
An End-Middle-End Approach to Connection
Establishment ∗

Saikat Guha
Cornell University, Ithaca

saikat@cs.cornell.edu

Paul Francis
Cornell University, Ithaca

francis@cs.cornell.edu

ABSTRACT
We argue that the current model for flow establishment in the Inter-
net: DNS Names, IP addresses, and transport ports, is inadequate
due to problems that go beyond the small IPv4 address space and
resulting NAT boxes. Even where global addresses exist, firewalls
cannot glean enough information about a flow from packet headers,
and so often err, typically by being over-conservative: disallowing
flows that might otherwise be allowed. This paper presents a novel
architecture, protocol design, and implementation, for flow estab-
lishment in the Internet. The architecture, called NUTSS, takes into
account the combined policies of endpoints and network providers.
While NUTSS borrows liberally from other proposals (URI-like
naming, signaling to manage ephemeral IPv4 or IPv6 data flows),
NUTSS is unique in that it couples overlay signaling with data-path
signaling. NUTSS requires no changes to existing network proto-
cols, and combined with recent NAT traversal techniques, works
with IPv4 and existing NAT/firewalls. This paper describes NUTSS
and shows how it satisfies a wide range of “end-middle-end” net-
work requirements, including access control, middlebox steering,
multi-homing, mobility, and protocol negotiation.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol architecture

General Terms
Design, Security

Keywords
NUTSS, End-Middle-End, Off-path, On-Path, Signaling

1. INTRODUCTION
The Internet was designed to provide a small but critical set of

transport services:

1. User-friendly naming of all Internet hosts (through DNS).

2. Network-level identification of all Internet hosts (through the
IP address) and best-effort delivery of datagrams to identified
hosts.

∗This work is funded in part by the Cisco CRP program

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

3. Identification of the application on the host that should re-
ceive a given packet (through the port number).

Implicit among these services was the idea that applications would
individually take care of access control. The Internet1 would de-
liver transmitted packets to the target application, and it was up to
the application to decide whether to accept or reject the packet. A
further implication of this approach is that there is no danger in
asking an application to process an incoming packet. The appli-
cation is assumed to be competent to look inside the packet and
decide whether or not to accept it. Industry recognized in the early
90’s that this approach was wrong: DoS attacks can overwhelm an
application, and because of either bugs or just poor design, appli-
cations are incapable of securing themselves with certainty. The
industry answer to this problem was the firewall, which effectively
enunciated a fourth critical requirement for Internet transport ser-
vice:

4. Blocking of unwanted packets before they reach the target
application (through packet filters in firewalls).

Of course it is well-known that the Internet today is ill-equipped
to satisfy these four core requirements. The IP address shortage
prevents all hosts from being identifiable in the network. Port num-
bers do not adequately identify applications anywhere outside of
the OS that created the socket. As a result, firewalls cannot be cer-
tain what application is behind a given port number, use costly deep
packet inspection, and often err on the side of caution (preventing
flows that might otherwise be acceptable).

The firewall compromised the E2E nature of the Internet archi-
tecture by placing a point of control outside of the end host. While
this development was widely viewed as negative [23], we and oth-
ers [58] believe that it is not only inevitable, but necessary and
largely positive. A primary reason for this is the fact that there may
be multiple legitimate stakeholders in a given packet flow—the end
user, the corporate IT department, or the ISP—each with their own
policies. The E2E nature of the Internet does not easily accommo-
date these policies. Another reason, however, is that sometimes it is
simply economically expedient to deploy a function in the middle,
even if it might ultimately be better done at the ends. Today there
are often good reasons to want to route packets through middle-
boxes other than firewalls, for instance virus scanners, web caches,
traffic shapers, performance enhancing proxies, protocol translators
(IPv4 to IPv6) and so on. These middleboxes sometimes interrupt

1By “Internet”, we mean the naming and transport services provided by IP
addresses, ports, and DNS for today’s “fixed” Internet (including wireless
access to the wired Internet). Sensor networks and MANETs that perform
their own naming and routing separate from the Internet are not included in
this definition.

193

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1282380.1282403&domain=pdf&date_stamp=2007-08-27

E2E semantics. The legitimate rise of middleboxes leads to another
requirement:

5. Explicit negotiation of middlebox usage between the end-
points and networks in the middle, including the ability to
steer packets through middleboxes not otherwise on the data-
path between source and destination.

We refer to this set of five requirements as the End-Middle-End
(EME) naming and addressing problem. Together they constitute
what we consider to be the absolute minimum set of requirements
that the modern Internet should satisfy. Put another way, a new
standard sockets interface, and the networking infrastructure that
supports it, should at a minimum satisfy the above requirements.

This paper presents an architecture and protocol, called NUTSS,
that satisfies these core EME naming and addressing requirements.
Specifically, NUTSS names endpoint applications with user-friendly
names, and uses signaling protocols to dynamically and securely do
late binding of named endpoints to ephemeral 5-tuple (addresses,
ports, and protocol) transport flows. Unlike previous architectures
[20, 58], transport flows in NUTSS are ephemeral and renegotiated
using both off-path (an overlay off of the data-path) and on-path
(on the IP data path) signaling protocols when required. This is in
stark contrast to SIP [44] (off-path only) and RSVP [11] (on-path
only), neither of which solves these core problems.

A simplified NUTSS connection establishment is described as
follows. An initiating host transmits a signaling message contain-
ing source and destination name, and the name of an application.
Using these names as the basis for routing, this message traverses
off-path policy-aware boxes near both ends, where authentication
is done and decisions are made to allow or disallow the connection.
Once allowed, ephemeral addresses, ports, and firewall-traversal
tokens are conveyed to both ends. Using the learned address as
the basis for routing, this information is then used by an on-path
signaling protocol to establish a data connection through firewalls.
The firewall uses the secure tokens as capabilities to allow or dis-
allow flows. It is these tokens that couple the off-path and on-path
signaling phases. If the connection breaks, for instance because of
mobility or firewall crashing, NUTSS can retry the on-path signal-
ing using the addresses and tokens previously obtained, or failing
that, fall back on off-path signaling using the names to re-establish
the data flow.

NUTSS does more than satisfy the core EME requirements listed
above. By using names as stable unique identifiers, and binding
them late to 5-tuple flows as explored in much recent work [35,
49], NUTSS separates identification from network location, thus
supporting network mobility and host and site multi-homing. Fi-
nally, NUTSS signaling allows endpoints and middleboxes to ne-
gotiate the protocol stack used in the data-path. This can be used
not only to negotiate transport (UDP, TCP, SCTP, etc.) and secu-
rity (IPsec, TLS, SSH, etc.), but different network layers as well
(IPv6, IPNL [15], TRIAD [20], HIP [35], i3 [49], DoA [58], etc.).
The ability to negotiate protocols as well as middleboxes creates a
framework for managing multiple network layers created through
virtual routers and switches, for instance as proposed for the GENI
infrastructure [19]. Indeed, this very flexibility is exploited by
NUTSS to provide itself with an incremental deployment path (Sec-
tion 2.6).

Up to this point, we have asserted that NUTSS satisfies contem-
porary EME requirements without changes to existing network pro-
tocols. Indeed, we can make a stronger assertion: that any new net-
work protocol benefits tremendously from a name-based signaling
approach like NUTSS. This claim flies in the face of recent self-
certifying, identity-based architectures [35, 49, 57, 58, 28], which

suggest not only that flat identities can serve as the basis of network
or content identities, but in some cases go so far as to suggest that
there is no need for a single global user-friendly name space [57,
28]. Rather, a wide range of ad hoc mechanisms, such as search
engines and HTML links, can be used to “discover” identifiers.

Our difficulty with these architectures derives mainly from the
fourth EME requirement—that unwanted packets must be blocked
before they reach the application, ideally in the network. This re-
quires, among other things, that access control policy (e.g. ACLs)
be configured in middleboxes. Today firewall vendors strive to
build devices that may be configured using user-friendly names
(“BitTorrent”, or “ftp”), and that can filter on aggregates such as
DNS zones or IP prefixes [8]. Flat identifiers are neither user-
friendly nor aggregatable, and therefore are not well-suited to serve
as the basis for ACL configuration. This is an issue that the propo-
nents of identity-based approaches have not addressed, in spite of
the fact that they recognize middleboxes as being no longer harm-
ful, and incorporate mechanisms to steer packets through them [49,
58, 28]. There must be a globally-understood user-friendly names-
pace that identifies endpoints (applications, services, users, etc.), as
well as a way to bind those names to the addresses, ports, and iden-
tifiers of data packets (collectively referred to here as “addressing
material”).

A key issue, then, is how to bind names to the addressing ma-
terial. Both TRIAD [20] and IPNL [15], which use DNS names
as user-friendly host identifiers, bind those names to network ad-
dresses by carrying both names and addresses in data packets. These
schemes literally treat names as addresses in the sense that net-
work routers run routing algorithms on the names themselves, and
bind these to numerical addresses primarily as an optimization for
the address lookup function. Both name-routed and address-routed
packets follow the data path (in other words, are routed on-path).

While neither TRIAD nor IPNL sought to solve the middlebox
problem, one can imagine extending them to do so, for instance
by extending their host names with user, application, and service
names, and by authenticating those extended names. Even so, we
find on-path approaches to be less attractive than off-path approaches
that use overlays to do name-based routing. On-path approaches
are both overly constraining and overly intrusive. They are con-
straining in that they force the name-based access control policy
decision to be made on-path. They are intrusive in that they force
all routers to participate in a name-based routing algorithm that,
in the case of TRIAD, may scale poorly, or in the case of IPNL,
requires a DNS lookup at packet forwarding time.

An overlay approach to name-based routing, by contrast, allows
the access control policy decision to be made anywhere in the In-
ternet. In particular, it allows access control to be widely replicated
and therefore more resilient to flash crowds or DoS attacks [40].
DNS, of course, is a name-based routing overlay, and certainly
much of its success may be attributed to the fact that it is decoupled
from on-path routing and is therefore easier to deploy. The prob-
lem with DNS in the EME context is that it is not at all designed
to do access control. DNS is not aware of who is making a DNS
query, and is typically not aware of the purpose of the query (i.e.
which application the query is for). Indeed, current use of dynamic
DNS [55] reveals private location information about mobile users,
making it possible for instance to follow their travel itineraries [22].
Merely confirming the existence of a valid name to an unauthorized
user can be considered a breach of privacy defined as contextual in-
tegrity [37].

Another widely deployed name-based routing overlay is SIP [44],
which is used for media (voice or video) flow establishment. For
the purposes of EME requirements, SIP is at least better than DNS

194

in that it carries the identity of both endpoints and allows them to be
authenticated. Furthermore, SIP enables a powerful set of features
including mobility, rich naming of users and endpoints, discovery,
the ability to negotiate different protocols, independence from un-
derlying transport, and the creation of infrastructure to support it
all. Nevertheless, SIP itself is not designed to couple the off-path
access control policy decision with on-path access control enforce-
ment. Industry has tried to address this shortcoming in two ways.
One is to implement SIP in the firewall itself [9]. This approach
does not work in all cases, because the name-routed signaling path
may differ from the address-routed data path. For instance, con-
sider a dual-homed site with combined firewall/SIP servers F1 and
F2. The signaling path may traverse F1, which authorizes the
flow and allows access for the associated addressing material. The
subsequent data path, however, may traverse F2, which has not
authorized the flow.

The other way is to define a protocol that allows the SIP server
to coordinate with the firewall [32, 50]. This approach suffers from
a similar problem which may be solved in a brute-force fashion
by having the SIP server enable a given flow in all possible fire-
walls that the data flow may traverse. While in the common case (a
dual-homed site) this may be reasonable if inefficient, it becomes
unworkable in scenarios where there are many firewalls. For in-
stance, a widely replicated distributed firewall addressed as an IP
anycast group might have hundreds or thousands of firewalls [14].

The key contribution of this paper is the design of NUTSS, a pro-
tocol that satisfies the core EME requirements through the novel
combination of dual signaling—the explicit coupling of off-path
name-routed signaling with on-path address-routed signaling to es-
tablish ephemeral 5-tuple flows. It is this novel coupling that over-
comes the disconnect between name-based routing and IP routing
that plagues previous approaches. NUTSS works with existing data
protocol stacks (IPv4 or IPv6), and includes an incremental deploy-
ment path that initially requires no changes to NAT boxes. As with
other architectures that separate location from identity, NUTSS fa-
cilitates mobility and multi-homing. Besides describing the design
of NUTSS, this paper presents a proof-of-concept implementation
and deployment of NUTSS and examines whether SIP [44] is ap-
propriate as the off-path signaling protocol for NUTSS.

The remainder of this paper is structured as follows: Section 2
describes the basic NUTSS architecture. Section 3 presents various
use cases and minor extensions to the basic architecture. Section 4
reports on our proof-of-concept implementation of NUTSS. Sec-
tion 5 discusses related work. Section 6 offers concluding thoughts
and directions for future work.

2. NUTSS ARCHITECTURE
This section starts with a brief overview of the NUTSS architec-

ture, followed by a detailed description of NUTSS.

2.1 NUTSS Overview
In NUTSS, named endpoints may be applications or services,

and may be associated with individual users or endhosts. The names
are user-friendly, long-term stable, and location-independent. When
an endpoint application wishes to establish a data flow with an-
other endpoint, it opens a NUTSS socket using the names only
(and not IP addresses) as endpoint identifiers. This triggers an
end-to-end name-based signaling exchange that authenticates the
endpoints and establishes the state necessary to transmit a 5-tuple
(source and destination IP address, source and destination port, and
IP protocol) data flow end-to-end via a series of middleboxes, in-
cluding NATs and firewalls. In addition to the 5-tuple parameters
and NAT mappings normally required by flows, this state also in-

cludes authorization tokens needed to traverse middleboxes that do
access control.

There are two components in NUTSS, P-boxes and M-boxes (for
policy-box and middlebox respectively). P-boxes and M-boxes are
deployed in the network as well as in endhosts. Networks that en-
force policies, such as access control or steering policies, must de-
ploy P-boxes and M-boxes. P-boxes form an overlay over which
name-routed signaling messages are carried end-to-end. Data flows
(or just flows for short) do not traverse P-boxes. Flows do, on the
other hand, traverse M-boxes, either because the M-box is deployed
on the IP path between endpoints (as with a firewall), or because
the signaling has negotiated to steer a flow through an M-box (for
instance, an anonymizer). P-boxes make policy decisions about
richly-named flows: whether to allow or disallow them, whether to
steer them through M-boxes, whether to require encryption, and so
on. M-boxes enforce the policy decisions made by an associated
P-box.

Signaling messages may traverse P-boxes or M-boxes. They tra-
verse P-boxes, routed by name, when no IP address is known for
the destination, or when the security tokens needed to traverse M-
boxes have not been obtained. Signaling through P-boxes is re-
ferred to as name-routed signaling. Otherwise, signaling messages
naturally traverse M-boxes, routed by the destination IP address
obtained during name-routed signaling (called address-routed sig-
naling). Because a name-routed P-box overlay path always exists
between endpoints, even for endpoints behind NAT boxes, there is
always a way to signal another endpoint to establish a flow (policy
permitting).

There is a bidirectional coupling that exists between name-routed
and address-routed signaling, which exists by virtue of shared in-
formation (keys and addresses) between P-boxes and their associ-
ated M-boxes. This coupling is necessary to overcome the unavoid-
able lack of coordination between name-based overlay routing and
IP-based address routing. Specifically, P-boxes convey secure to-
kens to endpoints during name-routed signaling, which are then
carried in address-routed signaling to traverse M-boxes. If an un-
approved flow is attempted through an M-box, the M-box refers the
sending endpoint to a P-box that may authorize the flow.

2.2 Naming and Access Control
Endpoint names in NUTSS are (user, domain, service) 3-tuples.

The user is a user-friendly identifier that is not globally unique
(e.g. bob). The domain is a globally-unique, user-friendly, hierar-
chical DNS name (e.g. acme.org). Together the user and domain
identify the principal that is considered to own the endpoint; the
user may be NULL, in which case the domain effectively identifies
a machine. The service is a globally-unique, user-friendly iden-
tifier for the service provided by the endpoint (e.g. ftpd for an
FTP-server). Names are independent of network location.

Access control policy is defined in terms of names. Wildcards
are permitted in policy definitions. A wildcard service name ∗
matches all services run by a particular principal (e.g. (bob, acme.org,
∗)), while a wildcard user name matches all principals in that do-
main. Furthermore, as domains are organized hierarchically, a wild-
card prefix in the domain name matches all subdomains below that
domain (e.g. (∗, ∗.cs.acme.org, ∗)).

NUTSS relies on existing mechanisms to authenticate endpoint
identities. Standard protocols, such as public-key signatures or
challenge-response protocols (e.g. DIAMETER [7]), over the name-
routed path are used to authenticate principals. Similarly, services
can be authenticated if the necessary hardware and software sup-
port is present at endpoints. For instance, [46] proposes an architec-
ture that leverages trusted hardware [51] to measure the integrity of

195

Parameters
E : (user, domain, service) - Endpoint name
A : address - Network address to reach endpoint
P : port - Transport port for data flow
τ : (token, nexthop) - address-routing state
ρ : (EP , AP) - Referral to P-Box

Name-routed messages (sent to P-Box)
REGISTER(E, A)

Register a name-route (wildcards OK).
FLOWNEGOTIATE(Esrc, Edst, Asrc, τ1...n)

Use name-routed signaling to negotiate address-routed path.
P-Boxes add τi, and modify Ax to effective address Ax′

Address-routed messages (sent through M-Box)
ρ = FLOWINIT(Aself , Apeer′ , Pself , τ1...n)

Use address-routed signaling to initialize data path.
An M-Box may refer to additional P-Boxes to contact
M-Boxes modify Px to effective port Px′

ρ = SEND(Aself : Pself , Apeer′ : Ppeer′ , data)
Send data packet

Access Control (sent to P-Box)
DISALLOW(Edst, Esrc)
ALLOW(Edst, Esrc)

Add/remove filters for destination (wildcards OK).

Table 1: NUTSS API for establishing flows and controlling access

P-Box

Endpoint

M-Box

Policy-free
Internet Core
(may be null)

N1

N2

N3

N4 N5

E1 E2

P-Box/M-Box Association

Referral Mechanism
(parent P-Box discovery)

DNS

P1

P2
P4

P3

P5

M2

Figure 1: Network topology and referral mechanism. Network N5 is
multi-homed.

the software-stack. As such, authentication is not further addressed
in this paper.

2.3 Name-routed Signaling
We now discuss how NUTSS creates a name-routed path be-

tween endpoints. Our goal in creating this path is to incorporate
the policy of networks on the data path between the endpoints.
As mentioned, this is accomplished through policy-aware P-Boxes
that, by design, form a name-routing tree2 (rooted at the DNS).
Endpoints form the leaves of the tree such that the path between
two endpoints along the tree passes through P-Boxes designated by
networks topologically between the two endpoints.

2.3.1 Network Topology
NUTSS models the Internet topology as policy-aware edge net-

works connected by a policy-free core (Figure 1). The policy-free
core (or just core for short) is defined as the set of interconnected

2In the presence of multi-homed networks, this is a directed acyclic graph

networks that do not assert middlebox policies and so do not de-
ploy P-Boxes. This model reflects the current Internet: networks
with firewalls today correspond to (policy-aware) edge networks,
and networks without firewalls correspond to the (policy-free) core.
Edge networks may comprise smaller networks that are separate
administrative entities. Each network designates one logical P-Box
(potentially multiple physical instances), which may be located ei-
ther inside or outside that network (e.g. in the figure, network N2
designates P-Box P2 and N1 designated P1). A P-Box for a net-
work not connected directly to the core has a parent P-Box. The
parent P-Box is the P-Box for an adjacent network through which
the former connects to the core (P1 is P2’s parent). A P-Box for a
multi-homed network (P5) has multiple parents (P3, P4).

The network administrator associates M-Boxes with the P-Box
for the network. M-Boxes are typically, though not always, de-
ployed at the network boundary (e.g. M2). P-Boxes use standard
cryptographic mechanisms (shared symmetric keys, or public keys)
to pass confidential messages to the M-Box via untrusted third-
parties. To facilitate deploying many M-Boxes, a P-Box need not
know the addresses of the M-Boxes (except for M-Boxes that must
be explicitly addressed e.g. NATs). M-Boxes, on the other hand,
are all configured with the name and address of their associated P-
Box. The P-Box and M-Box may optionally be co-located in the
same physical package.

Endhosts have a resident P-Box and M-Box (Figure 1). NUTSS
primitives (Table 1) are initially sent by endpoints to their local
in-host P-Box and M-Box, and from there, to other P-Boxes and
M-Boxes.

NUTSS assumes the presence of the DNS (or a similar name-
resolution service) in the core. For each domain, the DNS contains
the addresses of one or more contact P-Boxes for that domain. The
contact P-Box is the outermost P-Box through which the endpoints
in that domain can be reached. For example, in Figure 2, endpoints
from acme.org typically register with P2; the DNS administrator
for acme.org lists P1 as the contact P-Box for his domain as P1
can reach those endpoints through its child P2. Contact P-boxes
must be globally addressable.

Note that the core may in fact be null, as long as the core freely
allows packets between contact P-boxes. The rationale for exploit-
ing DNS in the core is similar to that of IPNL [15]: it allows
NUTSS to scale globally without changing the Internet core and
without requiring new name-based routing protocols as do TRIAD
[20] and DONA [28].

2.3.2 Discovery
A P-Box discovers it’s parent P-Box through the M-Box refer-

ral mechanism mentioned earlier. The child P-Box (e.g. E1’s
in-host P-Box) sends an address-routed message to a public ad-
dress. The message contains any authorization tokens needed to
clear the M-Boxes for the originating network/host (generated by
the P-Box itself), but does not contain authorization tokens for the
parent network (N2); the parent network’s M-Box (M2) therefore
blocks the message and responds with the name and address of the
parent P-Box (P2). An advantage of using normal address-routed
messages for P-Box discovery is that if P-Boxes and M-Boxes are
added (even mid-flow), for instance if a site becomes multi-homed,
they can be discovered via normal operation of the protocol.

2.3.3 Name-Route Creation
The REGISTER message, sent by endpoints through P-Boxes of

networks connecting it to the core, creates a (reverse) route from
the DNS to the endpoint through P-Boxes designated by the mid-
dle. The process is described as follows: endpoint E with network

196

DNS

 acme.org: P1

 rr.net: P3, P4

P3

 (*,rr.net,*): P5

P4

 (*,rr.net,*): P5

P1

 (carman,acme.org,ftpd): P6

 (*,acme.org,*): P2

P5 (@rr.net)

 (alice,rr.net,*): E2

P2 (@acme.org)

 (bob,acme.org,*): E1

P6

 (carman,acme.org,ftpd): E3

E2

 (alice,rr.net,*)

E1

 (bob,acme.org,*)

E3

 (carman,acme.org,ftpd)

E1
(bob,acme.org,*)

E2
(alice,rr.net,*)

DNS

E3
(carman,acme.org,ftpd)

acme.org

rr.net

Core

Register Message

DNS mapping
(contact P-Box)

P-Box Reg. Table

P1

P2

P6

P3

P4
P5

Figure 2: Endpoint registration, and name-routing state created. Network
N5 is multi-homed. Endpoint E3 is roaming.

Algorithm 1 PROCESSREIGSTER(E,A)
Require: E is endpoint name (EU,ED,ES)
Require: A is next-hop address to E
Require: E has been authenticated, can be reached through A, and is au-

thorized to register as per local policy.
Ensure: Name-routed path from contact P-Box for ED to E exists
1: UPDATEREGISTRATIONTABLE(E,A)
2: AL ← GETLOCALADDRESS()
3: FWDTO ← GETPARENTPBOXADDRESSES()
4: if ISEMPTY(FWDTO) then
5: FWDTO ← GETCONTACTPBOXADDRESSESFOR(ED)
6: if CONTAINS(FWDTO, AL) then
7: return
8: end if
9: end if

10: MSG ← new REGISTER(E,AL)
11: for all AP in FWDTO do
12: SENDTO(MSG, AP)
13: end for

address A that wishes to accept flows sends the REGISTER(E,A)
message to the local P-Box (Figure 2). When a P-Box receives a
REGISTER message (Algorithm 1), it adds the mapping to its local
registration table (assuming the endpoint is authenticated and au-
thorized to register with that P-Box). If the P-Box has any parent
P-Boxes, the P-Box propagates a mapping between the endpoint’s
name and the P-Box’s own address to all the parents. This pro-
cess is repeated recursively until the REGISTER reaches the core.
For instance, in Figure 2, E1’s registration is forwarded by his in-
host P-Box to P2 then to P1, E2’s registration to P5 then to both
P3, P4, and E3’s registration to P6. Now, if the outermost P-Box
is a contact P-Box registered for E’s domain, then the registration
process terminates as the reverse route from the DNS to the end-
point is complete (e.g. for E1, E2). Otherwise, to complete the
route the message is forwarded one last hop to the contact P-Boxes
for that domain (e.g. for E3); this second case is typically encoun-
tered by roaming endpoints.

As an optimization, wildcards in REGISTER messages are used

E1

E2

N2
N1

Core

1

2

3

46

5

Token

1

P-Box for

M-Box requiring

Message containing

FlowNegotiate (E1->E2)

FlowNegotiate (E2->E1)

1 2 3

4 65

Figure 3: Flow negotiation over name-routed signaling.

to register default routes. A principal can register a default route for
all services owned to point to his primary endhost, while a domain
(or sub-domain) administrator can register a default route for all
endpoints in that domain (or sub-domain) to go through a P-Box he
administers. During name-routing, the most specific registration is
used (i.e. a route for the endpoint is preferred over a route for the
principal, which is preferred over a route for the longest matching
domain portion).

2.3.4 Access Control
Flow requests may be rejected by P-Boxes in the network in one

of two ways. First, the lack of a registration for a given service or
principal will cause a P-Box to reject a flow request for that service
or principal. Second, an endpoint or P-Box administrator may spec-
ify that flow requests for registered names be additionally filtered
by the name of the requester, either as a whitelist or a blacklist.

These filters are installed in much the same way as name-routes.
An endpoint Edst that wishes to disallow flow requests from Esrc

sends the DISALLOW(Edst, Esrc) message to the local P-Box; wild-
cards can be used in either endpoint name to broaden the scope of
the filter. A P-Box administrator may likewise do a DISALLOW(Edst,
Esrc) at its P-Box. Either way, P-Boxes may forward the filter up
the name-routing tree (as with REGISTER messages), but unlike
REGISTER messages, the filter message does not need to bubble
up all the way to the top. The filter should nevertheless go beyond
the local (in-host) P-Box to allow for in-network filtering. How to
resolve conflicting filters is a matter of local policy.

2.3.5 Name-Routing
Name-routing is performed over the tree-overlay created by P-

Boxes and endpoints in the registration process. An endpoint Esrc

that wishes to initiate a flow with Edst sends a FLOWNEGOTIATE

(Esrc, Edst, Asrc, []) message to its local P-Box. Esrc and Edst

are the endpoint names (no wildcards allowed), and Asrc is the
network address of the initiator. The P-Box authorizes the flow
based on installed filters and local network policy. If authorized,
the P-Box forwards the message towards the destination as illus-
trated in Algorithm 2: if the local registration table has an entry
matching Edst, the message is forwarded to the associated address.
If no matching entry exists and the P-Box has a parent P-Box, the
message is forwarded to the parent. If no parent P-Box exists (out-
ermost P-Box), the message is forwarded to a contact P-Box for
the destination domain. Local policy may be consulted to pick one
or more of many candidate P-Boxes to forward to (e.g. for multi-
homed networks).

197

Algorithm 2 PROCESSFLOWNEGOTIATE(ES,ED,AS,T)
Require: ES is source endpoint
Require: ED is destination endpoint (EDU,EDD,EDS)
Require: AS is effective source address
Require: T is address-routing state {τ1...n}
Require: ES is authenticated and authorized to contact ED

Ensure: Endpoints acquire address-routing information needed
1: if DISALLOWEDBYFILTER(ED,ES) then
2: return false
3: end if
4: if EXISTSINREGISTRATIONTABLE(ED) then
5: FWDTO ← REGISTEREDADDRESS(ED)
6: else if HAVEPARENTPBOX() then
7: FWDTO ← SELECTPARENTPBOXADDRESS()
8: else
9: FWDTO ← SELECTCONTACTPBOXADDRESSFOR(EDD)

10: end if
11: TOK ← CREATEAUTHTOKEN()
12: if BEHINDNAT(AS) or EXPLICITMBOX() then
13: AS’ ← GETMBOXEXTERNALADDRESS()
14: else
15: AS’ ← AS

16: end if
17: T’ ← T ∪ {(TOK,AS)}
18: MSG ← new FLOWNEGOTIATE(ES,ED,AS’,T’)
19: SENDTO(MSG, FWDTO)

E1

E2

N2
N1

Core

1

2

FlowInit

Token

1

M-Box requiring

Message containing

1 2

Figure 4: Flow initialization over address-routed signaling (performed after
flow negotiation in Figure 3).

Before forwarding the FLOWNEGOTIATE, the P-Box modifies
it by adding τi : (token, nexthop), which is the state needed by
endpoints and M-Boxes to initialize the address-routed path. τ con-
tains an authorization token, which is a nonce signed by the P-Box.
If the Asrc advertised by the endpoint is behind a NAT M-Box, or
if the M-Box terminates the address-routed flow (e.g. application
level M-Boxes that must be explicitly addressed), the P-Box re-
places Asrc with the address of the M-Box — this is the address
that the remote endpoint should send packets to. In such cases,
the M-Box will, however, eventually need the original Asrc for
address-routing of processed packets; for this purpose, the P-Box
uses the nexthop field in τ to communicate Asrc to the M-Box.
This addition of tokens is illustrated in Figure 3 where each P-Box
enroute adds a token required by its M-Box.

When the destination receives the FLOWNEGOTIATE, it learns
the effective address of the initiator and a set of tokens τ1...n that it
needs to initialize its data path. The destination name-routes its own
address (Adst) and the acquired tokens τ1...n back to the initiator
in a FLOWNEGOTIATE message, which allows the initiator to learn
the destination’s effective address and tokens.

2.4 Address-routed Messages
Endpoints use the peer address and τ1...n acquired over name-

routed signaling to initialize the address-routed path. The initial-

Algorithm 3 PROCESSPACKET(P)
Require: P is an address-routed packet
Ensure: Only authorized flow packets can pass
1: if FOREXISTINGFLOW(P) or FORMYPBOX(P) then
2: FORWARDPACKET(P)
3: return
4: end if
5: if PACKETISFLOWINIT(P) then
6: for all τi in P do
7: if ISVALIDAUTHTOKENFORME(τi) then
8: if IAMANAT(P) then
9: FWDTO ← GETNEXTHOPIN(τi)

10: CREATENATSTATE(P, FWDTO)
11: end if
12: FORWARDPACKET(P)
13: return
14: end if
15: end for
16: end if
17: RESPONDWITHREFERRAL(P)

ization installs any necessary per-flow state in M-Boxes enroute.
The initialization process is described as follows: both endpoints
address-route a FLOWINIT(Aself , Apeer′ , Pself , τ1...n) message to
the remote endpoint; the message is sent to the peer’s effective ad-
dress Apeer′ over IP from the local source address Aself . Pself is
the local transport port allocated for the flow, and τ1...n are the to-
kens accumulated in the FLOWNEGOTIATE. The message is natu-
rally routed through M-Boxes for networks on the IP-path between
the endpoints as shown in Figure 4.

At each M-Box, the message is checked for the presence of a
τi with a valid authorization token for that M-Box. If found, the
message is forwarded to the next-hop as per normal IP routing. If
an M-Boxes requires additional state to forward the message (e.g.
NATs), the M-Box initializes this state from the nexthop field in
τi. Port-translating NAT M-Boxes also translate the advertised port
Pself for outbound messages as per normal NAT operation; this
allows the remote endpoint to learn the effective port to use. Once
both endpoints have sent FLOWINIT messages, application data can
flow along the address-routed path.

As mentioned earlier, if a M-Box receives a message without a
valid authorization token, the M-Box responds with a REFERRAL

message for its associated P-Box (Algorithm 3). The only excep-
tion is a message sent to the associated P-Box, as the P-Box must
by default be reachable from both inside and outside that network
to route new name-routed messages.

Note that M-Boxes, in general, are not explicitly addressed. This
is needed so IP routers retain the ability to route around network
failures (particularly around a failed M-Box). If a M-Box fails, the
IP route may fail over to another M-Box in the same network; the
second M-Box generates a referral for the first data packet routed
through it (due to lack of flow state). In such cases, the endpoint
attempts to re-initialize the address-routed flow through the new
M-Box with the tokens it used to initialize the first M-Box; this is
likely to succeed and data flow can resume immediately. In cases
where the IP route fails over to a different network altogether (with
potentially different flow policies), the original set of tokens is in-
sufficient and the endpoint must re-negotiate the flow over name-
routed signaling through the referred P-Box before re-initializing
the new address-routed path.

2.5 Security Considerations
P-Boxes, M-Boxes, referrals, tokens, names and name-routed

messages are new elements for attackers to attack, and through

198

them, attack flow establishment. We now discuss how the archi-
tecture defends against these new attacks.

NUTSS brings Akamai-like protection to all endpoints. NUTSS
allows for massive replication of P-Boxes and M-Boxes by being
flexible about (and dynamically discovering) where they are placed
in the network. Furthermore, the NUTSS token mechanism can
be co-opted by approaches, such as capabilities [62], to provide
DDoS protection to endhosts. While this approach is similar to
that taken by Akamai [1], NUTSS operates at the network layer
and need not rely a single large proxy provider. NUTSS assumes
the presence of external DDoS protection mechanisms [30, 4, 5, 61,
62, 27, 2, 26] to protect P-Boxes and M-Boxes at the IP level. Other
than that, standard defenses (crypto-puzzles [59], CAPTCHAs [56]
etc.) delivered over the name-routed path apply against resource
exhaustion attacks.

We assume that standard authentication protocols on the name-
routed path are used by P-Boxes and endpoints to establish trust in
each other. P-Box to P-Box communication may be secured with
keys exchanged out-of-band when possible (e.g. when establishing
customer-provider relationships, or stored in DNS). NUTSS does
not mandate the mechanism for establishing trust. As today, trust
can be established through reputation-based “webs-of-trust” [64],
mutually trusted certificate authorities [54], trusted hardware [51],
trust in domains that have good security practices through [7], and
so on as per individual preference.

Another target for attack is the authorization token used to cou-
ple the name-route to the address-route. An eavesdropper may at-
tempt to use the token generated for legitimate endpoints. A small
alteration in how tokens are handled protects tokens against eaves-
droppers. The token is never sent in the clear: P-Boxes append
three copies of the token in τ , one encrypted for each endpoint, and
one encrypted for the M-Box. Endpoints sign FLOWINIT messages
with their copy and include the encrypted M-Box copy within. M-
Boxes decrypt the token and use it to verify the signature to estab-
lish that the endpoint sending the packet possesses the token.

A malicious P-Box (or M-Box) can, at worst, deny service to an
endpoint behind it. Note, however, that a malicious P-Box not on
the name-routed path between the endpoint and its contact P-Box
cannot fake a registration, nor can a malicious P-Box redirect flows
to malicious endpoints; authentication protocols along the name-
routed path prevent it. Malicious M-Boxes may attempt to redirect
FLOWINIT messages to an alternate (malicious) destination, how-
ever, without access to the tokens possessed by the intended desti-
nation, the alternate destination cannot complete the initialization
process in the reverse direction. The only time an address-routed
path can be diverted without authorization tokens is if every M-Box
between the two endpoints is compromised — including, in partic-
ular, the in-host M-Box of the non-malicious endpoint.

A malicious endpoint may attempt to abuse its network privi-
leges; the middle can, in response, contain such endpoints at the
cost of additional name-routed messages. For instance, an endpoint
can attempt to replay legitimately acquired tokens to initialize paths
to multiple destinations only one of which is explicitly authorized.
This is possible because, by default, tokens are bound to named
flows and not to ephemeral addresses (to allow for some mobility);
P-Boxes may however choose to bind the token to the addresses
from which the token can be used, limit the time or number of data
bytes the token is valid for, or in extreme cases, make the token
single-use by requiring M-Boxes to notify the P-Box of each use.
The cost of restricting tokens to granularities finer than flows is ad-
ditional name-routed signaling each time the address-route breaks
trivially (e.g. M-Box reboots).

N1

N2

N3

N4

Core

B

A

C

D

E

Tokens learned over
name-routed signaling

Tokens presented over
address-routed signaling

IP Route

FlowNegotiate (E1->E2->E1)

FlowInit (succeeds)

FlowInit (fails) / Referral

FlowNegotiate (E2->E1->E2)

FlowInit (succeeds)

A
B
C
D
E

E1

E2

Figure 5: Asymmetric routing example. E1 and E2 are multi-homed. All
M-Boxes perform NAT. IP routing is asymmetric.

2.6 Incremental Deployment
We now describe how the NUTSS architecture can be realized in

three incremental phases. The goal of the deployment strategy is
to create incentives for applications and networks to adopt NUTSS
while keeping costs low.

In the first phase, only endpoint applications are made NUTSS-
aware; this involves performing name-routed and address-routed
signaling during connection establishment but does not require any
changes to networks. A third-party provides a public P-Box that the
application can use. Endpoints benefit from architectural support
for mobility, ability to traverse legacy NATs (the “killer-app” use-
case of NUTSS as described in the next section), and end-to-end
(but not end-middle-end) access control. In Section 4, we report on
our implementation and deployment of this first phase.

In the second phase, the middle is gradually made name-aware.
This is accomplished by individual networks deploying a P-Box.
Endpoints behind these networks are configured to use the P-Box
(in the same way that DNS resolvers are configured today i.e. through
DHCP). The need for configuration is temporary until networks de-
ploy M-Boxes in the third phase allowing the referral mechanism to
operate. Networks benefit by gaining insight into, and weak access
control over, flows carried by the network.

In the third and final phase, networks replace legacy middleboxes
with NUTSS-aware M-Boxes. M-Boxes allow networks to enforce
access control policies, and control network use in multi-homed
settings. The need for legacy NAT traversal and P-Box configura-
tion introduced in the first two deployment phases is eliminated. If
the network still has some legacy (non-NUTSS-aware) endpoints
that were not upgraded in the first phase, the M-Boxes are made
aware of them so the M-Boxes can allow them through.

2.7 An Example: Asymmetric Routing through
Firewalls

We end this section with an example that demonstrates the need
to couple name-routed and address-routed signaling, and describes
how existing approaches fail in this case. The example involves a
scenario, shown in Figure 5, that may easily arise with site multi-
homing. In this example endpoints E1 and E2 wish to commu-
nicate. Both endpoints are multi-homed; E1 connects to the In-
ternet through networks N1 and N2, and E2 connects through N3

and N4. Each network Ni operates a NAT M-Box (Mi with exter-

199

From To Message
1. E1 P1 FLOWNEGOTIATE(E1, E2, AE1 , [])
2. P1 P3 FLOWNEGOTIATE(E1, E2, AM1 , [τ1])
3. P3 E2 FLOWNEGOTIATE(E1, E2, AM1 , [τ1, τ3])

4. E2 P3 FLOWNEGOTIATE(E2, E1, AE2 , [τ1, τ3])
5. P3 P1 FLOWNEGOTIATE(E2, E1, AM3 , [τ1, τ3])
6. P1 E1 FLOWNEGOTIATE(E2, E1, AM3 , [τ1, τ3])
7. E1 M1 FLOWINIT(AE1 , AM3 , PE1 , [τ1, τ3])
8. M1 M3 FLOWINIT(AM1 , AM3 , PM1 , [τ1, τ3])
9. M3 E2 FLOWINIT(AM1 , AE2 , PM1 , [τ1, τ3])
10. E2 M4 FLOWINIT(AE2 , AM1 , PE2 , [τ1, τ3])
11. M4 E2 REFERRAL(P4, AP4)
12. E2 P4 FLOWNEGOTIATE(E2, E1, AE2 , [τ1, τ3])
13. P4 P1 FLOWNEGOTIATE(E2, E1, AM4 , [τ1, τ3, τ4])
14. P1 E1 FLOWNEGOTIATE(E2, E1, AM4 , [τ1, τ3, τ4])

15. E1 P1 FLOWNEGOTIATE(E1, E2, AE1 , [τ1, τ3, τ4])
16. P1 P4 FLOWNEGOTIATE(E1, E2, AM1 , [τ1, τ3, τ4])
17. P4 E2 FLOWNEGOTIATE(E1, E2, AM1 , [τ1, τ3, τ4])
18. E2 M4 FLOWINIT(AE2 , AM1 , PE2 , [τ1, τ3, τ4])
19. M4 M1 FLOWINIT(AM4 , AM1 , PM4 , [τ1, τ3, τ4])
20. M1 E1 FLOWINIT(AM4 , AE1 , PM4 , [τ1, τ3, τ4])

Table 2: Message-flow for asymmetric routing example.

nal address AMi) and an associated P-Box (Pi). Inside the multi-
homed networks, IP routing results in asymmetric paths — packets
from E1 to AM3 and AM4 are routed through N1 and N2 respec-
tively, while packets from E2 to AM1 and AM2 are routed through
N4 and N3.

NUTSS establishes an end-middle-end path as follows (Table 2).
After registration state is created, E1’s FLOWNEGOTIATE is ex-
changed with E2 through P1 and P3 (say). In the process E1 learns
AM3 and E2 learns AM1 as the other side’s effective address, along
with the tokens needed (messages #1–6 in the table, arrow �A in
the figure). E1’s FLOWINIT to E2 succeeds (#7–9, �B), however,
E2’s FLOWINIT, IP routed through M4, fails due to the lack of
the necessary token resulting in a referral to P4 (#10–11, �C). E2

resumes name-routed negotiation through P4, and both endpoints
acquire tokens for M4 (#12–17, �D). E2 successfully re-attempts
the FLOWINIT with the newly acquired tokens (#18–20, �E). As a
side-effect, E1 learns AM4 as an alternate effective address for E2

that can be used as a failover (once initialized).
In comparison, existing approaches fail to establish a path. As

one might expect, any approach that relies solely on address-routed
signaling (e.g. TCP/IP, HIP [35]) simply cannot signal through the
facing NATs due to both endpoints having private addresses. Re-
laying application data through public proxies (e.g. i3 [49]) is sub-
optimal as public proxies are potential network bottlenecks. Ap-
proaches that use name-routed signaling before address-routed sig-
naling (e.g. DONA [28], i3+DoA [58], SIP+STUN [42, 45]) but do
not strongly couple the two fail to recover when the name-routed
path does not coincide with the address-routed path (i.e. unexpect-
edly encountering M4 above).

Note that the default path discovered by NUTSS is asymmetric
owing to the underlying asymmetric IP routing. If this asymme-
try is undesirable, the P-Box can use explicit M-Box addressing
whereby P3 changes the address advertised in the FLOWNEGOTI-
ATE (#3) from AM1 to AM3 (and stores AM1 in τ3); E2 learns AM3

as the effective address for E1. E2’s FLOWINIT (#10) in this case is
addressed to AM3 instead of AM1 . The message is address-routed
to M3, which validates τ3 and NATs the message to AM1 , which

in turn NATs the message to E1 completing the initialization. The
resulting path is symmetric despite the underlying asymmetry.

3. USING AND EXTENDING NUTSS
This section supplies a number of scenarios that serve to elu-

cidate the operation of NUTSS. Some of these scenarios require
minor extensions to the basic architecture described in the previous
section. While we should note that each of these scenarios may be
handled by one or another existing technology, taken together they
demonstrate the breadth of NUTSS and its ability to serve as the
foundation for a wide variety of important Internet features.

3.1 Mobility
Mobility in NUTSS follows naturally from the basic connection

establishment mechanism. A mobile endpoint registers with the
P-Box at the new network address. Once registration state is in-
stalled in the intermediate P-Boxes, FLOWNEGOTIATE messages
are routed to the new location. An added option to the REGISTER

message can be used to explicitly expunge the previous registration
state if it is no longer valid. Data transfer for already established
flows is suspended while the endpoint is disconnected. Upon re-
joining, the endpoint attempts to re-initialize the suspended flow
from the new address using the existing tokens; if the initialization
succeeds, for instance mobility inside the same network where the
new M-Box can use the same token as the old M-Box, data flow
can be resumed immediately. Otherwise, data flow is resumed after
the name-based path is re-established, the flow re-negotiated, and
the address-routed path re-initialized with new tokens.

3.2 Legacy NAT Traversal
Endpoints use name-based routing as a generic signaling mech-

anism to conduct legacy NAT traversal as proposed in [21]. In
the presence of legacy M-Boxes without an associated P-Box, end-
points use a configured third-party P-Box service on the Internet.
Endpoints advertise their public address and port in FLOWNEGO-
TIATE messages. To learn their public address and port, endpoints
use a public service like STUN [45]. While key architectural com-
ponents (tokens, referrals etc.) are not used in this particular case,
legacy NAT traversal is a killer-app for endpoints; being able to
support legacy NAT traversal creates incentives for endpoints to
implement NUTSS, thus bootstrapping deployment.

3.3 Endpoint-Imposed Middleboxes
The NUTSS architecture as discussed focuses on the ability of

the middle to impose middleboxes. Endpoints too, can impose
middleboxes on a per flow basis. We outline one method as fol-
lows. The initiating endpoint imposes a middlebox (e.g. anonymiz-
ing proxy) by sending the FLOWNEGOTIATE to the middlebox and
having it proxy both name-routed and address-routed messages.
The endpoint accepting a flow imposes a middlebox (e.g. virus
scanner) by returning the address of the M-Box instead of its own
address in the FLOWNEGOTIATE; in addition, the endpoint ap-
pends a τdst that contains its own name. The initiator initializes
the address-routed path to the intended middlebox. The middlebox
recovers the name of the intended destination from τdst, negotiates
the path to that destination and proxies processed data. Endpoints
chain multiple middleboxes by adding a τi for each link.

3.4 Application-Level Anycast
Multiple endpoints REGISTER different addresses for the same

name; P-Boxes store all address mappings in their local registration
table and choose one to forward name-routed messages to. The
choice can be based on local network policy, or policy specified

200

by each endpoint at registration time (e.g. round-robin, primary-
backup and so on). This is in contrast to i3 (where the middle
cannot specify policy), and Oasis [18] (where the policy specified
by the middle can be sidestepped at flow establishment).

While the approach above works for cases where a single FLOWNE-
GOTIATE can acquire all the tokens needed, a small modification is
needed if multiple FLOWNEGOTIATEs are needed to acquire all
tokens as there is no guarantee that subsequent messages will be
name-routed to the same instance. To rectify this lack of affinity,
we add an additional instance component to the name making it
a 4-tuple. The instance field uniquely identifies an endpoint in a
group of anycast endpoints. The instance name may be picked by
the application to be user-friendly. For instance, an application may
detect other instances and use the hostname to differentiate itself, or
if appropriate may ask the user to name each instance, e.g. home
and work. REGISTER messages contain the instance as part of the
name. An application can elect to send a FLOWNEGOTIATE to a
specific instance (set in Edst), or to any instance (instance name of
∗); P-Boxes use the destination instance name to route to a match-
ing endpoint. An endpoint, however, must always include its own
instance name in FLOWNEGOTIATE messages that it generates so
the other endpoint can learn its unicast name.

3.5 Negotiating Multicast
NUTSS can be used to support several forms of multicast. The

basic idea is to use the 4-tuple names that define a group of end-
points defined in the previous section (3.4) for multicast instead of
anycast by transmitting messages to all members rather than only
one. There are several possible variants, depending on how large
the multicast group is, and whether IP multicast is available. For
instance, for small-scale multicast, endpoints could simply estab-
lish point-to-point flows with all other members, and individually
replicast packets onto all flows. If IP multicast is available, then
similar to SIP, the IP multicast address may signaled through P-
boxes, and members may join that multicast group. Otherwise, the
rendezvous point and group name for an application multicast pro-
tocol ([25, 53], among many others) may be conveyed through P-
boxes, and endpoints can join the appropriate application multicast
group. Finally, P-Boxes and M-Boxes can participate in carving
out IP multicast islands in overlay based approaches [63].

3.6 Default-Off
NUTSS can be used to implement the default-off paradigm [5]

without requiring changes to the public IP routing core; this is ac-
complished by disallowing name-routed messages between all end-
points by default. Endpoints must explicitly enable specific flows
with ALLOW messages. A common concern is how non Internet-
savvy users make use of this paradigm without the default quickly
regressing to default-on. We believe that the application must ul-
timately involve itself in selecting an appropriate policy. For ex-
ample, remote-desktop-like applications can elect to be default-off,
while BitTorrent like applications can be default-on. Over time,
one could well imagine applications evolving to be slightly more
sophisticated. For example, a given BitTorrent endpoint could use
the name of a given torrent as its instance name (Section 3.4) and
indicate to the P-Box to filter on that.

3.7 Protocol Negotiation
FLOWNEGOTIATE messages can be used to negotiate the en-

tire protocol stack with involvement from the middle. A general
protocol negotiation mechanism would enhance the evolvability of
the Internet, and could be used to manage multiple network layers
created through virtual routers and switches, for instance as pro-

posed for the GENI infrastructure [19]. In addition to addresses
and tokens, endpoints would advertise supported protocol stacks
including available transports, network layers, security protocols,
tunneling protocols and so on, and how to layer them. For instance,
a web-browser may advertise: 1) HTTP-TCP-IPv4, 2) HTTP-TCP-
IPsec-IPv6, 3) HTTP-TLS-SCTP-IPv4 etc. P-Boxes remove adver-
tised stacks if the network cannot support it (e.g. #3 if the M-Box
does not support SCTP) or if the stack violates network policy (e.g.
#1 if policy requires TLS or IPsec).

3.8 Optimizations
One of the main concerns with NUTSS is the added latency re-

quired for establishing data flows. Here we discuss three optimiza-
tions that may alleviate this concern. First, is to piggyback applica-
tion data on to signaling messages in order to expedite initial data
transfer. With appropriate changes to the networking stack in end-
host OS’s, this piggybacking could conceivably include protocol
handshakes such as HIP, IPsec, TCP, and HTTP, potentially result-
ing in an overall reduction in data exchange latency as compared
with today’s protocol operation.

The second optimization is combining the FLOWNEGOTIATE

and FLOWINIT when the P-Box and M-Box are co-located (likely
for small networks) to initialize the data path sooner. The FLOWINIT

in such cases may contain incomplete information regarding tokens
and the remote address. The P-Box fills in the token and uses it to
initialize the M-Box flow state. Note that the embedded FLOWINIT

is piggybacked with the FLOWNEGOTIATE along the name-route
so the remote address is not needed for address-routing; however,
if the remote addresses is needed for per-flow state in the M-Box,
the P-Box waits until the FLOWNEGOTIATE in the reverse direction
before initializing the M-Box.

A third optimization couples NUTSS with Self-Certifying Iden-
tifiers (SC-ID) in the protocol stack, for instance HIP [35], in or-
der to eliminate the need for additional signaling during IP-path
changing events like mobility or middlebox failover. The idea is to
include the SC-ID in FLOWINIT messages, and to transmit multiple
FLOWINIT messages in parallel to M-boxes. In this way, failover
M-boxes (for instance) will have pre-authorized the SC-ID, and can
forward data packets immediately upon receiving them. Indeed,
this approach can be used to establish multiple parallel data flows
through the network, for instance to increase throughput.

4. IMPLEMENTATION
To test the feasibility of NUTSS, we implemented a library that

adds NUTSS support to endpoints, and implemented an M-Box
used for legacy NAT traversal that we deployed on Planetlab. While
the implementation did not uncover any unexpected issues, it did
help us iron out the design. Using off-the-shelf software and ex-
isting infrastructure, our implementation enables end-middle-end
communication (including name-based connection establishment
in applications, legacy NAT traversal, mobility, default-off behav-
ior and application-level anycast) in many cases requiring little to
no modifications to existing applications.

Our implementation uses SIP [44] for name-routing. While other
name-routed signaling protocols (e.g. Jabber/XMPP [47]) may be
used, we chose SIP because of its maturity and support in commer-
cial hardware. At the same time, our choice allows us to assess
what subset of SIP is most important for NUTSS.

P-Boxes (SER) and Access Control (CPL): We chose to base
name-routed components on off-the-shelf commercial software in
order to facilitate the second phase of deployment (upgrading net-
works with support for name-routing). P-Boxes in our implementa-
tion are (as yet) unmodified SIP Express Router (SER) [17] proxies.

201

NUTSS name: (user, domain, service, instance)
SIP URI encoding: user@domain;srv=service;uuid=instance

Socket API NUTSS Primitive SIP Counterpart
nbind REGISTER REGISTER
nsetpolicy ALLOW/DISALLOW re-REGISTER (w/ CPL)
nconnect FLOWNEGOTIATE INVITE
naccept FLOWNEGOTIATE 200 OK
nsend/nrecv FLOWINIT (one-time) -
nclose - BYE

Table 3: Mapping from socket operations to NUTSS primitives, and
NUTSS primitives to SIP messages used.

Policy definitions (for ALLOW/DISALLOW messages and domain
policy) are compiled (manually, at present, using CPLEd [16]) into
the Call Processing Language (CPL) [29], a declarative language
used for user-specified VoIP policy and call routing.

Name-routed messages in NUTSS are encoded as SIP messages
(Table 3 lists the mapping). Source and destination endpoint names
are encoded in SIP header fields (From:, To:), and advertised ad-
dresses and tokens are encoded in the body of the SIP message. The
messages are (optionally) signed using S/MIME certificates [41].
Address-routed messages are normal TCP/IP messages; the library
inserts the FLOWINIT message into the 5-tuple data flow in front of
application data.

M-Boxes: While our implementation supports legacy NATs, we
implemented a NUTSS-aware M-Box that performs TURN-like [43]
relaying of application data to assist endpoints behind particularly
poorly behaved NATs [21] to communicate through them. To allow
for an unmodified SER proxy, our M-Box includes a shim P-Box
that generates tokens for the M-Box; the SER proxy coupled with
our shim in series perform the coupling between name-routing and
address-routing. The token itself is a 32-bit nonce, one copy of
which is sent to the endpoint and another exchanged in-memory
between the shim P-Box and M-Box that is used for validating the
impending data path.

Endpoints: Endpoint support is implemented as a userspace li-
brary for Linux and Windows applications. The library consists of
roughly 10K lines of C code and relies on a number of external li-
braries including eXosip2 [3] for SIP support and OpenSSL [39]
for data security. Our library has two interfaces. The first in-
terface offers NUTSS equivalents of the socket API including an
AF NUTSS socket address family, and a sockaddr ns structure
that encodes the user, domain and application, and optionally, the
instance name, as strings. In order to use this interface, applica-
tions must be modified accordingly; however, as the API is similar
to BSD sockets only minor modifications are needed—mostly con-
fined to populating the address structure with names instead of IP
addresses and ports.

The second interface to our library accommodates unmodified
existing application binaries. This interface is available only for
Linux applications. The library is pre-loaded into memory by the
Linux dynamic loader’s LD PRELOAD functionality. This allows
our library to transparently hijack libc socket calls in the applica-
tion and redirect them to NUTSS equivalents. The local endpoint
name is configured into environment variables by the user. The user
also enters specially encoded hostnames into the legacy applica-
tion. When the legacy application performs a gethostbyname
call for the encoded hostname, the call is intercepted by our li-
brary, which decodes the NUTSS name and creates a mapping be-
tween the identifier and a fake IP address returned to the applica-
tion. When the application later initiates a connect to the fake
IP address, the library intercepts and initiates an nconnect to the

associated name. Calls to other legacy BSD socket functions are
handled similarly.

In order to encourage adoption, the NUTSS library transparently
performs NAT traversal. After exchanging addresses and ports over
name-routed signaling if the direct TCP connections (in both direc-
tions), and TCP hole-punching [21] fail, endpoints negotiate the
use of a public relay (the TURN-like M-Box described earlier). M-
Boxes are deployed on Planetlab hosts. The associated P-Box can
be contacted through sip.nutss.net, which routes to the shim P-
Box in a randomly selected M-Box. Endpoints acquire a token and
transport address for the M-Box. Both endpoints connect to the M-
Box and initialize the flow by sending a FLOWINIT message over
the connection; the M-Box verifies the token and uses it to pair up
the two connections.

As the M-Boxes in our Planetlab deployment do not lie on the
IP data path between endpoints, we have not gathered sufficient
experience with the referral mechanism.

We have successfully run a number of applications using both the
legacy and non-legacy interfaces to our library while transparently
incorporating endpoint policy, authentication, legacy NAT traversal
and endpoint mobility. Our library works with client-server appli-
cations written to our API, as well as with many unmodified legacy
applications (e.g. iperf, VNC, GNOME GUI desktop). The library
is available for public download at nutss.net.

4.1 Findings
SIP Lessons Learned: We were surprised to find that although

SIP was originally conceived for a very different purpose, it can be
used to implement name-routing in NUTSS (with one minor mod-
ification). Admittedly SIP is rather heavy-weight for the purpose
and we would prefer to use a leaner protocol. Nevertheless, given
that SIP is deployed widely today and enjoys significant mindshare,
there is a compelling case to be made for using a subset of it.

One aspect of SIP that requires special workarounds in our im-
plementation is the lack of support for nested domains. A single
REGISTER message only creates a single registration at the local
P-Box and not the chain of registrations in the P-Boxes in front of
the endpoint as required by NUTSS. While this limitation is not a
concern in the first phase of deployment where a public P-Box is
used, in the second phase it affects networks not connected directly
to the core. A temporary brute-force workaround is for endpoints
to explicitly create registrations for each link of the chain; however,
this is not always possible due to firewall policy. A more perma-
nent solution is to modify SIP with support for nested domains, and
accordingly modify our SER proxy to forward the registrations to
the parent P-Box.

Latency: Since ours is a proof-of-concept implementation of
the NUTSS architecture, performance numbers are of little rele-
vance as they relate only to our (perhaps simple) access control pol-
icy. Nevertheless, some brief comments on performance are worth
making. We found that there is little added latency in establishing
connections (less than 15ms) with P-Boxes deployed on the same
network segment as the endpoints. This is because signaling in our
particular setting added one name-routed round-trip (FLOWNEGO-
TIATE) and one address-routed round-trip (FLOWINIT). Quite pre-
dictably, when two nearby Planetlab nodes on the west coast use
our public P-Box service deployed at Cornell, the connection es-
tablishment latency shoots up to 100–200ms due to name-routed
messages having to make four coast-to-coast trips before the direct
data can flow. The optimization suggested in Section 3.8 where
data is piggybacked in signaling messages should allow initial data
bytes to be exchanged in half that time while the address-routed
path is established in the background. Our P-Box (SER proxy)

202

can route approximately 1200 name-routed messages per second on
contemporary hardware (∼1050 with challenge-response authenti-
cation enabled). A single such P-Box can handle moderate sized
sites, but load-balancers will be needed for large sites.

In real-world settings, interaction with multi-homing, complex
access control policy, mid-flow reconfigurations, and mobility will
make signaling more heavy-weight.

5. RELATED WORK
Several other Internet architectures have been proposed that wean

away from 5-tuple addressing. TRIAD [20], IPNL [15], HIP [35],
SHIM6 [38] and i3 [49] route datagrams based on URLs, FQDNs,
host keys, hashes and flat identifiers respectively; these approaches
advocate end-only control and require protocol-stack modifications
at endhosts and middleboxes. NUTSS advocates control shared
by both the end and the middle and uses a separate name-routed
signaling phase that is strongly coupled to existing address-routed
stacks. GMPLS [31], which doesn’t involve endpoints, uses IP for
“name”-routed signaling to negotiate the layer-2 path. Selnet [52],
Plutarch [10], AVES [36], Metanet [60], SIP [44], UIA [13], and
DONA [28] all involve the middle in resolving endpoint names to
realm-specific addresses and routes. In order to provide complete
end-middle-end connectivity, however, we believe the middle must
play a yet larger role in blocking unwanted flows, and instantiating
the address-routed path.

When it comes to blocking unwanted flows, one weakness of
the E2E security model as mentioned is that not everyone who has
a stake in security is empowered to provide that security. In this
model, the middle has little say in what flows are allowed and must
rely completely on the endpoints for the protection of the network
itself. In select scenarios, in an enterprise for example, the IT de-
partment can enforce this control over the ends through software
update and configuration management tools like Marimba [6]. In
other cases, such as with DoA [58], endpoints can explicitly invoke
security services provided by the middle. Such solutions, however,
do not protect against malicious or compromised endpoints that
may preempt the IT department’s control and abuse the network.

An alternate solution is where the middle exerts direct control
on flows with the help of a middlebox on the address-routed path.
While middleboxes protect the network against uncooperative end-
points, they face the aforementioned problems which we repeat
here: firewalls must infer malice based largely on the 5-tuple and
costly deep packet inspection, D-WARD [34] infers malice based
on deviations from a “normal traffic model”, NATs protect only
against drive-by intrusions from the outside, and VPNs cannot au-
thenticate remote endpoints that are not VPN members. Ultimately,
such middle-only approaches that cannot explicitly negotiate the
intent of the endpoint rely on heuristics, which potentially block
unmalicious flows.

When it comes to establishing the address-routed path, protocols
such as UPnP [33] and Midcom [48] allow the endpoint to create
state in the middle. A limitation in these approaches, however, is
that the middle cannot participate in flow negotiation either to en-
force network policy or to indicate whether the address-routed path
and protocol stack chosen by the endpoints is even possible. Ses-
sion Border Controllers [24] combine name-routing and address-
routing in one box, but do so without endpoint knowledge or con-
sent creating authentication and authorization hurdles.

6. SUMMARY AND FUTURE WORK
In this paper, we propose NUTSS, a name-based “end-middle-

end” approach to establishing network flows through middleboxes

like NATs and firewalls that takes into account policies of the ends
and the middle. NUTSS is unique in that it couples both off-path
and on-path signaling in order to overcome the weaknesses of ei-
ther. NUTSS has an incentivized incremental deployment path,
and enables a number of important features, including mobility,
multi-homing, NAT traversal, negotiation of different network lay-
ers, multicast, and anycast.

Although this paper shows NUTSS to be a promising approach,
the devil is in the details. Our partial proof-of-concept implemen-
tation notwithstanding, the most important next steps are to gain
experience with NUTSS and to do more security analysis. Towards
this end, we hope that the NAT traversal features of our implemen-
tation may serve as a “killer app” to drive deployment and experi-
mentation.

Beyond this, there are a number of interesting research direc-
tions that we hope to explore. Due to lack of space, we only briefly
list them here. Foremost among these is to explore the use of self-
certifying identifiers with NUTSS, as discussed in Section 3.8. An-
other is the use of an alternative to DNS in the core, for instance
a DHT or gossip protocol, as a means of name-based routing be-
tween contact P-boxes, in particular to avoid latencies associated
with the DNS lookup. Finally, NUTSS appears to be a promis-
ing basis for advanced services at the sockets API such as Quality
of Service, auditing and billing, publish-subscribe, and store-and-
forward service for intermittently connected devices, for instance
in DTNs [12].

Acknowledgemnts
The authors would like to thank David Wetherall (our shepherd),
Melinda Shore, Scott Brim, Mark Baugher, and our anonymous
reviewers for valuable comments and discussion on earlier versions
of this document. Ariel Rabkin and Tyler Steele contributed to the
NUTSS library.

7. REFERENCES
[1] AKAMAI TECHNOLOGIES, INC. Akamai: How it works.
[2] ANDERSEN, D. Mayday: Distributed filtering for internet services.

In Proceedings of the USITS ’03 (Seattle, WA, Mar. 2003).
[3] ANTISIP SARL. The eXtended osip library.
[4] ARGYRAKI, K., AND CHERITON, D. R. Active Internet Traffic

Filtering: Real-Time Response to Denial-of-Service Attacks. In
Proceedings of the 2005 USENIX Annual Technical Conference
(Anaheim, CA, Apr. 2005).

[5] BALLANI, H., CHAWATHE, Y., RATNASAMY, S., ROSCOE, T.,
AND SHENKER, S. Off by Default! In Proceedings of the
HotNets’05 (College Park, MD, Nov. 2005).

[6] BMC SOFTWARE. Marimba Product Line.
[7] CALHOUN, P. R., LOUGHNEY, J., ARKKO, J., GUTTMAN, E.,

AND ZORN, G. RFC 3588: Diameter Base Protocol, Sept. 2003.
[8] CISCO SYSTEMS, I. Cisco IOS Security Configuration Guide

(Release 12.4). Cisco Press, 2006, ch. Access Control Lists:
Overview and Guidelines, pp. 429–436.

[9] CISCO SYSTEMS, I. Cisco IOS Security Configuration Guide
(Release 12.4). Cisco Press, 2006, ch. Firewall Support for SIP,
pp. 587–600.

[10] CROWCROFT, J., HAND, S., MORTIER, R., ROSCOE, T., AND

WARFIELD, A. Plutarch: An Argument for Network Pluralism. In
Proceedings of the SIGCOMM ’03 Workshops (Karlsruhe, Germany,
Aug. 2003).

[11] (ED.), R. B., ZHANG, L., BERSON, S., HERZOG, S., AND JAMIN,
S. RFC 2205: Resource ReSerVation Protocol (RSVP), Sept. 1997.

[12] FALL, K. A Delay-Tolerant Network Architecture for Challenged
Internets. In Proceedings of SIGCOMM ’03 (Karlsruhe, Germany,
Aug. 2003).

[13] FORD, B., STRAUSS, J., LESNIEWSKI-LAAS, C., RHEA, S.,
KAASHOEK, F., AND MORRIS, R. Persistent Personal Names for

203

Globally Connected Mobile Devices. In Proceedings of the OSDI
’06 (Seattle, WA, Nov. 2004).

[14] FRANCIS, P. Firebreak: An IP Perimeter Defense Architecture.
Tech. Rep. cul.cis/TR2006-2060, Cornell University, Ithaca, NY,
2006.

[15] FRANCIS, P., AND GUMMADI, R. IPNL: A NAT-extended internet
architecture. In Proceedings of the SIGCOMM ’01 (San Diego, CA,
Aug. 2001).

[16] FRAUNHOFER FOKUS. CPLEd - A CPL Editor.
[17] FRAUNHOFER FOKUS. SIP Express Router.
[18] FREEDMAN, M. J., LAKSHMINARAYANAN, K., AND MAZIÈRES,

D. OASIS: Anycast for Any Service. In Proceedings of NSDI’06
(San Jose, CA, May 2006).

[19] GENI PLANNING GROUP. GENI: Global Environment for Network
Innovations.

[20] GRITTER, M., AND CHERITON, D. R. An Architecture for Content
Routing Support in the Internet. In Proceedings of the USITS ’01
(San Francisco, CA, Mar. 2001).

[21] GUHA, S., AND FRANCIS, P. Characterization and Measurement of
TCP Traversal through NATs and Firewalls. In Proceedings of the
2005 Internet Measurement Conference (New Orleans, LA, Oct.
2005).

[22] GUHA, S., AND FRANCIS, P. Identity Trail: Covert Surveillance
Using DNS. In Proceedings of 7th Workshop on Privacy Enhancing
Technologies (Ottawa, Canada, June 2007).

[23] HAIN, T. RFC 2993: Architectural Implications of NAT, Nov. 2000.
[24] HAUTAKORPI, J., CAMARILLO, G., PENFIELD, R. F.,

HAWRYLYSHEN, A., AND BHATIA, M. Internet draft:
Requirements from SIP (Session Initiation Protocol) Session Border
Control Deployments, Apr. 2007. Work in progress.
draft-ietf-sipping-sbc-funcs-03.txt.

[25] HUA CHU, Y., RAO, S. G., SESHAN, S., AND ZHANG, H. A case
for end system multicast. IEEE Journal on Selected Areas in
Communications 20, 8 (Oct. 2002), 1456–1471.

[26] HUICI, F., AND HANDLEY, M. An Edge-to-Edge Filtering
Architecture Against DoS. ACM SIGCOMM Computer
Communications Review 37, 2 (Apr. 2007), 41–50.

[27] KEROMYTIS, A. D., MISRA, V., AND RUBENSTEIN, D. SOS:
secure overlay services. SIGCOMM Comput. Commun. Rev. 32, 4
(2002), 61–72.

[28] KOPONEN, T., CHAWLA, M., CHUN, B.-G., ERMOLINSKIY, A.,
KIM, K. H., SHENKER, S., AND STOICA, I. A Data-Oriented (and
Beyond) Network Architecture. In Proceedings of SIGCOMM’07
(Kyoto, Japan, Aug. 2007).

[29] LENNOX, J., WU, X., AND SCHULZRINNE, H. RFC 3880: Call
Processing Language (CPL): A Language for User Control of
Internet Telephony Services, Oct. 2004.

[30] MAHAJAN, R., BELLOVIN, S. M., FLOYD, S., IOANNIDIS, J.,
PAXSON, V., AND SHENKER, S. Controlling High Bandwidth
Aggregates in the Network. ACM Computer Communications
Review 32, 3 (July 2002), 62–73.

[31] MANNIE, E. RFC 3945: Generalized Multi-Protocol Label
Switching (GMPLS) Architecture, Oct. 2004.

[32] MARSHALL, W. RFC 3133: Private Session Initiation Protocol
(SIP) Extensions for Media Authorization , Jan. 2003.

[33] MICROSOFT CORPORATION. UPnP – Universal Plug and Play
Internet Gateway Device v1.01, Nov. 2001.

[34] MIRKOVIĆ, J., PRIER, G., AND REIHER, P. Attacking DDoS at the
Source. In Proceedings of ICNP’02 (Paris, France, Nov. 2002).

[35] MOSKOWITZ, R., AND NIKANDER, P. RFC 4423: Host Identity
Protocol (HIP) Architecture, May 2006.

[36] NG, T. S. E., STOICA, I., AND ZHANG, H. A Waypoint Service
Approach to Connect Heterogeneous Internet Address Spaces. In
Proceedings of USENIX Annual Technical Conference (Monterey,
CA, June 2002).

[37] NISSENBAUM, H. Privacy as Contextual Integrity. Washington Law
Review 79, 1 (Feb. 2004), 119–158.

[38] NORDMARK, E., AND BAGNULO, M. Internet draft: Level 3
multihoming shim protocol, Nov. 2006.
draft-ietf-shim6-proto-07.txt. Work in progress.

[39] OPENSSL TEAM. The Open Source toolkit for SSL/TLS.
[40] RAMASUBRAMANIAN, V., AND SIRER, E. G. CoDoNS: The

Design and Implementation of a Next Generation Name Service for

the Internet. In Proceedings of SIGCOMM’04 (Portland, OR, August
2004).

[41] RAMSDELL, B. RFC 3851: Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 3.1 Message Specification, July 2004.

[42] ROSENBERG, J. RFC 3856: A Presence Event Package for the
Session Initiation Protocol (SIP), Aug. 2004.

[43] ROSENBERG, J., MAHY, R., AND HUITEMA, C. Internet draft:
TURN – Traversal Using Relay NAT, Mar. 2006. Work in progress.

[44] ROSENBERG, J., SCHULZRINNE, H., CAMARILLO, G.,
JOHNSTON, A., PETERSON, J., SPARKS, R., HANDLEY, M., AND

SCHOOLER, E. RFC 3261: SIP Session Initiation Protocol, June
2002.

[45] ROSENBERG, J., WEINBERGER, J., HUITEMA, C., AND MAHY, R.
RFC 3489: STUN – Simple Traversal of User Datagram Protocol
(UDP) Through Network Address Translators (NATs), Mar. 2003.

[46] SAILER, R., ZHANG, X., JAEGER, T., AND VAN DOORN, L.
Design and Implementation of a TCG-based Integrity Measurement
Architecture. In Proceedings of 13th USENIX Security Symposium
(San Diego, CA, Aug. 2004), pp. 223–238.

[47] SAINT-ANDRE, P. RFC 3290: Extensible Messaging and Presence
Protocol (XMPP): Core, Oct. 2004.

[48] STIEMERLING, M., QUITTEK, J., AND TAYLOR, T. MIDCOM
Protocol Semantics, June 2004. Work in progress.

[49] STOICA, I., ADKINS, D., ZHUANG, S., SHENKER, S., AND

SURANA, S. Internet Indirection Infrastructure. In Proceedings of
the SIGCOMM ’02 (Pittsburgh, PA, Aug. 2002).

[50] TECHNICAL SPECIFICATION GROUP CORE NETWORK AND

TERMINALS. 3GPP TS 29.207: Policy control over Go interface,
Sept. 2005.

[51] TRUSTED COMPUTING GROUP. TPM Specification Version 1.2.
[52] TSCHUDIN, C., AND GOLD, R. SelNet: A Translating Underlay

Network. Tech. Rep. 2003-020, Uppsala University, Uppsala,
Sweden, Nov. 2001.

[53] VENKATARAMAN, V., FRANCISY, P., AND CALANDRINO, J.
Chunkyspread: Multitree Unstructured Peer-to-Peer Multicast. In
Proceedings of the IPTPS ’06 (Santa Barbara, CA, Feb. 2006).

[54] VERISIGN INC. Security (SSL Certificates), Communications, and
Information Services.

[55] VIXIE, P., THOMSON, S., REKHTER, Y., AND BOUND, J. RFC
2136: Dynamic Updates in the Domain Name System, Dec. 1997.

[56] VON AHN, L., BLUM, M., HOPPER, N. J., AND LANGFORD, J.
CAPTCHA: Using Hard AI Problems For Security. In Proceedings
of EUROCRYPT’03 (Warsaw, Poland, May 2003).

[57] WALFISH, M., BALAKRISHNAN, H., AND SHENKER, S.
Untangling the Web from DNS. In Proceedings of the NSDI ’04 (San
Francisco, CA, Mar. 2004).

[58] WALFISH, M., STRIBLING, J., KROHN, M., BALAKRISHNAN, H.,
MORRIS, R., , AND SHENKER, S. Middleboxes No Longer
Considered Harmful. In Proceedings of the OSDI ’04 (San
Francisco, CA, Dec. 2004).

[59] WANG, X., AND REITER, M. K. Defending Against
Denial-of-Service Attacks with Puzzle Auctions. In SP ’03:
Proceedings of the 2003 IEEE Symposium on Security and Privacy
(Washington, DC, USA, 2003), IEEE Computer Society, p. 78.

[60] WROCLAWSKI, J. The MetaNet: White Paper. In Proceedings of
Workshop on Research Directions for the Next Generation Internet
(Vienna, VA, May 1997).

[61] YAAR, A., PERRIG, A., AND SONG, D. SIFF: A Stateless Internet
Flow Filter to Mitigate DDoS Flooding Attacks. In IEEE Symposium
on Security and Privacy (Pittsburgh, PA, May 2004), pp. 130– 143.

[62] YANG, X., WETHERALL, D., AND ANDERSON, T. A DoS-limiting
Network Architecture. In Proceedings of the SIGCOMM ’05
(Philadelphia, PA, Aug. 2005).

[63] ZHANG, B., WANG, W., JAMIN, S., MASSEY, D., AND ZHANG,
L. Universal IP multicast delivery. Computer Networks, special
issue on Overlay Distribution Structures and their Applications 50, 6
(Apr. 2006), 781–806.

[64] ZIMMERMANN, P. R. The official PGP user’s guide. MIT Press,
Cambridge, MA, 1995.

204

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

