
Similarity-Aware Query Allocation in Sensor Networks with
Multiple Base Stations

Shili Xiang1, Hock-Beng Lim2, Kian-Lee Tan1, Yongluan Zhou3

1Department of Computer Science, National University of Singapore
2Intelligent Systems Center, Nanyang Technological University

3School of Computer and Communication Sciences, EPFL, Switzerland

ABSTRACT
In this paper, we consider a large scale sensor network com-
prising multiple, say K, base stations and a large number
of wireless sensors. Such an infrastructure is expected to be
more energy efficient and scale well with the size of the sen-
sor nodes. To support a large number of queries, we examine
the problem of allocating queries across the base stations to
minimize the total data communication cost among the sen-
sors. In particular, we examine similarity-aware techniques
that exploit the similarities among queries when allocating
queries, so that queries that require data from a common
set of sensor nodes are allocated to the same base stations.
We first approximate the problem of allocating queries to K
base stations as a max-K-cut problem, and adapts an exist-
ing solution to our context. However, the scheme only works
in a static context, where all queries are known in advance.
In order to operate in a dynamic environment with frequent
query arrivals and termination, we further propose a novel
similarity-aware strategy that allocates queries to base sta-
tions one at a time. We also propose several heuristics to
order a batch of queries for incremental allocation. We con-
ducted experiments to evaluate our proposed schemes, and
our results show that our similarity-aware query allocation
schemes can effectively exploit the sharing among queries to
greatly reduce the communication cost.

1. INTRODUCTION
Sensor nodes are small, inexpensive, low power and pro-

grammable. As such, there has been increasing adoption of
wireless sensor networks (WSNs) in a wide variety of appli-
cations. WSNs have been used in resource-limited and harsh
environments, such as earthquake areas, ecological contam-
ination sites, and military battlegrounds. They have also
been deployed in everyday-life environments, such as smart
home environment, intelligent museum/zoo, warehouse/port,
and road. WSNs are expected to greatly improve our under-
standing of the world and also provide our life with tremen-
dous convenience.

To ease the deployment of WSN applications, researchers
have proposed techniques to treat the sensor network as a
database. In a database context, a typical WSN operates as
follows: user interests are expressed as queries and submit-
ted to a powerful base station; the base station disseminates
the queries into the sensor network, more specifically, to the

Proceedings of the 4th International Workshop on Data Manage-
ment for Sensor Networks (DMSN’07), Vienna, Austria, 2007.
Copyright is held by the author(s).

sensor nodes that are involved in the queries; the sensor
nodes generate, process and transfer sensory data back to
the base station which will then correspondingly return the
query result back to the users. However, sensor nodes are
quite resource-constrained with limited processing capacity,
storage, bandwidth and power. To better realize the po-
tential of WSNs, several query processing techniques have
been specially designed to optimize the processing of each
query [18, 12, 13, 4]. For example, for aggregation queries,
a tree-like routing structure is often utilized [19, 9] and in-
network aggregation is done at intermediate nodes to reduce
the amount of data that is sent to the base station.

As the popularity and importance of WSNs grow, so does
the size of the sensor network and the number of users who
are interested in accessing sensory data. To further enable
the sensor network to scale well with the number of users
and queries, multiple query optimization techniques have
also been investigated [16, 15], where they effectively share
the commonality among the queries that are distributed to
a particular base station to minimize the energy consump-
tion among sensors. For a large scale sensor network, it is
necessary and beneficial to have multiple base stations in
the network. Firstly, it provides the sensor network with
better coverage and scalability. The limited radio range of
sensor nodes leads to multi-hop routing, where the nodes
nearer to the base station need to do more work. With lim-
ited bandwidth of each sensor node, the nodes near the base
station form the bottleneck and correspondingly the maxi-
mum number of hops each base station can cover is limited.
Secondly, it provides the sensor network with better reliabil-
ity [10]. The communication among sensor nodes are prone
to failures, due to collision, node failure and environmen-
tal noise etc. With more base stations in the network, the
average number of hops each data travels is fewer, and corre-
spondingly the reliability of the data transmission is better.
Lastly, it extends the life time of the sensor network. The
sensor nodes nearer to the base stations are likely to have
higher load and the energy consumption there is greater than
other nodes; with more base stations, the burden of nodes
nearer to each base station can be relieved.

In this paper, we adopt an infrastructure with multiple
base stations to support large scale sensor network appli-
cations, in terms of both network size and number of user
queries. We are the first to formulate and deal with the
query allocation problem in such a context, that studies
how queries should be allocated onto various base stations to
minimize the total communication cost among sensor nodes.
More specifically, during the query allocation process, our al-

gorithms are aware of the similarities among the queries. We
approximate the query allocation problem as a Max-K-Cut
problem, and adapt a classical solution for Max-K-Cut that
uses Semidefinite Programming (SDP) relaxation to solve
it [6]. However, the SDP approach is designed for static
environment where all queries are known apriori. In our
context, new queries may arrive and running queries may
terminate. This calls for novel techniques to be designed.
In addition, as we shall see, the Max-K-Cut does not ex-
actly capture our query allocation problem. Therefore, we
propose a novel incremental query insertion algorithm that
incurs little overhead to allocate a newly inserted query to
an appropriate base station. For the situation where several
queries arrive at the same time (or several queries are in the
waiting queue), such as the initial setup, we propose several
techniques to order these queries before inserting them into
the network one by one.

Our experimental results show significant improvement
of all our similarity-aware query allocation schemes, over
the best allocation strategy that fails to take advantage of
the inherent sharing among other queries. Moreover, our
proposed incremental query insertion algorithms perform as
well as the complex Max-K-Cut classical solution in terms
of the communication cost among sensor nodes, while incur-
ring negligible computational time.

The rest of this paper is organized as follows. In Section
2, we formulate our query allocation problem and point out
the challenges to solve the problem. Then, we approximate
the query allocation problem with a Max-K-Cut problem in
Section 3. To deal with dynamic query insertion and ter-
mination, in Section 4, our incremental insertion algorithms
are proposed and discussed. In Section 5, we present our
experimental results. Before we finally conclude the paper
in Section 7, we review some related work in Section 6.

2. PROBLEM FORMULATION
Consider a large scale sensor network that comprises K

base stations and hundreds of (say N) sensor nodes. The
base stations are powerful machines such as a desktop/server,
with abundant processing, storage, and memory capacity
and can be recharged easily. On the other hand, the sensor
nodes are resource constrained, with limited processing ca-
pacity, storage, bandwidth and power. Thus, it is vital to
sensor network applications to conserve the resources of sen-
sor nodes. In this work, we focus on the communication cost
among sensor nodes. Since the base stations are assumed to
be wired, we do not consider the communication cost among
them. Moreover, we assume that queries are submitted at
the wired part of the network, and are allocated to a base
station for processing.

For a set of queries that are allocated to a base station,
we assume the existence of a multiple query optimization
scheme that can effectively exploit the common requests
and share them among various queries. There are existing
works on multiple query optimization in sensor networks,
such as [16, 15]. In this paper, we exploit the inherent shar-
ing among queries when we allocate them to the base sta-
tions. To integrate our query allocation work with a specific
multiple query optimization scheme that runs at each base
station, we just need to incorporate its cost model which re-
flects how much sharing that particular scheme can achieve.

Our query allocation problem is defined as follows. Sup-
pose there are K base stations and currently M queries are

running in the sensor network. For a query qi running ex-
clusively at a specific base station bj , a number of radio
messages will be transmitted to retrieve the sensory data to
the base station. We refer to the number of radio messages
as the communication cost. Let cij denote the communi-
cation cost incurred by a query qi at base station bj . To
estimate the cost, we need the distances from the queried
sensor nodes to the base station, as well as the probabil-
ity that each queried node has data that satisfy the query.
The estimation of such probability can be achieved by main-
taining statistical models at the base station, which is an
independent problem that has been studied in other liter-
atures, such as [5]. To simplify the probability estimation,
in this paper, we use region-based aggregation queries. We
further denote the query set allocated to base station bj as
Qj , and the amount of sharing (redundant requests) among
these queries as Sj . Then the objective of the query alloca-
tion problem is to minimize the communication cost among
sensor nodes in order to answer the queries. More formally,
the objective function can be expressed as:

minimize

KX
j=1

(
X

qj∈Qj

cij − Sj)

To facilitate the in-network aggregation, in our paper,
each base station is the root of its respective routing in-
frastructure, e.g., a routing tree or routing Directed Acyclic
Graph (DAG). The nodes in each routing infrastructure are
the sensor nodes that are involved in the queries that have
been allocated to the respective base station. Hence, to
estimate the value of Sj , we identify the sum of exclusive
sharing among queries in Qj as follows. We keep bitmap
mj of size N maintained at base station bj , whose default
value is all zero. If a sensor node x is queried by qi, where
qi ∈ Qj , we check the value of mj [x]. If it is 0, we set it to
be 1. Otherwise, some other queries have already requested
data from a sensor node x at base station bj , and this cost
is shared and correspondingly we add 1 to Sj .

If the multiple query optimization scheme at each base
station does not exist, i.e., Sj = 0,∀j = 1...K, the above
optimal query allocation is easy to achieve in linear time.
We could just allocate each query qi to the base station bj
that incurs the least cij . That is,

qi ∈ Qj , if cij = min(ci1, ci2, ..., ciK)

However, since multiple query optimization will be used
at each base station, the introduction of Sj makes the query
allocation NP hard. To get the optimal allocation, we need
to get the optimal balance between minimizingPK

j=1

P
qj∈Qj

cij and maximizing
PK

j=1 Sj .

Figure 1 shows an example of how the query cost c and
sharing S are computed in our model. Each of the small cir-
cles denotes one sensor, while each rectangular region rep-
resents one query and each triangle denotes a base station.
For an aggregation query qi assigned to a particular base
station bj , cij is computed as the sum of the area size of
the query region and the extra cost incurred by relaying the
aggregated result back to the base station. For example, as
illustrated in Figure 1, q1 covers 25 sensors and its minimal
distance to b1 is 5, we denote c11 as 30. Similarly, c12 = 28.
If both q1 and q3 are allocated to b1, the regions E5 and E7

can be shared, hence S1 = E5 +E7. It is worth noting that

Figure 1: A Scenario with Multiple Base Stations
and Queries

when q1, q2 and q3 are all allocated to b1, since E7 has been
shared twice, S1 = E3 + E5 + E6 + 2 ∗ E7.

3. MAX-K-CUT APPROXIMATION
From the above discussion, it can be seen that, to mini-

mize the communication cost among sensor nodes, the queries
should be allocated to achieve the followings. First, sim-
ilar queries should be assigned to the same base station
so that overlapping data need not be transmitted multiple
times. This can reduce the energy consumption. Second,
each query should be assigned to the base station that in-
curs the least communication cost. In other words, we could
restate the problem as avoiding the following allocation as
much as possible. First, similar queries are allocated onto
different base stations. Second, a query is assigned to a base
station that results in high communication cost.

Hence, in this section, we approximate the query alloca-
tion problem as a classical Max-K-Cut problem, with the
objective to avoid these bad cases.

We construct a graph G = (V, E, W), where each vertex
vi represents either a base station or a query. To allocate a
set of M queries to K base stations, we just need to partition
V (|V | = M + K) into K subsets, where each base station
belongs to only one partition. There is one edge eij between
each pair of vertices vi and vj . The weight of an edge eij

is given by wij , and wij = wij (B denotes the set of base
stations).

wij =

8<: cij if vi ∈ Q and vj ∈ B;
−sij if vi ∈ Q and vj ∈ Q;
∞ if vi ∈ B and vj ∈ B.

As discussed earlier, cij denotes the cost of executing
query qi on base station bj . sij denotes the amount of com-
mon requests between query qi and qj . The query allocation
problem can then be expressed as a Max-K-Cut problem.
That is, we partition V into K subsets. Formally, if we de-
note a partition P as P1, P2,...PK , the problem is:

maximize w(p) =
X

1<=l<r<=K

X
i∈Pl,j∈Pr

wij

The rationale behind the formulation is as follows: the
higher the value of cij , the higher the probability of edge
eij being in the cut, and hence it will be less likely for qi to
be assigned to bj . We use ∞ to denote the weight between
each pair of base stations, so that different base stations

are cut into different partitions. We use −sij instead of
sij to denote the weight of edge of eij , so that the more
similar two queries are, the less likely the two queries will be
separated into different partitions and allocated to different
base stations. Moreover, if both qi and qj are assigned to
the same base station bk, the cost of the common data sij

is counted both in wik and wjk, with wij being −sij , it
can eliminate the over-counted cost because multiple query
optimization algorithm at bk can enable the sharing and
the same piece of data will only be transmitted once in the
actual sensor network.

3.1 SDP K-cut
Max Cut is a well-known NP hard problem, and Max-K-

cut is even more complicated than the Max Cut problem.
According to [2], there can be no polynomial-time approxi-
mation scheme for Max-K-cut, for any k >= 2, unless P =
NP. Goemans and Williamson [7] significantly improved the
approximation rate from 0.5 to 0.878 for Max Cut problem
by using SemiDefinite Programming (SDP) as a relaxation.
In [6], Frieze and Jerrum extended the work to solve the
Max-K-Cut problem, and achieves the expected approxima-
tion rate of αK , where αK − (1 − K−1) ∼ 2K−2lnK. We
apply the algorithm in [6] to allocate a set of static queries
onto their respective base stations, and denote the algorithm
as SDP-K-Cut.

SDP-K-Cut is in fact a randomized heuristic algorithm
using semidefinite programming relaxation that produces a
K-partition which is provably better on average than the
one produced by oblivious random partition. The challenge
lies in how to model the variables which take one of K val-
ues. This is done by allowing yi to be one of K vectors
a1, a2, ..., aK defined as follows: take an equilateral simplex

ΣK in RK−1 with vertices b1, b2, ..., bK . Let cK =
PK

i=1 bi

K
be the centroid of ΣK and let ai = bi − cK for 1 ≤ i ≤ K,
with scaled Σk so that |ai| = 1 for 1 ≤ i ≤ K. By proving
that ai ·aj = −1/(K−1) for i 6= j, the Max-K-Cut problem
can be formulated as follows:

IPK : maximize K−1
K

P
i<j wij(1− yi · yj)

subject to yj ∈ {a1, a2, ..., aK}, ∀j.

By replacing yi by vi, where vi can now be any vector in
Sn−1 so that there are more freedom to partition the space,
they finally relax the max-K-cut problem into a semidefinite
programming problem:

SDPK : maximize K−1
K

P
i<j wij(1− vi · vj)

subject to vj ∈ Sn−1, ∀j
vi · vj ≥ −1

K−1
, ∀i 6= j.

The K partitions can now be obtained after the following
two steps:

1. Solve the problem SDPk to obtain vectors v1, v2, ..., vn ∈
Sn−1

2. Choose K random vectors z1, z2, ..., zK . Partition V
into P1, P2, ..., PK according to which of z1, z2, ..., zk is
closest to each vj . That is,

Pi = {j : vj ·zi ≥ vj ·zi′ , for all i
′ 6= i}, for 1 ≤ i ≤ K

3.2 Implementation of SDP-K-Cut
To implement the SDP-K-Cut algorithm, the challenge

lies in solving the problem SDPK (Step 1). We adopt the

convex programming form of SDPK and use the SDPT3
[14], a solver for semidefinite-quadratic-linear programming
developed by Toh et. al to obtain the result vectors.

More specifically, we denote xij = vi · vj , and hence the
SDPK problem can be represented as:

CPK : minimize
P

i<j wij ∗ xij

subject to xjj = 1, ∀j
xij ≥ −1

K−1
, ∀i 6= j.

Due to the constraint xij ≥ −1
K−1

for i 6= j instead of nor-
mal constraint xij > 0, we need to solve another linear pro-
gramming problem together with the semidefinite program-
ming problem. Since X is symmetric, we set |V | ∗ |V − 1|/2
linear constraints to especially deal with the situation for
off-diagonal. Then, we can use SDPT3 to solve this prob-
lem. After we get result xij , since X is a symmetric positive
semidefinite matrix, we can get vectors v by Cholesky fac-
torization.

4. INCREMENTAL ALGORITHMS
The above Max-K-Cut approximation is not ideal. Firstly,

by approximating our query allocation problem as a Max-
K-Cut problem, the general trend of the query allocation
is captured. However, the Max-K-Cut model does not ade-
quately reflect all the properties of our problem. With the
sum of the edge weights of the whole network fixed, the sum
of the edge weights in each partition will be minimized when
we get the maximum K cut. However, the edge weights in
our problem are not entirely independent - they may be re-
lated to other edge weights and they may have overlap. For
example, if some set of data is shared by three queries, and
these three queries are all allocated to the same base station,
by adding together all the weights of all the edges in the par-
tition, the cost of the set of data will be deducted by three
times while actually only two times should be deducted. Sec-
ondly, in a dynamic context, new queries continue to arrive
while currently running queries may terminate at any time.
The SDP K-cut solution, which is designed to solve the max
K-cut problem for a static graph, is not an incremental al-
gorithm. Upon every insertion of a query, the SDP K-cut
algorithm will compute from scratch instead of incremen-
tally optimizing the new query set based on the previous
status. Hence, it is computationally impractical to deploy
the SDP K-cut in a dynamic context.

Hence, in this section, we will introduce our own heuris-
tics for the query allocation problem. Our solution is incre-
mental, and aims at efficiently allocating queries upon their
insertion while minimizing the communication cost among
sensor nodes in the whole network.

4.1 Insertion Algorithms
Consider a newly arrived query qi that needs to be in-

serted into the sensor network. When it arrives at base
station bx, bx works as the coordinator. The coordinator bx
performs the query allocation as follows:

1. Estimate the additional cost acij of executing qi at bj .
This can be easily achieved with the bitmap mj main-
tained by each base station as we mentioned in Section
2. For the region-based aggregation queries studied in
this paper, the coordinator just need to obtain the
bitmaps from qi’s neighbor base stations bjs.

2. Put qi to the bj that results in the smallest aij .

Here we use the additional cost acij as the metric instead
of the amount of sharing qi that can be benefited from other
queries at the base station bj . This is because the additional
cost is more effective in reducing the total cost: it not only
reflects the amount of non-sharing region, but also reflects
the cost of executing qi at bj by itself.

Now, it is possible for several queries to be available at
the waiting queue (e.g., several queries arrive at the system
at the same time or the system decides to batch queries for
allocation). In this case, we still insert queries one at a time.
However, we also study the following three heuristics to de-
termine if the ordering of insertion may affect performance.

• Sequential: we insert these queries based on their
submitted sequences.

• Diff : we order the batch of queries before they are
inserted in the sensor network, in the descending or-
der of the minimal difference of allocating this par-
ticular query onto different base stations. That is,
for each query qi, if cij == MIN(ci1, ci2...ciK), and
cim == MIN(ci1, ...cij−1, cij+1, ...ciK), the minimal
difference of query qi is denoted as cim − cij . The in-
tuition behind this heuristic is as follows: if a query
incurs more overhead than other queries upon its sub-
optimal allocation, it implies that it is much nearer (in
terms of cost) to one of the base stations, and hence
we hope to allocate it first to the base station nearer
to it before examining other queries.

• Area: we order the batch of queries before they are
inserted in the sensor network, in the descending or-
der of the area of their query region. That is, to in-
sert “BIG” queries first. In this way, we suppose the
queries with bigger regions will have the opportunity
to be allocated to their nearest base stations; smaller
queries that are inserted later are also likely to benefit
from such “big queries” since the probability of find-
ing an existing query that shares overlapping regions
becomes higher.

As we discussed in Section 2, if we are not aware of the
similarity among other queries that have been allocated to a
base station, the best possible allocation is: for each query
qi, put it onto the base station bj that incurs the smallest
cost, i.e., wij == MIN(wi1, wi2...wiK). We denote this
allocation as Nearest. Note that even though Nearest is
oblivious of the query similarity during allocation, queries
allocated to the same base station may still benefit from data
sharing through the multiple query optimization at the base
station.

5. EXPERIMENTAL STUDY
In this section, we shall present experimental results to

show the performance of our schemes. We evaluate the al-
gorithms by varying the number of base stations and queries,
and the average size of query regions.

In the experiments, we assume N sensor nodes are de-
ployed uniformly in a two-dimensional grid square. For
every 100 sensor nodes, there is one base station at the
center. Each query is expressed as a rectangular region
((x1, x2), (y1, y2)), where (x1, y1) is randomly selected from

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

30 40 50 60 70 80 90

C
os

t

Number of Queries

Nearest
SDP

Sequential
Area

Diff

(a)N=400, QR=5*5

 0

 200

 400

 600

 800

 1000

 1200

30 40 50 60 70 80 90

C
os

t

Number of Queries

Nearest
SDP

Sequential
Area

Diff

(b)N=400, QR=8*8

 0

 500

 1000

 1500

 2000

 2500

30 40 50 60 70 80 90

C
os

t

Number of Queries

Nearest
SDP

Sequential
Area

Diff

(c)N=900,QR=8*8

Figure 2: Communication Cost over Random Queries with varying network size and average region

any point in the network, and the lengths on the x-axis
(x2 − x1) and y-axis (y2 − y1) satisfy the uniform distribu-
tion or gaussian distribution. We assume lossless communi-
cations among the sensor nodes, to evaluate the actual gain
brought by our similarity-aware query allocation algorithms.
We simulate the behaviors of base stations and sensor nodes
on a 3 GHz Intel Pentium IV machine with 1 GB of main
memory running Windows XP.

To compare the effectiveness of our incremental algorithm
against SDP-K-cut (which is designed for static environment
where all queries are known apriori before being allocated),
we evaluate the schemes under a static environment here. In
other words, for our schemes, we assume a batch of queries
is available, and they are inserted into the network one at
a time (based on the heuristics used). Each of the results
shown below is the average result after 10 runs.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200

20 30 40 50 60 70 80

C
os

t

Number of Queries

Nearest
SDP

Sequential
Area

Diff

Figure 3: Communication Cost over Queries with
axis length∼N(8,5)

Figure 2 shows the results when the lengths of query re-
gions are generated uniformly, while Figure 3 shows the re-
sults when the lengths of query regions are generated using
the Gaussian distribution. From the experimental results in
Figures 2 and 3, we observe that the nearest strategy per-
forms the worst. This is expected since it does not take ad-
vantage of the sharings that can be exploited among queries.
On the other hand, all the similarity-aware schemes (max-
K-cut and our similarity-aware algorithms) result in a sig-
nificant reduction in communication cost. We also observe
that our proposed variants perform nearly as well as the
complicated max-K-cut classical solution. As for the three
similarity-aware variants, although area performs better in
most cases, none of them shows definite advantages over

the others and the differences are not huge. This suggests
that the key performance reduction comes from the inher-
ent sharing and similarity among queries, and the ordering
of queries in a batch offers only marginal benefit, if any.

Comparing Figure 2(a) with Figure 2(b), we note that
with the same number of queries, queries with larger average
regions are likely to benefit more. This is because there are
more overlaps among queries when each query is querying
a larger region, and hence more benefit can be exploited
by our similarity-aware query allocation algorithms. Using
the same logic, referring to Figure 2(b) and Figure 2(c), with
the same number of queries and query regions with the same
average size, more gain is achieved when the network size is
smaller.

Recall that the lengths of query regions in Figures 2(b)
and 3 are generated using different distributions. In both
cases, the average query region is 64. Looking at the results,
we observe that the relative performance among the various
schemes are the same in both cases. Thus, our query allo-
cation algorithms can effectively capture the sharings even
under different distributions for query lengths.

Figure 4 shows the computational time taken to solve the
Semidefinite program in the SDP K-cut solution. The com-
putational time increases exponentially when the number of
queries increases. As the number of queries reaches 90, the
time to get the partition is more than 10 minutes, in a net-
work with 900 sensors (9 base stations). For our similarity-
aware variants, it takes less than 4ms to compute the query
allocation. This overhead is negligible, making our proposed
methods attractive for dynamic environments.

 0

 100

 200

 300

 400

 500

 600

 700

30 40 50 60 70 80 90

C
om

pu
ta

tio
na

l T
im

e
(s

)

Number of Queries

900 Nodes
400 Nodes

Figure 4: CPU Time for SDPK over Random
Queries with Average QR=8*8

Before leaving this section, it is worth noting that no
matter whether the query allocation algorithm is similarity-
aware or not, the queries that are allocated to the same base
station exploited sharing in processing the queries. As such,
together with the savings from in-network aggregation, even
the nearest algorithm largely outperforms the naive scheme
where each sensor node sends its raw data to its nearest base
station (for the base station to process the queries). We did
not present these results here.

6. RELATED WORKS
Query/operator allocation has been studied in both tradi-

tional distributed database systems [8] and, more recently,
stream processing systems [1, 17, 20]. These optimization
algorithms mainly focused on fine tuning the allocation of
queries/operators across the distributed servers to balance
the load distribution as well as to minimize the commu-
nication cost among the servers. However, the context of
this paper is much different from theirs. Our objective is to
minimize the communication cost inside the sensor network
instead of among the base stations. Moreover, we endeavor
to maximize the sharing of the data collection cost among
various queries allocated to the same base station. This is
typically not considered in existing work.

This paper is also related to some other algorithmic lit-
eratures. Note that the query allocation problem can be
solved by a two-phase approach: a query partitioning phase
followed by a mapping phase. In the query partitioning
phase, queries are partitioned into K disjoint sets, so that
the amount of sharing in the K partitions is maximized. In
the mapping phase, it is in fact a complete bipartite mapping
problem [3], where K partitions are allocated to K base sta-
tions so that the weight of the mapping is minimized. Again,
most of the existing work in query partitioning either bal-
ance the partitions or minimize the number or weight of cuts
[11]. The latter category suffers from the similar problem
as our Max-K-Cut approximation that we have discussed in
Section 4. Hence, they are not ideal for our case.

7. CONCLUSION
In this paper, we have examined the query allocation

problem in sensor networks with multiple base stations, and
proposed several similarity-aware algorithms to minimize
the total data communication cost among the sensor nodes.
Experimental results show that our similarity-aware query
allocation schemes can effectively exploit the sharing among
queries and greatly reduce the communication cost. How-
ever, with our current incremental insertion algorithms, when
a query is inserted, we just do the best for the newly inserted
query, but do not allow any migration of running queries
that already existed in the system. This means that the
allocation may not be globally optimal. To deal with this
problem and also to deal with the effect of termination of
queries that often happen in real systems, existing queries
may need to be re-allocated if necessary. Thus, we plan to
explore migration algorithms as part of our directions for
future study.

8. REFERENCES
[1] Y. Ahmad and U. Çetintemel. Networked query

processing for distributed stream-based applications.
In VLDB, pages 456–467, 2004.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and the hardness of
approximation problems. Journal of the ACM
(JACM), 45(3):501–555, 1998.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, 2001.

[4] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos.
Hierarchical in-network data aggregation with quality
guarantees. In EDBT, 2004.

[5] A. Deshpande, C. Guestrin, S. Madden, J. M.
Hellerstein, and W. Hong. Model-driven data
acquisition in sensor networks. In VLDB, 2004.

[6] A. Frieze. Improved approximation algorithms for max
k-cut and max bisection. Algorithmica, 18(1):67–81,
1997.

[7] M. Goemans and D. Williamson. Improved
approximation algorithms for maximum cut and
satisfiability problems using semidefinite
programming. Journal of the ACM (JACM),
42(6):1115–1145, 1995.

[8] H. Lu and K. Tan. Load-balanced join processing in
shared-nothing systems. Journal of Parallel and
Distributed Computing, 23(3):382–398, 1994.

[9] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TinyDB: An acquisitional query processing
system for sensor networks. ACM TODS, 30(1),
November 2005.

[10] A. Munteanu, J. Beaver, A. Labrinidis, and P. K.
Chrysanthis. Multiple query routing trees in sensor
networks. In Proc. of the IASTED International
Conference on Databases and Applications (DBA),
2005.

[11] N. Selvakkumaran and G. Karypis. Multiobjective
Hypergraph-Partitioning Algorithms for Cut and
Maximum Subdomain-Degree Minimization.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 25(3):504–517, 2006.

[12] A. Silberstein and J. Yang. Many-to-many aggregation
for sensor networks. In ICDE, 2007.

[13] X. Tang and J. Xu. Extending network lifetime for
precision-constrained data aggregation in wireless
sensor networks. In INFOCOM, 2006.

[14] K.-C. Toh, et al. Sdpt3. http:
//www.math.nus.edu.sg/~mattohkc/sdpt3.html.

[15] N. Trigoni, et al.Multi-query optimization for sensor
networks. In DCOSS, 2005.

[16] S. Xiang, et al. Two-tier multiple query optimization
for sensor networks. In ICDCS, 2007.

[17] Y. Xing, S. B. Zdonik, and J.-H. Hwang. Dynamic
load distribution in the borealis stream processor. In
ICDE, 2005.

[18] X. Yang, et al. In-network execution of monitoring
queries in sensor networks. In SIDMOD, 2007.

[19] Y. Yao and J. Gehrke. Query processing for sensor
networks. In CIDR, 2003.

[20] Y. Zhou, et al. Efficient dynamic operator placement
in a locally distributed continuous query system. In
CoopIS, 2006.

