and selection:preferenceof certain routes andno-transitfor
some routes. First, network administrators may favor longer AS
paths over shorter ones due to economic reasons. In general, routes
learned from customers will be preferred over routes announced
over peering links and peering routes will be favored over provider
routes. Second, multi-homed stub ASs want to avoid being used as
transit. For this reason, routes learned from provider and peering
neighbors are not propagated to other provider or peering ASs.
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We first try to shed light on the impact of theno-transitprinciple
on route propagation. In Section 4.3 we identified filter candidates
and found that there are some popular locations for filtering. The
idea is now to compare such filter candidates with business rela-
tionships and to find out whether some of the popular filters in our
per-prefix approach possibly implementno-transitpolicies in the
AS-relationship “world”. If so, this can be seen as a reason to con-
sider business relationships as some form of routing policy.

We compare business relationships with our candidate filters as
follows: as a first step, popular locations for filtering are identified.
According to Table 4, 5% of the filters found are useful for more
than 8,000 prefixes. We select those filters and obtain a total of
2,290 popular filters (see Table 5).

Based on our AS-level topology, we then compute all ASs triples.
Altogether, there are more than 30 million such triples in our topol-
ogy. The next step is to identify triples which violate the so-called
valley-freeproperty. In our terminology, avalley is a tripleA-B-C
along which no route should be propagated if theno-transitrule is
correctly enforced. Let us assume that AS C and AS A are both
providers of AS B according to the inferred business relationships.
In this case, AS B will not announce any route learned from one of
its providers to the other provider. According to Table 5, we find
more than 5 million valleys.

total # of edges (directed) 117,822
total # of triples 30,351,164
total # of valleys 5,383,862
total # of (popular) filters 2,290
# filtered triples 991,268
# filtered valleys 602,619
ratio: filtered valleys to filtered triples 60.7%
# filters in at least one valley 2,283

Table 5: Business relationships vs. popular filters.

Now we check how popular filters and valleys are related to each
other. For this purpose, we collect all triplesA-B-C such that any
popular filter appears as eitherA-B orB-C. This results in 991,268
filtered triples. Surprisingly, 60.7% of the filtered triples are val-
leys according to our inferred business relationships. At the same
time, almost all popular filters (2,283) are applied on AS-level
links which are part of valleys. Popular filters hence frequently
correspond to a non-transit policy, a situation where according to
business relationships no path should be propagated. Henceforth,
we conclude that the popular filters we identified suggest that the
valley-free property used to infer business relationships is indeed
correct.

However, the question remains of why using inferred business
relationships exhibits this high level of disagreement when compar-
ing the routes selected in our model with those observed in the data.
As mentioned above, business relationships impact route propaga-
tion in two ways:no-transitandpreference. Given our results, we
believe that an insufficient or incorrect implementation of thenon-
transit principle is not the actual reason for these inconsistencies.
Therefore, we now study the effectiveness of business relationships
in preferring the “correct” observed path.

For this purpose, we again take the AS-topology of Section 2.3
and use business relationships inferred with the CSP algorithm [23].
Then, we run a simulation with C-BGP to compute the selected
routes for every router to each prefix. The goal is to find out how
much choice each router has to select a best path. In spite of busi-
ness relationships, a router may still have the choice between a set
of equally preferred routes. Therefore, we determine for each ob-
served path whether the observing AS learns it from a provider,

peer or customer AS according to the inferred AS relationships.
Then, we look at the corresponding AS and quasi-router in our
simulation and count the number of learned path which are of the
same “type” as the observed path, i.e., also a customer, provider
or peering path. Figure 8 shows the distribution of this number of
alternative path over all observed paths.
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Figure 8: Business relationships: freedom in path choice for
observed paths at observation points.

For only approximately 10% of the observed paths, there is a sin-
gle path from which to select the best one. However, for more than
10% of all observed paths, we obtain more than 50 paths that are
equally as good as the observed path, i.e. belong to the same type
of path (customer, provider, peering). Given these results, we be-
lieve that business relationships do not reveal sufficient information
about the actualpreferencepolicies used in the Internet. They only
tell us that customer routes are preferred over peering routes, and
peering routes over provider routes. Still, an AS may learn multiple
customer, provider or peering routes for the same prefix. In such
a case, business relationships cannot tell which one of the equally
good routes should be selected as best.

To conclude this section, we state that the main problem inherent
to relationship inference is the incomplete information it provides
about the actual preference of paths.

5. FROM ROUTING POLICIES TO PATH
CHOICES

Section 4 showed that modeling policies both as per-prefix fil-
ters and as business relationships has severe drawbacks. On the
one hand, relying on business relationships is more scalable as less
configuration is required in the model. Unfortunately, inferred rela-
tionships are not enough to lead to correct path choices. Per-prefix
filtering, on the other hand, allows for models highly consistent
with observed path choices, but it is not scalable as its granularity
is the finest possible. If we now want to answer the question of what
is the right granularity to implement routing policies in an Internet-
wide model, we realize that do not have a definitive answer. Our
conclusion so far is that business relationships are, in general, the
right way to set routing policies in a model. However, predicting
path choices requires more details about routing policies: one also
has to guess which path to select as best from a set of equivalent
paths, all permitted by policies.

To make the discussion more concrete, we need to introduce
some concept that will crystallize this choice of the paths some AS
performs. We call it thenext-hop atom. A next-hop atom NHof an
AS X is a subset of X’s neighbors thatX chooses as next-hops for
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its best routes towards a given set of BGP atoms3. All BGP atoms
for which we see that an AS uses the same set of neighbors for its
best routes belong to the same next-hop atom. The aim ofnext-hop
atomsis to capture the distinct sets of neighboring ASs an AS re-
quires to describe its path choices towards groups of prefixes. Note
that next-hop atoms do not reveal why some AS prefers some paths
to others. Next-hop atoms only describe the choice ASs make, not
the reasons for their choice.

Figure 9 illustrates an example of the choice of paths made by
AS X towards five different BGP atoms. AS X is composed of two
quasi-routers,QRX1 andQRX2. It has three neighboring ASs: A,
B and C, each composed of a single quasi-router. The best path,
AS X chooses towards BGP atom 1, has as next-hop AS A. To
reach atoms 2 and 3, X uses as its next hop AS B, whereas the best
paths towards both atom 4 and 5 go through AS B and C. In this
example, AS X requires two quasi-routers because it has to choose
two different best paths towards atoms 4 and 5.

Figure 9: Example of path choices and next-hop atoms.

In the case of the example in Figure 9, ASX has three different
next-hop atoms:NH1 contains next-hop A towards BGP atom 1,
NH2 contains next-hop B towards BGP atom 2 and 3 (since AS
X chooses its best routes towards BGP atom 2 and 3 via AS B),
andNH3 contains next-hops B and C towards BGP atom 4 and 5
(because AS X chooses its best routes towards BGP atom 4 and 5
via AS B and AS C). Among all possible combinations of next-hop
ASs, only a subset will actually be used to send traffic towards BGP
atoms. In our example, we only need three distinct combinations
of neighboring ASs towards the five considered BGP atoms. A
next-hop atom captures the coarsest granularity (across prefixes)
at which an AS chooses its best paths in distinct ways (among its
neighbors).

The reason to define next-hop atoms in terms of BGP atoms is
that BGP atoms define the finest granularity at which sets of pre-
fixes share the same path choices. One might choose to use prefixes
instead of BGP atoms.

Now that we have the concept of next-hop atoms to capture the
granularity at which ASs select their paths, we can study the ob-
served granularity at which ASs choose their paths. The simplest
way an AS can select its best paths is by always using the same
set of neighbors for all prefixes. Such an AS would have the same
next-hop atom towards all prefixes. Single-homed ASs are in this
situation as they have a single neighbor from which to choose their
paths. Large transit providers on the other hand are expected to
have a large number of different next-hop atoms due to their larger
number of neighbors.

3The definition of next-hop atoms can be trivially extended to next-
hop routers if more detailed information about ASs is available.
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Figure 10: Number of next-hop atoms per AS.

Figure 10 shows the distribution of the number of next-hop atoms
per AS, over the 3,535 transit ASs considered in Section 2.1. We
observe that about 40% of the 3,535 ASs have a single next-hop
atom. Modeling routing policies for those ASs is trivial: they se-
lect, for all prefixes, the same set of neighbors. For the remaining
60% of the transit ASs, there can be between a few next-hop atoms
up to hundreds. As already mentioned, one expects that the larger
the AS, the more diverse its set of path choices, hence the larger its
set of next-hop atoms. Figure 11 confirms this belief by giving, for
each of the 3,535 transit ASs, the relationship between the num-
ber of neighboring ASs and the number of next-hop atoms. A vast
majority of the ASs (94%) fall on thex = y line, i.e., have exactly
as many next-hop atoms as they have neighbors. Only some highly
connected ASs have far more next-hops atoms than neighbors (up
to 13 times).
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Figure 11: Relationship between number of next-hop atoms
and neighbors.

One might conclude from Figure 11 that since the vast majority
of ASs have as many next-hop atoms as neighbors, per-neighbor
path choices are the rule. This is only true to some extent. Fig-
ure 11 does not give any information about how many neighboring
ASs any next-hop atom contains. Among all next-hop atoms from
our 3,535 transit ASs, more than 75% contain a single neighboring
AS (see Figure 12). Only for those next-hop atoms can we con-
figure per-neighbor policies. For the remaining next-hop atoms,
preferring a single over all others does not work. In that case, it
cannot be onlylocal-pref that decides about the choice of the
best path, but other rules like MED, IGP cost or other tie-breaking
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steps of the BGP decision process. One cannot hope to model such
detailed information about path choices by routers, especially by
relying only on BGP data from a limited set of vantage points.
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Figure 12: Neighboring ASs in next-hop atoms.

Even though per-neighbor path preferences appear quite com-
mon in the Internet, a non-negligible fraction of the path choices
are made not by routing policies, but by tie-breaking within the
BGP decision process.

To further illustrate the complexity of path choices made by ASs,
we study 5 large tier-1 providers in our data. As tier-1 providers
have large networks and many neighbors, we would expect them
to have complex path choices. Figure 13 provides the number of
neighboring ASs in the next-hop atoms of 5 tier-1 providers we se-
lected: UUNET (AS701), AT&T (AS7018), LEVEL3 (AS3356),
AOL (AS1668), and OPENTRANSIT (AS5511). We observe huge
differences in the fraction of next-hop atoms that are made of a sin-
gle neighbor (per-neighbor path choices). UUNET has more than
85% of its next-hop atoms consisting of a single neighbor: its path
choices are hence very coarse. AOL on the other hand, has less than
5% of its next-hop atoms consisting of a single neighbor. AOL’s
next-hop atom granularity reflects its business as content provider.
AOL is more likely to choose to leverage its path diversity so as to
optimize the performance of the paths. OPENTRANSIT is closer
to AOL than the other 3 tier-1 providers. UUNET and AT&T have
a small fraction of next-hop atoms made of several neighboring
ASs. LEVEL3 stands in the middle of those 5 tier-1 providers in
the granularity of its path choices.

Modeling how ASs select their path hence depends on the kind
of AS being considered. Capturing the full diversity of paths prop-
agated in the Internet, therefore, is not sufficient. We also have to
find out what rule of the BGP decision process was used to decide
about the path to reach a given prefix. We do not expect this to be
an easy task, as it implies inferring very detailed information about
AS network engineering.

6. RELATED WORK
Inference of business relationships between ASs [5, 12, 13] has

been the most widely studied dimension of routing policies. Rout-
ing policies are typically partitioned into a few classes that capture
the most common practices in use today [1]. Unfortunately, it is
also known that the reality of routing policies [2] and peering rela-
tionships is far more complex than those few typical classes [1, 3].
The current approaches for business relationships inference rely on
a top-down approach. They first define a set of policies and then
try to match those policies with their observations of the system.
Yet, policies as used by ISPs have to realize high-level goals [1].
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Figure 13: Number of neighboring ASs in next-hop atoms for
tier-1 providers.

Assuming any kind of consistency of such policies across ASs is
questionable, especially as in practice, policies are often config-
ured on a per-router, per-peering, or per-prefix basis [1]. Observed
BGP routes do not have to make those high-level policies visible.

Our work is similar to [7,14] in allowing the propagation of mul-
tiple paths across ASs. The authors in [7] aimed at predicting AS
paths between any pair of ASs without direct access to the con-
cerned end-points and relied on a new inference of business rela-
tionships, as well as other information to predict the AS paths used
between any pair of ASs. [14] showed that to reproduce the diver-
sity of the BGP paths observed from multiple vantage points, it is
necessary to allow different routing entities inside each AS to store
and propagate the routing diversity known to ASs. Another insight
of this paper is that agnosticism about policies in the Internet helps
to build a model which is completely consistent with observed BGP
data and which has good predictive capabilities. The authors used
per-prefix filtering policies to force their model to select the paths
observed by BGP.

7. CONCLUSION
In this paper we searched for an appropriate granularity for mod-

eling policies in the Internet. We explored the impact of routing
policies on an AS-level model of the Internet. Additionally, we
studied how and where to configure policies in this model in such a
way that the routes in the model be consistent with paths observed
by BGP from multiple vantage points.

By comparing business relationships with per-prefix filters, we
investigated the role and limitations of business relationships as a
model for policies. We observed there is a large freedom in the
location of filters in the model if the goal is to obtain path choices
consistent with observed BGP data. We also observed that the pop-
ular locations where filtering is necessary in our model correspond
to the valleyswhere no path should be propagated according to
business relationships inference. This result reinforces the valid-
ity of the valley-freeproperty used for business relationships infer-
ence. However, business relationships do not help to decide which
paths among the candidates should be chosen by each AS: after en-
forcing policies in the model in the form of business relationships,
much choice is left as to which route to choose as the best among
the candidates. Business relationships do not contain enough infor-
mation about the path choices made by ASs. To capture the way
individual ASs choose their best paths, we introduced a new ab-
straction: next-hop atoms. Next-hop atoms capture the different
sets of neighboring ASs an AS uses for its best routes. We showed
that a large fraction of next-hop atoms correspond to per-neighbor
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path choices. A non-negligible fraction of path choices however do
not correspond to simple per-neighbor preferences, but hot-potato
routing and tie-breaking within the BGP decision process, which
are very detailed aspects of Internet routing.

The work carried out in this paper provides another step towards
a model that may allow prediction of AS paths under “what-if”
scenarios. In future work we will validate the policies we derived
by testing their predictive capabilities and also by comparing them
to actual policies configured by ASs as in [26].
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APPENDIX

A. RELATIONSHIP INFERENCE
Previous work on inference of AS business relationships (e.g.,

[5]) relies on two main assumptions. First, there is a unique busi-
ness contract negotiated between any two ASs. The relationship
associated with any directed link of the AS topology is one of the
following: peer-peer, customer-to-provider (C2P) or provider-to-
customer (P2C)4. Second, routes of an AS received from any of its
provider or peer-peer neighbor cannot be propagated to any other
provider or peer-peer neighbor. In the literature, this is called the
“valley-free” property.

Inferring business relationships can be formulated as the Max-
TOR problem [12]. Given a set of AS paths, assign a unique label
to each link in the AS topology such that the number of valley-free
paths is maximum. MaxTOR is a NP-complete problem that was
tackled in the past by many heuristics because of its size. More-
over, as reported in [27], if a solution to MaxTOR withn business
relationships exists (optimal or not), then there are at least 3

n
dif-

4two ASs may also establish a mutual-transit relationship (sibling
or SIB)
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ferent solutions leading to the same number of valley-free paths.
This means that any given solution has a very small probability of
being realistic, even if it produces the exact maximum number of
valley-free paths.

As inferred relationships can produce up to 99% of observed
valley-free paths, the propagation of observed paths remains pos-
sible in an AS topology model when relationship filters are incor-
porated. However, as there is an exponential number of solutions
with the same number of valley-free paths, a large freedom remains
in the choice of relationship filters. Many approaches tackled the
MaxTOR problem by splitting each path into AS triples. From the
several approaches, we selected four:

• gao [5]: The greedy approach recognizes valley-free AS paths
by using sequences of AS degrees in paths. When valleys oc-
cur in AS paths, some conflicting relationships are supposed
to support a mutual-transit relationship (label "SIB").

• sark [12]: This algorithm uses topology leaf-pruning as seen
from each observation point to infer per-vantage-point AS
rankings. Then a relationship for each link is inferred. When
ranking of ASs is not decisive enough, some links are labeled
with the "Unknown" relation.

• csp [23]: This approach takes advantage of the Constraint
Satisfaction framework. A Max2CSP problem is derived from
MaxTOR where each relation is a variable and each sub-path
of length 2 (AS triples) introduces a constraint between two
relations. A tabu-search algorithm runs on a restricted space
of feasible solutions (unlikely relations and customer cycles
are forbidden).

• caida [26]: Another recent algorithm claims to find more
realistic solutions with a partial validation of the results. The
objective function to maximize in the MaxTOR problem is
modified to incorporate information on degree of ASs. This
mathematical program is solved by using Semi-Definite Pro-
gramming and then uses a post-processing heuristic that tries
to maximize the number of peering links.

To compare the four algorithmsgao, sark, cspandcaida, we use
as input our full dataset (labeled(1)) and subsets of AS paths gath-
ered at Route-views and RIPE (labeled(2) and(3)). For each data-
set, we report in Table 6 the size of the AS topology, the number of
distinct AS paths of length 2 (triples) and the size of the MAX2CSP
models solved by thecspalgorithm. Note that AS paths of length 1
(2 AS hops) are always valley-free. In particular, relationships sup-
ported by links observed only in paths of length 1 can be treated
separately and removed from the input data (indicated asno-cons
in the table).

We evaluate the number of valley-free paths and the number of
valley-free AS triples for each of the 4 inference algorithms and for
the 3 input datasets in Table 7. Note that we were not able to run the
caidaalgorithm on our data and therefore downloaded an existing
solution from CAIDA for November 7th, 2005 (solution only based
on traditional RIPE and Route-Views data). For each solution, we
report the number of peer-peer links and customer-provider links
inferred, as well as the number ofUnknownor mutual-transitlinks.
Also, to obtain an understanding of the correctness of the solutions,
we validate the inference with two indicators:Caida-matchand
Tier-1-match. Caida-matchis the percentage of relationships that
are inferred as being of the same type by both the considered heu-
ristic on our data and the downloadedcaidasolution.Tier-1-match
is the percentage of relationships that are of the same type by both
the considered heuristic on our data and those we know to be the
real relationships for a tier-1 in November 2005.

Our full dataset has twice as many unique AS paths as the RIPE
or Route-views subsets, but approximately the same number of

Paths AS graph CSP models
all vertices links triples variables no-cons

Full dataset ( 1 )
4 681 770 21 169 58 911 965 859 54 193 4 718

RIPE subset ( 2 )
1 972 727 21 016 48 162 415 523 46 489 1 673

Route-views subset ( 3 )
1 682 568 21 060 47 170 476 668 45 197 1 973

Table 6: Datasets used to infer business relationships.

ASs and only 20% more AS relationships. Altogether, it contains
roughly twice as many sub-paths of length 2 (AS triples) as the two
subsets. Additional input paths increase the difficulty of MaxTOR
and make it more restrictive on potential solutions. Still, many so-
lutions maximizing the same number of valley-free paths exist. We
now evaluate the solutions produced by the different algorithms.

relations valley-free match
PEER C2P SIB/ triples paths CAIDA Tier-1

UNK match

sark heuristic
1 25688 32703 520 81.5 27.3 54.8 84.2
2 13786 34006 370 84.6 29.9 66.3 82.7
3 15630 31188 352 85.5 32.8 61.3 85.7
gao heuristic
1 12971 44252 1688 88.3 100.0 92.6 65.4
2 5200 41453 1509 90.6 100.0 93.5 66.9
3 5361 40333 1476 90.5 100.0 94.2 69.2
caida heuristic
1 3367 38128 229 70.5 96.1 100.0 80.0
2 3367 38128 229 73.0 96.3 100.0 80.0
3 3367 38128 229 85.4 97.4 100.0 80.0
csp heuristic
1 18326 40585 0 99.9 99.3 95.0 94.7
2 9219 38943 0 99.9 99.3 95.5 94.0
3 8050 39120 0 99.9 99.3 94.5 94.7

Table 7: Evaluation of solutions provided by algorithms.

Thesarkalgorithm produces a small number of valley-free paths
(see Table 7). However, the solutions match well the relationships
from the tier-1 (about 80%). Thegaoheuristic has 100% of valley-
free paths. Some relationships are set tomutual-transit, having as
effect to cancel valleys next to this kind of links. This algorithm
determines an unrealistically large number ofmutual-transitrela-
tionships. Note that solutions match well the relationships of the
tier-1 (about 65%). Thecaidasolution was not produced using our
datasets. Its evaluation on each dataset produces a large number of
valley-free paths (more than 96% of our paths are valley-free) and
a good match with the relationships of the tier-1 (80%). Finally, the
cspheuristic produces solutions with the largest number of valley-
free paths (up to 99%) and the best match with the relationships of
our tier-1 (about 94%). Even if solutions produced by any algo-
rithm have a large number of valley-free AS triples, the remaining
freedom in the choice of relationships does not favor all algorithms.
Only few paths are valley-free or the values of ourmatchindicators
(of realism) are not high enough. Indeed, for the three datasets,
only solutions provided by thecspandgaoalgorithms are close to
the caida one. Since some solutions of thecaida algorithm have
been validated using information about business relationships of
many ASs, we consider those produced bycspas realistic enough
for our goal. We thus rely on thecspalgorithm to run our model
of path propagation, because of its potential accuracy and its large
number of valley-free paths.
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