
31

A Uniform Type Structure for Secure
Information Flow

KOHEI HONDA

Queen Mary, University of London

and

NOBUKO YOSHIDA

Imperial College London

The π -calculus, a calculus of mobile processes, can compositionally represent dynamics of major

programming constructs by decomposing them into name passing. The present work reports our

experience in using a linear/affine typed π -calculus for the analysis and development of type-

based analyses for programming languages, focussing on secure information flow analysis. After

presenting a basic typed calculus for secrecy, we demonstrate its usage by a sound embedding

of the dependency core calculus (DCC) and the development of the call-by-value version of DCC.

The secrecy analysis is then extended to stateful computation, for which we develop a novel type

discipline for imperative programming language that extends a secure multi-threaded imperative

language by Smith and Volpano with general references and higher-order procedures. In each

analysis, the embedding gives a simple proof of noninterference.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—In-
formation flow control; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming

Languages—Program analysis; F.3.3 [Logics and Meanings of Programs]: Studies of Program

Constructs—Type structure

General Terms: Languages, Security, Theory

Additional Key Words and Phrases: The π -calculus, typing system, secure information flow, type-

based program analysis

ACM Reference Format:
Honda, K. and Yoshida, N. 2007. A uniform type structure for secure information flow. ACM Trans.

Program. Lang. Syst. 29, 6, Article 31 (October 2007), 100 pages. DOI = 10.1145/1286821.1286822

http://doi.acm.org/10.1145/1286821.1286822

This work was supported by EPSRC GR/T04236, GR/S55545, GR/S55538, GR/R33465, GR/T04724,

GR/T03208, GR/T03258, and IST2005-015905 MOBIUS.

Authors’ addresses: K. Honda, Department of Computer Science, Queen Mary, University of

London, Mile End, London E1 4NS, UK; email: kohei@dcs.qmul.ac.uk; N. Yoshida, Department

of Computing, Imperial College London, Huxley Building, 180 Queen’s Gate, London SW7 2BZ,

UK; email: yoshida@doc.ic.ac.uk.

Permission to make digital or hard copies part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0164-0925/2007/10-ART31 $5.00 DOI 10.1145/1286821.1286822 http://doi.acm.org/

10.1145/1286821.1286822

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1286821.1286822&domain=pdf&date_stamp=2007-10-01

31:2 • K. Honda and N. Yoshida

1. INTRODUCTION

1.1 Motivation

Large software is made up of many different components with different prop-
erties. Further, it is a norm in modern distributed applications that a number
of different programming constructs, or even different languages, are used in
a single application. Types for programming offer a primary means to classify
and control programs’ behavior with rigor and precision, with well-developed
theories and an increasing number of applications. In particular, type struc-
tures often play a crucial role as a basis of diverse program analyses [Palsberg
2001; Nielson et al. 1999; Amtoft et al. 1999]. Can we use types for describ-
ing and reasoning about such an aggregation of diverse components, forming
a basis for specifying, analysing and controlling their behavior? For this to be
effective, it should be possible to type-check one component with a specific type,
say (N ⇒ N) ⇒ N (where N is a type for a natural number and ⇒ is a function
type constructor), and combine it with other parts, which may have different
type structures, with a guarantee that it behaves as decreed by the original
type discipline. For example, if, for a piece of code, (N ⇒ N) ⇒ N is inferred in
a strongly normalising type discipline, and if we need to ensure this property,
then we want the piece of code to behave as a total function producing a nat-
ural number. Note a program of this type needs a procedure given by its peer
to perform its function: thus we cannot achieve our objective unless we have a
consistent integration of multiple type disciplines.

A central technical difficulty in having such an integrated framework, even
for basic type structures, comes from different nature of operations each typed
formalism deals with. Assignment, function application, controls, method invo-
cation, diverse forms of synchronization, all have quite different dynamics: we
can see this difference clearly when we write down their formal operational se-
mantics and compare them. It is largely due to this difference why it is so hard
to consistently merge individually coherent theories for isolated constructs, or
to apply what was found in one realm to another realm. A well-known example
is issues in transplanting polymorphism, initially developed for pure higher-
order functions, to the universe of imperative programming idioms [Damas
1985; Tofte 1990; Leroy and Weis 1991; Talpin and Jouvelot 1992; Wright 1994].
The different nature of dynamics of assignment commands from that of pure
higher-order functions is the culprit of this difficulty. Given this variety, it looks
hard to conceive any uniform framework of type structure for different language
constructs: unless we have a tool, say syntax, which can represent them on a
uniform basis.

1.2 The π -Calculus

The π -calculus [Milner et al. 1992; Milner 1992a; Boudol 1992; Honda and
Tokoro 1991] is an extension of CCS [Milner 1989] based on name passing. A
basic form of its dynamics can be written down as the following reduction.

x(�y).P | x〈 �w〉 −→ P{ �w/ �y}
ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:3

Here a vector of names �w are communicated, via channel x, to an input pro-
cess, resulting in a new process after name instantiation. Perhaps surpris-
ingly, this single operation can compositionally represent dynamics of diverse
language constructs, including function application, sequencing, assignment,
exception, object, not to speak of communication and concurrency. This embed-
dability is due to the fine-grained nature of the dynamics and algebra of the
π -calculus, which can readily decompose those of language constructs. We are
thus prompted by the following question: can we have a foundational type
structure for this calculus, similar to those for the λ-calculus, in which we
can precisely capture diverse classes of computational behavior uniformly? Un-
like that for functions, the universe of types for interaction is an unexplored
realm. More concretely, the preceding studies, (cf. Milner [1992a], Honda [1996],
Kobayashi et al. [1999], Pierce and Sangiorgi [1996], and Yoshida [1996]) have
shown that, even though operational encodings of diverse typed calculi into
the π -calculus are possible, they rarely capture the original type structures
fully. The issue is visible through, for example, the almost omnipresent lack
of full abstraction in such encodings. At a deeper level, this means that the
encoded types guarantee only a weaker notion of behavioral properties than
the original ones: the essential content of types is partially lost through the
translation.

Gaining insights from the preceding studies on types for interaction includ-
ing types for the π -calculus and game semantics [Abramsky et al. 2000, 1998;
Hyland and Ong 2000; Honda and Yoshida 1999], the present authors, with
Martin Berger, recently reported [Berger et al. 2001, 2005; Yoshida et al. 2004;
Honda et al. 2004] that a class of type structures for the π -calculus that pre-
cisely capture existing type structures for programming languages do exist,
allowing fully abstract translation of prominent functional typed calculi. In our
initial work [Berger et al. 2001; Yoshida et al. 2004], we have presented two
type disciplines for the π -calculus which precisely characterize two classes of
sequential higher-order functional behaviors, which we call affine and linear.
These terms are used with the following meaning:

—Affinity. This denotes possibly diverging behavior in which a question is given
an answer at most once.

—Linearity. This denotes terminating behavior in which a question is always
given an answer precisely once.

As a theoretical underpinning, Berger et al. [2001] and Yoshida et al. [2004]
have shown that PCF and strongly normalizing λ-calculi are fully abstractly
embeddable in the affine and linear π -calculus, respectively. In spite of faith-
fulness of embeddings, the shape of types and type disciplines is quite different
from that of function types, articulating a broader realm of computational be-
havior. In particular, both call-by-value and call-by-name λ-calculi are embed-
dable into a single typing system. Starting from these two central notions, a
family of basic classes of typed behaviors are identified, each allowing a precise
embedding of programming languages. Some of the these embedding results
are reported in Berger et al. [2005] and Honda et al. [2004].

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:4 • K. Honda and N. Yoshida

Fig. 1. Type-based program analysis using the π -calculus.

1.3 Applying the π -Calculus

The uniform embeddability of typed programming languages in the π -calculus
with linear/affine typing suggests its potential usage as an integrated basis for
their description, reasoning and analysis. As a possible area for experimenting
with such possibility, we consider type-based program analyses, which use type
structures nontrivially. Here, we can exploit the faithful representability of
language constructs to organise the development of analyses into the following
three steps (pictorially illustrated in Figure 1).

Step (1). Embedding. If there is a programming language with a faithful
embedding into the typed π -calculus, and there is a type-based analysis on that
language, then we can transfer the analysis into the image of the embedding
through syntactic translation.

Step (2). Extension. In the next step, we extend this analysis, which is ini-
tially restricted to the image of the embedding, to the whole collection of typed
processes. Basic syntactic and semantic properties of the analysis should be
established, which can be assisted by those in the original analysis through the
embedding.

Step (3). Reflection. After the completion of Step (2), we can now use the
extended analysis for any language embeddable into the typed π -calculus. This
is done by reflecting the analysis in the π -calculus onto another programming
language through its embedding. The key safety properties of the new analysis
are ensured through those of the analysis in the typed π -calculus.

Step (2) can be challenging, since it is far from clear whether we can soundly
extend the original analysis from the image of the embedding to the whole set of
typed processes (in the present inquiry, duality in type structures plays the key
rôle for enabling this process). When this challenge is met, however, the reward
is the generalized analysis that not only retains the precision of the original
analysis but that is repositioned in a broader realm of interacting processes,
amenable to extension and integration.

1.4 Secure Information Flow

This article reports our experience of using the π -calculus for type-based pro-
gram analyses, taking secure information flow analysis (also called secrecy anal-
ysis) [Abadi et al. 1999; Heintze and Riecke 1998; Pottier and Conchon 2000;
Pottier and Simonet 2003; Sabelfeld and Sand 1999; Smith 2001; Smith and

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:5

Volpano 1998; Volpano et al. 1996] as an application domain. In this analysis, we
use a typing system to ensure the safety of information flow in a given program,
in the sense that a high-level (secure, or private) data never flows down to low-
level (public) channels. Information flow analysis needs precise understanding
of observable behavior of program phrases and their interplay, because of the ex-
istence of covert channels [Denning and Denning 1977; Lampson 1973]. In the
π -calculus representation of programming languages, computational dynam-
ics of a program is decomposed into name passing interaction, making explicit
dynamics and observables associated with each language construct. For this
reason, the π -calculus may be used as an effective tool for analyzing subtle
information flow in program phrases [Honda and Yoshida 2005]. Further, in
many type-based information flow analyses, distinction between totality (ter-
mination) and partiality (potential divergence) in types is crucial, both in func-
tional [Abadi et al. 1999] and imperative [Volpano et al. 1996] settings, strongly
suggesting a connection to linear/affine type structures. A uniform treatment
of diverse elements in programming languages, including call-by-name, call-
by-value, pure functions, stateful computation, sequentiality and concurrency,
is another motivation for using the π -calculus.

1.5 Summary of Contributions

The following summarizes the main technical contributions of the present work.

—A typed π -calculus for secure information flow based on linear/affine type
disciplines, which enjoys a noninterference property. We present its purely
functional version as well as its extension to concurrency and state.

—The sound embeddability of the dependency core calculus (DCC) [Abadi et al.
1999] in the secrecy-enhanced linear/affine π -calculus, and a simple opera-
tional proof of its noninterference property through the embedding. We also
present a novel call-by-value version of DCC, whose soundness can again be
shown through the embeddability into the secure π -calculus.

—The introduction of a new secrecy type discipline for a basic concurrent im-
perative programming language with general references and higher-order
procedures. Its embeddability in the linear/affine π -calculus with state again
gives a simple proof of non-interference.

A picture of typed calculi used in this article is given in Figure 2. Each
box represents a name of the typed π -calculus with a specific type structure.
“L”, “A” and “R” mean linear, affine and state, respectively, where the stateful
calculus also incorporates, in the present study, concurrency. The right-hand
side of the box shows systems we can embed in the basic typed π -calculus. The
left-hand side shows secure languages we can embed in the secure version of
the π -calculus. The grey box shows a basic property satisfied by the calculus.

1.6 Outline

This article is a full version of Honda and Yoshida [2002], with complete defi-
nitions and detailed proofs. The emphasis is on illustrating, through concrete
examples, how the typed π -calculus can be used for developing and justifying

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:6 • K. Honda and N. Yoshida

Fig. 2. A family of linear/affine π -calculi.

a non-trivial type-based analysis of programming languages. In this spirit, the
presentations of the call-by-value version of DCC and the extended version of
Smith-Volpano language are considerably simplified in comparison with Honda
and Yoshida [2002], through the reformulation of encodings and simplification
of the stateful extension of the linear/affine π -calculus itself. The present ver-
sion also gives more comparisons with related work, including a formal con-
servativity result with respect to Smith’s recent secure imperative language
[Smith 2001].

In the remainder, Section 2 introduces the π -calculus with a linear/affine
type discipline, integrating type disciplines presented in Berger et al. [2001]
and Yoshida et al. [2004]. Section 3 studies a type-based secrecy analysis for
the linear/affine π -calculus. Section 4 embeds DCC in the secure π -calculus
and develops its call-by-value version, both justified via the secure π -calculus.
Section 5 presents a stateful extension of the linear/affine type discipline.
Section 6 extends the secrecy analysis in Section 4 to stateful processes.
Section 7 develops an extension of the Smith-Volpano’s secure multi-threaded
imperative calculus with general references and higher-order procedures, based
on the secrecy analysis in Section 6. Section 8 concludes the article with dis-
cussions on related work and further topics.

2. LINEAR/AFFINE π -CALCULUS

2.1 Processes (1): Syntax

Throughout the present study, we shall use the asynchronous version of the
π -calculus [Boudol 1992; Honda and Tokoro 1991] extended with branch-
ing/selections Honda 1993; Honda et al. 1998, 2000; Girard 1987]. Fix a count-
able set of names (also called channels), ranged over by x, y , . . . , a, b, We
write �y for a finite, possibly null, string of names. We let P, Q , . . . range over

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:7

processes, with subscripts etc. as necessary, whose grammar is given by:

P ::= x(�y).P | !x(�y).P | x〈 �y〉 | x[&i∈I (�yi).Pi] | !x[&i∈I (�yi).Pi] | xini〈 �y〉
| P |Q | (ν x)P | 0

In the grammar, x(�y).P is an input, which would receive a vector of names via
a channel x and instantiating them into (pairwise distinct) formal parameters
�y . (�y) is a binder over P (i.e., it binds the free occurrences of �y in P). !x(�y).P
is its replicated version, again (�y) acting as a binder. x〈 �y〉 is an asynchronous
message to a channel x carrying names �y . The asynchronous version is chosen
by its expressive power (it can encode its synchronous superset), its simplicity,
and its semantic tractability (e.g., with respect to congruency of bisimilarities
[Honda and Tokoro 1991]).

x[&i∈I (�yi).Pi] is called branching, where, for each i, (�yi) binds the free oc-
currences of �yi in Pi. !x[&i∈I (�yi).Pi] is its replicated version, again (�yi) being
a binder for Pi. In x[&i∈I (�yi).Pi] and !x[&i∈I (�yi).Pi], it suffices to consider the
indexing set I to be either a distinguished singleton, B and natural numbers
N. Further, the height of the summands should have a finite upper-bound (see
Remark 2.2 for discussions on this point). xini〈 �y〉 is selection, which is a mes-
sage that selects the ith branch from the branching and communicates names
�y . While all programming languages we shall treat in this article can be oper-
ationally encoded into the branch-free syntax, the use of branching is essential
for tractable typing, analogous to injections/case in typed λ-calculi with sum
types, allowing a clean type-directed encoding of various language constructs.

P |Q is the parallel composition of P and Q . (ν x)P is P such that its free
occurrences of x, if any, become private to the processes. (ν x) is a binder for
free occurrences of x in P . 0 denotes the inaction, indicating there is no process.
The sets of free and bound names, written fn(P) and bn(P), as well as the alpha
equality ≡α, standard. We always assume the standard bound name convention.

We use the following abbreviations throughout the article.

—(ν y1 . . yn)P stands for (ν y1) . . (ν yn)P .

—We omit the empty parameters, for example, x.P stands for x().P and xini

for xini〈〉.
—x(�y)P , a bound output, stands for (ν �y)(x〈 �y〉 | P), assuming names in �y are

pairwise distinct. This process asynchronously sends new names �y local to
P . Bound output is often used in encodings of programming languages: in
secrecy analysis, it allows a more tractable control of channels, leading to a
tractable analysis [Honda and Yoshida 2005].

—Similarly xini(�y)P , called bound selection, stands for (ν �y)(xini〈 �y〉|P), again
assuming names in �y are pairwise distinct.

—x[(�y1).P1&(�y2).P2] stands for a binary branching and xinl〈�v〉 or xinr〈�v〉 for
binary selections. We often omit I from x[&i∈I (�yi).Pi], writing x[&i(�yi).Pi].

2.2 Processes (2): Structural Rules and Reduction

Processes are often considered modulo the structural congruence ≡, which is
the least congruence generated from the following rules.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:8 • K. Honda and N. Yoshida

—If P ≡α Q , then P ≡ Q .

—P |0 ≡ P , P |Q ≡ Q |P and (P |Q)|R ≡ P |(Q |R).

—(ν x)0 ≡ 0, (ν xy)P ≡ (ν yx)P and (ν x)(P |Q) ≡ ((ν x)P)|Q when x
∈ fn(Q).

The dynamics of processes is defined as the reduction relation −→ using the
structural congruence. First, there are two rules for the unary name passing.

x(�y).P | x〈�v〉 −→ P{�v/ �y}
!x(�y).P | x〈�v〉 −→ !x(�y).P | P{�v/ �y},

where P{�v/ �y} is a simultaneous substitution of vi for free occurrences of xi,
assuming �x and �v have the same length. The dynamics of branching involves
selection of one branch, discarding the remaining ones, as well as name passing.

x[&i(�yi).Pi] | xin j 〈�v〉 −→ Pj {�v/ �y j }
! x[&i(�yi).Pi] | xin j 〈�v〉 −→ ! x[&i(�yi).Pi] | Pj {�v/ �y j }.

Finally, we close the reduction under parallel composition, hiding and ≡
P −→ P ′

P |R −→ P ′|R
P −→ P ′

(ν x)P −→ (ν x)P ′
P ≡ Q Q −→ Q ′ Q ′ ≡ P ′

P −→ P ′ .

The multi-step reduction is given by →→ def= ≡ ∪ −→∗. Appendix E lists the full
definition of the structure rules and the reduction rules.

Simple examples of processes and their reduction follow.

Example 2.1 (Processes and Reduction). In the following, we show a couple
of processes and their reduction, which in fact correspond to the process encod-
ing of programs, which we formally define later. For a program M , we write
[[M]]u for its encoding, where u represents the name at which M is located.

(1) A natural number agent, [[n]]u
def= !u(c).cinn, acts as a server which necessar-

ily returns a fixed answer, n. This agent is invoked through its free channel
u by sending a channel c to which output should be sent. Here, c plays the
rôle of a continuation of interaction. As an example of the reduction, we have

[[2]]u|u〈e〉 −→ [[2]]u|ein2. Similarly, we can define a unit agent, [[()]]u
def= !u(c).c,

which always returns just an activation.

(2) The process u(c)c[&n∈N.einn+1] behaves as the successor of the natural num-
ber agent above (the initial output uses the bound output notation). This
agent invokes the natural number with continuation c; then if its ith branch
is selected via c, it emits the answer i + 1 via e. In the following reduction,
we detail the use of ≡ for illustration.

[[2]]u|u(c)c[&n∈N.einn+1] ≡ (ν c)([[2]]u|u〈c〉|c[&n∈N.einn+1])

−→ (ν c)([[2]]u|cin2|c[&n∈N.einn+1])

−→ (ν c)([[2]]u|ein3) ≡ [[2]]u|ein3

The essence of this encoding lies in a precise depiction of the functional
behavior as an interacting process: one may as well consider reductions
as above as microscopic abstraction of interactions a program has with its
environment.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:9

(3) Let fw〈x y〉 def= !x(c). y〈c〉. This is a forwarder, which, when asked at x, simply
forwards the value to y , thus linking two locations x and y . Having this
agent in-between does not change the whole behavior. For example:

[[()]] y |fw〈x y〉|x〈e〉 −→ [[()]] y |fw〈x y〉| y〈e〉 −→ [[()]] y |fw〈x y〉|e
which is the same as [[()]] y | y〈e〉 −→ [[()]] y |e saves some internal reductions.
There is an agent that has precisely the same functionality but which only
uses only bound output, called copycat [Hyland and Ong 2000; Abramsky

et al. 2000], defined as (in the present case) [x → y]
def= !x(c). y(c′)c′.c. One

can check that this agent induces essentially the same transformation as
the forwarder above.

(4) f (ac)([[1]]a|fw〈ce〉) represents an open λ-term f 1 with f of type N ⇒ N.
The process first inquires at f carrying two new channels. At the first
channel, it in turn may receive an inquiry, to which it provides the argument
1. At the second channel, it receives an answer from the function in the

environment, which it simply forwards to e. We can check, with [[succ]] f
def=

! f (ue).u(c)c[&n∈N.einn+1]:

[[succ]] f | f (ac)([[1]]a|fw〈ce〉) →→ [[succ]] f |ein2|(ν a)[[1]]a

Note (ν a)[[1]]a remains as a garbage without any further potential interac-
tion, so that the resulting process is in fact the same thing as [[succ]] f |ein2.

(5) Let �u
def= (ν y)(fw〈uy〉|fw〈 yu〉). This is called an omega agent which imme-

diately diverges after the initial invocation at u; it has an infinite reduction
sequence and never sends output on e when we compose with u〈e〉. We can
check �u|u〈e〉 −→−→ �u|u〈e〉 −→−→ �u|u〈e〉 −→−→ · · · .

Remark 2.2 (Infinite Branching). Infinite branching is useful to have a
tractable embedding of programming languages. Their use is restricted to those
cases where we can operationally encode using finite branching (thus, in ef-
fect, without branching, cf. Milner [1992a] and Honda and Tokoro [1991]). An
unrestricted use of infinite branching can lead to the following two kinds of
pathologies.

(1) A process may have no finite bound in its height and its set of free names.

(2) A process may represent an uncomputable function, which leads to the lack
of definability in embedding results [Berger et al. 2000].

If we allow (1), it becomes necessary to use well-founded induction in structural
induction; and to make the whole collection of names a proper class. Both of
these are cumbersome if not critical. In the present work, we eliminate the
former possibility by assuming there is a finite upper-bound in the height of all
summands; for the latter each of the type disciplines introduced in this article
automatically guarantees the finiteness of free names. For (2), its existence or
elimination does not affect semantic arguments in many contexts including the
present one. If needed, it can be eliminated by restricting indices of selections
so that they are computable with respect to indices of enclosing branches.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:10 • K. Honda and N. Yoshida

2.3 Linear/Affine Typing (1) Action Modes and Channel Types

Many notions of types for the π -calculus have been studied, ramifying Milner’s
sorting [Milner 1992b]. The key elements common to most of the existing types
for the π -calculus (including the one which we are going to use in the present
inquiry) may be summarized as follows. In each type discipline:

(1) To each typable process, say P , we assign a type A. The type assignment
ensures P has a certain property represented by A.

(2) Type assignment is compositional: for example, for parallel composition, if
P has a type A, Q has a type B and A� B is defined for a partial operator �
with the resulting value C, then we assign C to P |Q . If A� B is not defined,
the composition is not allowed. Similarly for other operators.

A type A is often simply a finite map from channel names to their types, often
called channel types, but it can be more complex. Through a partial composition
operator, types control in what way a process can be constructed and, as a result,
they guarantee a certain behavioral property.

The type structure we shall introduce below is based on two concepts, lin-
earity and affinity, the notions which have long been studied in programming
language theories starting from Linear Logic [Girard 1987]. Concretely, it in-
tegrates the linear type discipline in Yoshida et al. [2004] and the affine one
in Berger et al. [2001], allowing fine-grained mixture of linear (or convergent)
computation and affine (or possibly divergent) computation in a single type
structure, which is crucial for the secrecy analysis in the next section.

Processes typed by the linear/affine typing system are tightly disciplined.
For example, assume a server process P has one free channel, say u, through
which it can be contacted by sending a channel v to be used for its output. If u is
a linear server channel, then P is guaranteed to send exactly one output back
on v. If u is an affine server channel, then P is guaranteed to send at most one
output back on v. Thus, classifying u goes hand in hand with classifying v —
if u is an affine server channel, then v must be an affine output channel, since
P may not send a reply (to be precise, if u is a linear server channel, v have
an affine output type: for example, a unit process !u(v).v can be typed in either
of these ways, see Definition 2.3 and Examples 2.5 and 2.10). Furthermore, we
must inductively classify the channels carried on v, giving complex alternating
channel types.

Following this general framework, we first introduce channel types, which are
types assigned to channels. Types assigned to processes, called action type, are
then finite maps from names to channel types augmented with causality edges
for linearly typed channels. In the following, we introduce the fundamental
elements of this type discipline one by one.

2.3.1 Action Modes. Channel types in the linear/affine type discipline use
action modes [Berger et al. 2001; Honda 1996; Honda et al. 2000; Yoshida et al.
2004] as its essential element. Action modes prescribe different ways processes
interact at channels, and are given as follows.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:11

↓L Linear input ↑L Linear output
↓A Affine input ↑A Affine output
!L Linear server ?L Client request to !L

!A Affine server ?A Client request to !A

We also use the mode � , which indicates the channel is no longer composable.
We let p, p′, . . . range over action modes. In the above table, the modes in
the left column are input modes while those in the right are output modes. pI

(respectively, pO) denotes input (respectively, output) modes. The pair of modes
in each row are dual to each other, writing p for the dual of p. We often write ?
to denote either ?L or ?A. Similarly for !, ↑, ↓. Some illustration of action modes
follow.

—A “↓” mode is associated with an input (e.g., x in x(y).P). In more detail, ↓L

indicates a linear input, at which an interaction takes place precisely once;
while ↓A indicates an affine input, at which an interaction takes place at most
once.

—A “!” mode is associated with a replicated input (e.g., x in !x(y).P). In more
detail, !L indicates a convergent replication (a replication at which no diver-
gence occurs and, hence, ensures an answer is returned), while !A indicates a
possibly divergent replication (so that invocation at that channel may not be
returned). For example, a channel u in �u in Example 2.1(5) has the mode !A.

—“�” indicates that a channel is no longer available for further composition
with the outside.

For example, if x〈 �y〉 is composed with x(�y).P , then x in the message has a
↑ -mode, and if it is to be composed with !x(�y).P , then x should have a ?-mode.
As to �, if x.0 has the ↓L-mode and x has the ↑L-mode, then x.0|x has the �-mode
at x. The �-mode at x indicates that the process x.0 | x cannot be composed with
any process that has x as a free name.

2.3.2 Channel Types. Next, we define channel types by the following gram-
mar.

τ ::= τI | τO | � τI ::= (�τ)pI | [&i∈I �τi]
pI τO ::= (�τ)pO | [⊕i∈I �τi]

pO

(�τ)pI and (�τ)pO are unary input and output types, respectively, while [&i�τi]
p and

[⊕i�τi]
p are branching and selection types. We sometimes write [�τ1&�τ2]p or [�τ1 ⊕

�τ2]p for binary branching or selection type. md(τ) denotes the outermost mode
of τ except we set md(�) = �. The dual of τ , written τ , is the result of dualizing
all action modes and exchanging & and ⊕ in τ .1 The following well-formedness
condition is an integral part of the present type discipline, originally stipulated
in game semantics [Hyland and Ong 2000; Abramsky et al. 2000] (except for the
distinction between linearity and affinity). By the type discipline, name passing
processes precisely capture the semantics of function/procedure/method calls
in programming languages. One of its basic conditions says names used for

1In accordance with the discussion in Remark 2.2, we may as well set a finite bound on the set of

summands in a branching/selection type.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:12 • K. Honda and N. Yoshida

input carry only output names and vice-versa (IO-alternation). Another is that
a replicated input always carries a unique linear/affine channel (the unique
answer condition). We use the following notations.

M↓ = {↓L, ↓A}, M↑ = {↑L, ↑A}, M! = {!L, !A}, and M? = {?L, ?A}.
Definition 2.3. The set of well-formed channel types is inductively gener-

ated by the following conditions.

(C1). (�τ)p with p ∈ M↓ is well formed when each τi is well-formed and,
moreover, md(τi) ∈ M? for each i. Dually when p ∈ M↑.

(C2). (�τ)!L is well formed when each τi is well formed and, moreover, there
exists a unique j such that md(τ j) ∈ {↑L, ↑A}, while md(τi) ∈ M? for others.
Dually for (�τ)?L .

(C3) (�τ)!A is well formed when each τi is well-formed and, moreover, there is
a unique j such that md(τ j) = ↑A, while md(τi) ∈ M? for others. Dually for (�τ)?A .

Similarly for branching/selection types, imposing the same constraint for
each summand. Hereafter, we assume all channel types are well formed.

Remark 2.4 (Well-Formedness of Channel Types).

(1) (C1) means that a linear or affine input receives names of some clients
and can ask back to through them. Dually a linear or affine output carries
names of some servers (which may be considered as constants, procedures
or objects carried in a message).

(2) (C2) says a channel of a linear server includes a unique linear or affine
output channel, as well as some channels for querying back servers (the
latter may be considered as arguments of an invocation). (C3) is similar to
(C2), saying in addition that the unique output channel should now only be
affine.

(3) By (C2) and (C3), a linear output ↑L can only be carried by a linear replicated
input !L (and dually). This is crucial for consistently integrating linearity
and affinity so that an invocation at a linear replication eventually leads to a
linear output, as we now illustrate using an example. Recall �u in Example
2.1(5). Because computation at u and y do not terminate, u, y should have
mode !A and ?A. If we type c and c′ with ↑L and ↓L (contradicting C3), then
u(c)c.w can never receive an input at c, that is, we lose linearity at w.

Example 2.5 (Channel Types).

(1) ()↑L is a type indicating an output without carrying any value that takes
place exactly once; ()↑A represents an output which gets fired at most once.
Both ()↑L and ()↑A are (vacuously) well formed. Further ()↑L = ()↓L and ()↑A =
()↓A .

(2) Let N• = [⊕i∈N]↑L . This type represents an output of a natural number done
precisely once. N◦ = (N•)!L is a type that can repeatedly receive an invoca-
tion carrying one name, and through that name necessarily sends a nat-
ural number. Its affine version, ([⊕i∈N]↑A)!A , is the same except it allows
the possibility of not returning a number. We have N• = [&i∈N]↓L and

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:13

N◦ = ([&i∈N]↓L)?L . The latter is a type that inquires at a replicated chan-
nel carrying a unique name, and via that name receives a natural number
precisely once.

(3) (()↑L)!L , (()↑A)!A and (N◦()↑L)!L are well formed, but (()↓L)!L , (()↑L)!A and (N◦)!L

are not because of the well formed condition (C3).

2.4 Linear/Affine Typing (2) Action Types

An action type, denoted A, B, . . . , is a finite directed graph with nodes of the
form x : τ , such that:

—no names occur twice; and

—edges are of the form x : τ → y : τ ′ such that either (1) md(τ) = ↓L and
md(τ ′) = ↑L or (2) md(τ) = !L and md(τ ′) = ?L.

x : τ → y : τ ′ means that input on x is needed to produce output on y . We
write x → y if x : τ → y : τ ′ for some τ and τ ′, in a given action type. If x occurs
in A and for no y we have y → x then we say x is active in A. |A| (respectively,
fn(A), md(A)) denotes the set of nodes (respectively, names, modes) in A. For
example, if A = x : τ1 → y : τ2, z : τ3, then x, z are active; |A| = {x : τ1,
y : τ2, z : τ3}; fn(A) = {x, y , z}; and md(A) = {md(τ1), md(τ2), md(τ3)}. We often
write x : τ ∈ A for x : τ ∈ |A|, and write A(x) for the channel type assigned to x
in A.

The following partial operations and relations on channel/action types are
used for controlling composition of processes.

Definition 2.6 (� and � on Channel/Action Types).

(1) � on channel types is the least commutative partial operation such that:

(1-a) τ � τ = � (md(τ) ∈ M↓)
(1-b) τ � τ = τ (md(τ) ∈ M?) τ � τ = τ (md(τ) ∈ M!)

If τ � τ ′ is defined, we write τ � τ ′ and say τ and τ ′ compose.

(2) The relation � on action types is given as: A � B iff:
—whenever x : τ ∈ A and x : τ ′ ∈ B, τ � τ ′ is defined; and
—whenever x1 →x2, x2 →x3, . . . , xn−1 →xn alternately in A and B (n ≥ 2),

we have x1
= xn.

(3) Finally the operation A � B, defined iff A � B, is the following action type.
—x : τ ∈ |A � B| iff either (1) x ∈ (fn(A)\ fn(B)) ∪ (fn(B)\ fn(A)) and x : τ

occurs in A or B; or (2) x : τ ′ ∈ A and x : τ ′′ ∈ B and τ = τ ′ � τ ′′.
—x → y in A � B iff x : τI, y : τO ∈ |A � B| and x = z1 → z2, z2 →

z3, . . . , zn−1 →zn = y (n ≥ 2) alternately in A and B.

Remark 2.7 (Composition of Channel/Action Types).

(1) Clause (1-a) in Definition 2.6 says that once we compose two processes at
a shared linear channel, one using it for input and another for output,
then that channel becomes no longer composable. Clause (1-b) says that a
server should be unique, to which an arbitrary number of clients can request
interactions.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:14 • K. Honda and N. Yoshida

(2) τ � τ ′ captures how we want composition of processes to be coherent. For
example, we shall see !x(y).P | !x(y).Q is never typed because (τ)!L
� (τ)!L

for any τ ; similarly x | x is untyped if x is either linear or affine because
()↑L
� ()↑L and ()↑A
� ()↑A ; whereas, if x is affine, we shall see x |x.0 is typable
by ()↑A � ()↓A = �, while x | x.0 | x is untypable since �
� ()↑A . Note also
the composition between affine and linear types is prohibited; for example,
()↓L
� ()↑A and (()↑L)!L
� (()↓A)?A , whereas we have (()↑A)!A � (()↓A)?A = (()↑A)!A .

(3) We can easily check that � on action types is a symmetric and associative
partial operation, with the identity ∅ (the empty action type). This allows
us to write the n-fold composition �i Ai without ambiguity.

Notation 2.8 (Action Types).

—A−x indicates A such that x
∈ fn(A).

—�pA indicates A such that md(A) ⊂ {�p}. ? A indicates A such that md(A) ⊂ M? .

—A, B denotes the disjoint union of A and B, assuming fn(A) ∩ fn(B) = ∅.

—The hiding A/�x is the result of taking off nodes with names in �x from A.

—The prefix x : τ → A adds an edge from a new node x : τ to each node in A.

—We can describe an action type by the following grammar, with possible du-
plicating ?-nodes [Yoshida et al. 2004, Example 1].

A ::= ∅ | a : τ | A, B | a : τ → (b1 : τ1, b2 : τ2, · · · , bn : τn)

where we assume that “→” is stronger than “,”.

Example 2.9 (Operations on Action Types).

(1) (hiding) Assume A1 = a : τ → (b1 : τ1, b : τ2). Then, A1/a = (b1 : τ1, b2 : τ2).

(2) (prefix) Assume A2 = (b1 : τ1, b2 : τ2). Then, a : τ → A2 = A1.

(3) (affine composability) Assume A3 = a : ()↓A , b : ()↑A and A4 = a : ()↑A , b : ()↓A .
Then, A3 � A4 and A3 � A4 = a : �, b : �. Assume A5 = a : (τ)!A , b : (τ)?A and
A6 = b : (τ)!A , a : (τ)?A . Then, A5 � A6 and A5 � A6 = a : (τ)!A , b : (τ)!A .

(4) (linear composability) Assume A7 = a : ()↓L → b : ()↑L and A8 = b : ()↓L →
a : ()↑L . Then, A7
� A8 because of a cycle between channel a and channel
b. Similarly (a : (τ)!L → b : (τ)?L)
� (b : (τ)!L → a : (τ)?L). The new causality
between linear channels is created by composing two types: for example,

a : ()↓L → (b : ()↑L , c : ()↑L) � b : ()↓L → (d : ()↑L , e : ()↑L)
= a : ()↓L → (c : ()↑L , d : ()↑L , e : ()↑L), b : �

The replication newly creates more complex causality as follows.

a : (τ)!L → (b : (τ)?L , c : (τ)?L) � b : (τ)!L → (d : (τ)?L , e : (τ)?L)

= a : (τ)!L → (c : (τ)?L , d : (τ)?L , e : (τ)?L), b : (τ)!L → (d : (τ)?L , e : (τ)?L)

2.5 Linear/Affine Typing (3) Typing Rules

The typing rules are given in Figure 3 and Figure 4. In each rule, we assume
channel types are well formed, and processes obey the standard bound name
condition. We give a brief illustration of typing rules.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:15

Fig. 3. Linear/affine typing (composition and unary prefix).

Fig. 4. Typing branching and selection.

—(Zero) starts from the empty action type.

—(Par) uses � for controlling composition. For example, if P has type x : ()↑L

and Q has type x : ()↑L , then P | Q is not typable because ()↑L
� ()↑L .

—(Res) allows hiding of a name only when its mode is � or replicated (so that
channels of modes ↑ , ↓ or ? should be compensated by their duals before
restricted).

—(Weak) weakens � and ?-nodes since we allow the possibility of having no
action at these channels. Their weakening is necessary for subject reduction.

—(In↓L) records the causality from linear input to linear output. A−x and B−x

ensure the unique occurrence of x. In this and other input rules, including
replicated ones, an input never prefixes another input (this condition comes
from IO-alternation in Berger et al. [2001, 2000], Yoshida et al. [2002], and
Honda and Yoshida [2002]).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:16 • K. Honda and N. Yoshida

—In (In↓A), ↓A never prefixes ↑L, which is crucial for integration (suppose x is
affine while y is linear in x. y : then a message at x may never arrive so that
y may not fire, violating linearity [Yoshida 2002]).

—(In!L) records the causality from a replicated input to ?L-outputs. The condition
A−x is required to ensure acyclicity. (In!A) is the same as (In!L) except it does
not record causality. (In!L) and (In!A) never prefix free ↑L nor ↑A actions (except
an abstracted one yi): otherwise unicity of a linear or affine name would be
lost. For example, z cannot be linear in !x(�y).(z | Q) because z is used at each
invocation.

—In (Out), the map �y : �τ implicitly indicates the condition τi = τ j if yi = y j

(this ensures that a duplicated object name is assigned the same type). The
rule assigns the dual of the corresponding carried type to each yi. This is
because a passed name will eventually be used by the dual of its own type
(e.g., u in [[2]]u|u〈e〉 is typed by N◦ = ([&i∈N]↓L)?L , while e, via which 2 will be
outputted, should have a type [⊕i∈N]↑L).

—The typing rules for branching and selection, given in Figure 4, are similar
to those for unary prefixes. In the antecedent of each branching rule, each
summand should have an identical action type A (except for abstracted chan-
nels �yi : �τi). This is similar to the sum type in the λ-calculus and additives
in Linear Logic. In the selection, we assume τ j k = τ j l if yk = yl , just as in
(Out).

The following variant of (Out), which is specialized for bound output [Berger
et al. 2001, 2002; Honda et al. 2000; Yoshida et al. 2004, 2002], is a permissible
rule in the calculus. This rule is often useful for type inference of various en-
codings (in fact, the rule is equipotent to (Out) via simple syntactic translation
[Yoshida et al. 2004]). Below C(�y) is the obvious extension of the notation C(y)
to vectors

(Bout)
� P � C C � x : (�τ)pO C(�y) = �τ
� x(�y)P � C/ �y � x : (�τ)pO

. (1)

Similarly for selection with bound output, which we omit.
Some examples of typed terms follow (processes are from Example 2.1).

Example 2.10 (Typed Processes). Let unit◦ def= (()↑L)!L and N◦ def= ([⊕i∈N]↑L)!L .
In brief these channel types represent the mapping of the unit type and N type
in simply typed λ-calculi, respectively. We also write unitA = (()↑A)!A to denote
the affine version of unit. All processes are from Example 2.1.

(1) � x. y � x : ()↓L → y : ()↑L , � x. y � x : ()↓L , y : ()↑A and � x. y � x : ()↓A ,
y : ()↑A are well typed, but � x. y � x : ()↓A , y : ()↑L is not by the condition of
(In↓A). As can be seen, one untyped process may have possibly many types.

(2) � [[n]]x � x : N◦ and � [[()]]x � x : unit◦ are well typed.

(3) � [[succ]]x � x : (N◦N•)!L is well typed.

(4) The forwarder fw〈ux〉 is typed as � fw〈ux〉 � u : unit◦ → x : unit◦. This
typed process may be considered as the encoding of xunit, located at u.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:17

Note we can also type fw〈ux〉 with a different action type: � fw〈ux〉 �
u : unitA, x : unitA.

(5) The divergent agent �u is typed as � �u � u : unitA, starting from
(4) above. Note �u cannot have type unit◦ since for that purpose we should
compose u : unit◦ →x : unit◦ and x : unit◦ →u : unit◦ which is not possible
due to circularity.

We write π LA for the resulting typed calculus.

2.6 Basic Syntactic Properties of π LA

The following syntactic properties of π LA are worth recording. In (3), P ⇓x means
P →→ P ′ ≡ (ν �y)(S|R), where S has the shape x〈 �w〉 or xini〈 �w〉 with x
∈ { �y}.

PROPOSITION 2.11 (SYNTACTIC PROPERTIES OF π LA).

(1) (SUBJECT REDUCTION). If � P � A and P →→ Q, then � Q � A.
(2) (CONFLUENCE). If � P � A for some A, P −→ Q1 and P −→ Q2, then for

some R we have Q1 −→ R and Q2 −→ R.
(3) (LINEAR LIVENESS). Assume � P � !�A, x : τ with md(τ) = ↑L, then for all P ′

such that P →→ P ′, we have P ′ ⇓x.

PROOF. The proof of (1) precisely follows [Yoshida et al. 2004,
Proposition 2.2(1)], and is subsumed by the proof of the corresponding result
in the next section (where we consider a secrecy-enhanced version of π LA). The
proof of (2) precisely follows [Yoshida et al. 2004, Proposition 2.2(2)]. (3) is
proved in Yoshida [2002, Theorem 1].

(1) is the standard property. For (2), the statement indicates π LA is about de-
terministic computation. Technically this comes from the lack of conflicting
outputs to a linear/affine input (which eliminates the racing condition). For
the applications in Sections 3 and 4, having deterministic behavior suffices.
In Section 5 and later, we shall consider an integration of state and nonde-
terminacy in π LA. (3) means a linear output channel, either unary or selec-
tion, always guarantees an output action by typability. In detail, the statement
says:

If P is typed with a channel whose type has a linear output mode, and,
moreover, if P does not need to ask other processes for information to
emit that output, then any −→-derivative of P, including P itself, will
eventually output at x.

This is the liveness property, demonstrating linearity at linear channels is en-
sured even under fine-grained mixture of linear types and affine types (we can
further show the process will never output at x again). The property will become
important when we develop secrecy analysis.

Other salient features of the calculus includes fully abstract embeddabil-
ity of various functional calculi in π LA, including the simply typed λ-calculus
with products and sums, call-by-name PCF and call-by-value PCF. In the
light of these properties, π LA may be considered as giving a meta-language for

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:18 • K. Honda and N. Yoshida

various (monomorphic) pure functional calculi, both terminating and poten-
tially diverging.

3. SECRECY ANALYSIS IN THE LINEAR/AFFINE π -CALCULUS

3.1 Secrecy-Annotated Channel Types and Tampering Level

In this section, we enhance π LA so that the typability guarantees a certain notion
of safe information flow (secrecy). This is done in two stages.

(1) Annotation of channel types of π LA with secrecy levels;

(2) Refinement of typing rules which are now sensitive to these secrecy levels.

These steps will lead to the sequent of the shape:

�sec P � A,

which guarantees not only the linear/affine typability in π LA but also safety in
information flow, in the sense that, through the typed interface specified by A,
P will never transform an incoming effect, or difference, at a high-level channel
to an outgoing effect, or difference, at a low-level channel. In �sec P � A, the
action type A records not only linear/affine types but also levels at which P may
receive and emit information. In this and the next subsection, we shall discuss
the steps (1) and (2) above one by one, illustrating each newly introduced idea
with examples.

Remark 3.1 (Process as Information Transformer). Before entering techni-
cal discussions, it is worth illustrating what we mean by “transform an incom-
ing effect/difference to an outgoing effect/difference” in the paragraph above.
In the present context, the terms “effect” and “difference” mean distinction of
behaviors up to the standard contextual congruence on processes. As a sim-
ple example, consider the following composition of two processes. Assume y is
typed as ()↑A .

xinl | x[. y & .ω y]

where we set ω y
def= (ν u)(�u|u〈 y〉), which simply diverges. In this composition,

the right-hand process transmits the difference induced at x by xinl (which is
nontrivial since it could be, for example, a semantically distinct xinr) to the
difference induced at y by y (which is again semantically nontrivial since it
could be the divergent ω y). For further discussions on this point, see Honda and
Yoshida [2005].

3.1.1 Enhanced Channel Types. Fix a nontrivial complete lattice (L, �,
H, L) of secrecy levels, with the partial order �, the top element H (the most
private/secret) and the bottom element L (the most public). s, s′, . . . range over
the secrecy levels.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:19

We first annotate channel types with these secrecy levels. For simplicity, we
still write τ, τ ′, . . . for secrecy-enhanced channel types. The grammar follows.

τ ::= τI | τO | �
τI ::= (�τ)

↓A
s | (�τ)↓L | (�τ)!L | (�τ)!A | [&i�τi]

↓A
s | [&i�τi]

↓L
s | [&i�τi]

!L | [&i�τi]
!A

τO ::= (�τ)
↑A
s | (�τ)↑L | (�τ)?L | (�τ)?A | [⊕i�τi]

↑A
s | [⊕i�τi]

↑L
s | [⊕i�τi]

?L | [⊕i�τi]
?A

A secrecy annotation at each type indicates the secrecy level at which an in-
teraction may take place. For example, ()

↑A
s means that a channel may be used

as an affine output at secrecy level s, while ()
↓A
s says that a channel may be

used for receiving an affine output at level s. In this way, only those channel
types which represent actions that directly transmit information are secrecy
annotated, describing direct emittance/reception of information.

Duality on secrecy-enhanced channel types is defined respecting secrecy lev-
els (e.g., ()

↑A
s and ()

↓A

s′ are dual iff s = s′). Then � and � between types are

defined identically as in Section 2.3. For example, ()
↑A

H � ()
↓A

L is undefined, while

()
↑A

H � ()
↓A

H = �. We write sec(τ) for the outermost secrecy level of τ , for example,

sec((τ)
↑A
s) = s.

Remark 3.2 (on Secrecy Annotation). Below, we offer operational intuition
underlying secrecy annotations (see also Example 3.5, which offers further con-
crete examples). By assigning secrecy to the fine-grained operational structure,
name passing, the operational content of secrecy types is almost self-evident.

(1) Affine unary types, (�τ)
↓A
s and (�τ)

↑A
s , are secrecy annotated. This is because

processes receive/emit nontrivial immediate effect at affine unary channels
because of the distinction between divergence and convergence (this may be
understood by noting even the simplest affine type x : ()↑A has two distinct
inhabitants modulo the standard contextual congruence, cf. Remark 3.1
above).

(2) Linear unary types are not secrecy annotated, because interactions at unary
linear channels are predetermined by types so that no immediate effect is
transmitted. Though channels that are (directly or indirectly) carried in a
unary linear communication may transmit nontrivial information later as
well these effects only take place when those channels are used, and can
be recorded at each carried type, so they do not have to be recorded at this
point. Note there is a sharp separation between carrying potential infor-
mation and directly transmitting information: we only annotate a channel
type with a secrecy label if some information can indeed be transmitted by
communication actions that type embodies.

(3) Branching/selection types are secrecy annotated regardless of their being
linear or affine since, as is intuitively clear, there is immediate transfer of
information at associated channels.

(4) Replicated linear/affine unary types as well as their duals are not secrecy-
annotated since there is no immediate effect transmitted at each interaction
at associated channels (technically, this can be understood via the fact that
the action type x : (()↑A)!A semantically has two inhabitants that directly

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:20 • K. Honda and N. Yoshida

mirrors those of ()↑A : there is nothing new in this type in addition to what
is in its constituent type, ()↑A , as far as information content goes).

(5) Replicated linear/affine branching types are understood as above: immedi-
ate transmission of information comes at types (channels) carried by these
channels, if ever, and not at the replicated types themselves.

3.1.2 Action Types and Tamper Level. Action types are defined precisely
as before, except we use the annotated channel types. We still write A, B, . . .

for secrecy-enhanced action types. We use a function which maps an action type
to a secrecy level, which we call tamper level, since it indicates the lower bound
of the levels at which the process may affect, or tamper, the environment.2 The
tamper level is first defined on channel types, and is extended to action types.

Definition 3.3.
(1) τ is immediately tampering if either τ = [⊕i�τi]

↑L
s or md(τ) = ↑A.

(2) τ is innocuous if md(τ) ∈ {?L, ?A, �}.
Definition 3.4. The tamper level of τ , denoted tamp(τ), is inductively given

by:

tamp(τ) = sec(τ) if τ is immediately tampering.

tamp(τ) = H if τ is innocuous.

tamp((�τ)
p
s) = �{tamp(τi)} with p ∈ M!,↓ ∪ {↑L}.

tamp([&i�τi]
p
s) = �{tamp(τi j)} with p ∈ M!,↓.

We set tamp(A)
def= �{tamp(τ) | x :τ ∈ A}.

Intuitively, a channel type is immediately tampering if it emits nontrivial
information at the time of interaction. Even if a type is not immediately tam-
pering, an action of that type can have a nontrivial effect, via an immediately
tampering type it carries, so that it may have a nontrivial tampering level. How-
ever, an innocuous type does not even have such a latent effect: ?L/?A-actions
just create a new copy of the resource, leaving the environment as it originally
was (because replication is stateless in π LA). Concrete examples of calculation
of tamper levels follow.

Example 3.5 (Tampering Level).

(1) ()↑L is not immediately tampering: in fact, its tamper level is H. This is
because this type represents a behavior that necessarily sends an empty
output precisely once. The behavior is completely determined by its type,
so no information is transmitted by interaction (the type has semantically
a unique inhabitant, cf. Remark 3.2(2)). On the other hand, [⊕i∈N]

↑L
s is im-

mediately tampering (with a countable inhabitants), by emitting one of the
natural numbers, and has a nontrivial tamper level s.

2The tamper level corresponds to an explicitly secrecy level (often written “pc” for a program

counter) in Denning and Denning [1977] and subsequent work, though here it is calculated from

types. For more discussions on this point, see Section 8.1.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:21

(2) Both ()
↑A
s and [⊕i∈N]

↑A
s are immediately tampering, with the tamper level

s. Intuitively ()
↑A
s transmits information by having two possibilities: either

outputting at that channel, or not doing so at all.

(3) Let unit◦ = (()↑L)!L . Then tamp(unit◦) = H. A process inhabiting x :unit◦ is
always ready to receive at x: then it necessarily outputs an empty message

via that name precisely once (as can be seen from its sole inhabitant [[()]]x
def=

!x(c).c modulo the observational congruence). Thus, neither interactions
contain information.

(4) Let N◦
s

def= (N•
s)!L with N•

s
def= [⊕i∈N]

↑L
s . Then we have tamp(N◦

s) = s. N◦
s is not

immediately tampering, but it affects the environment latently. To see this,

take [[2]]x
def= !x(c).cin2 which, in the typing system presented later, has type

x :N◦
s for each s. This process does contain information. To see this, take P

below, with R0
def= y and Ri

def= ω y for each i ≥ 1.

P def= x(c)c[&i.Ri]

When composed with [[2]]x , P receives information in [[2]]x at a carried chan-
nel c, and transmits it to the distinction between convergence and diver-
gence at y .

(5) As (4) above, unitA

s
def= (()

↑A
s)!A is not immediately tampering but its tam-

pering level is nontrivial, with tamp(unitA

s) = s. To see this is justifiable,
consider [[()]]x and �x in Example 2.1(5) and Example 2.10(5), both of which
are typed with x : unitA

s . These two processes are obviously semantically
distinct since the former emits c after invocation, while the latter never
does so.

(6) By definition, tamp(τ) = H for any τ such that md(τ) ∈ {?L, ?A}. This is be-
cause a ?L or ?A-action only creates a copy of a stateless replicated pro-
cess, leaving the environment unchanged, even though they themselves
do receive information. In fact, we can check processes typable by x : τ

for such τ are behaviorally equivalent to 0, see Yoshida et al. [2002] for
detail.

3.2 Secrecy Typing

As we already noted, the secrecy typing uses the sequent of the form �sec P �
A. Other than the use of secrecy-annotated channel types, the typing rules
are refined to guarantee the secure information flow. The rule of thumb for
refinement may be summarized thus:

Whenever we introduce a construct which receives nontrivial imme-
diate effect, we require its level is either lower than, or equal to, the
tamper level of the behavior resulting from it.3

3We here take the standard view that it is dangerous for information to be transmitted to an

incompatible level. If some information is classified to be read by principals of a specific rank, then

those who are at the same or higher ranks may as well read it, but not those in unrelated ranks

(see Remark 3.13 later for discussions on related points).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:22 • K. Honda and N. Yoshida

Fig. 5. Secrecy typing (rules with added constraints).

We list the refined typing rules in Figure 5. Except for the listed three rules,
all rules remain as in Figures 3 and 4, changing the sequent from � P �
A to �sec P � A. Each of the refined rules introduces a channel type which
immediately receives information/effects, and adds a condition (emphasized)
on secrecy levels, following the policy summarized above. We say P is securely
typed under A, or simply P is secure under A, when �sec P � A is derivable
from the secrecy typing rules. If P is not secure under A, we say P is insecure
under A.

Below we list a few simple examples of (non-)securely typed processes, using
processes from Example 2.10 and secrecy types from Example 3.5.

Example 3.6 (Secure Typing). Below we recall, from Example 3.5, N◦
s =

(N•
s)!L , N•

s = [⊕i∈N]
↑L
s and unitA

s = (()
↑A
s)!A .

(1) �sec [[n]]x � x : N◦
s is well typed for each s. Intuitively, [[n]]x only emits

information, hence it is safe. Similarly �sec u(x)[[n]]x � u : (N◦
s)↑L is secure for

each s. As a further example, �sec !u(c).c(x y)([[3]]x | [[6]] y) � u : ((N◦
s1

N◦
s2

)↑L)!L

is well typed for each s1 and s2. This process encodes a pair 〈3, 6〉; the type
((N◦

s1
N◦

s2
)↑L)!L encodes the product N◦

s1
× N◦

s2
. The process emits/receives no

information at the initial two interactions: all information it has is in two
numbers, both of which emit information. We can check its tamper level is
indeed s1 � s2.

(2) �sec x. y � x : ()
↓A

L , y : ()
↑A

H is well typed, since it receives information at the
low level which is transmitted to the high level; whereas the same process
x. y is insecure under x : ()

↓A

H , y : ()
↑A

L since it leaks high-level information to

a low-level channel. Generally, �sec x. y � x : ()
↓A
s , y : ()

↑A

s′ is typable iff s � s′.

(3) As in (2) above, �sec fw〈x y〉 � x : unitA

s , y : unitA

s′ is secure iff s′ � s. Also
�sec [[()]]x � x : unit◦, �sec [[()]]x � x : unitA

s and �sec �x � x : unitA

s are
well typed. This example concretely shows the significance of distinction
between affinity and linearity in secrecy analysis. When a channel x is typed
by unitA

s , there is information held at x since we cannot predict whether
interaction at x terminates or not, in contrast to unit◦ = (()↑L)!L .

(4) Let P def= u[.x(y)[[1]] y&.x(y)[[2]] y], which is typable in π LA with the action
type u : [&]↓L → x : (N◦)↑L . This process outputs 1 or 2 depending on which
branching is selected at u (as we shall see later, the process is an encoding

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:23

of the phrase if u then 1 else 2). Observe that, in P , the action at u affects
the output at x. Let us check P is securely typed under u : [&]

↓L
s →x : (N◦

s′)↑L

with s � s′. Below we show the last (and only nontrivial) step of the inference

�sec x(y)[[1]] y � x : (N◦
s′)↑L �sec x(y)[[2]] y � x : (N◦

s′)↑L s � s′ = tamp(x : (N◦
s′)↑L)

�sec u[.x(y)[[1]] y&.x(y)[[2]] y] � u : [&]↓L
s →x : (N◦

s′)↑L
.

Thus, P is secure under u : [&]
↓L
s → x : (N◦

s′)↑L . For example, if s = H (which
means the process receives information at the highest level), we can only
have s′ = H (which means the process also emits information at the highest
level).

(5) �sec [[succ]]u � u : (N◦
sN

•
s′)!L is secure iff s � s′. Remembering the definition of

[[succ]]u from Example 2.1, we check, under s � s′:
−

(Sel↑L) �sec einn+1 � e :N•
s′ s � s′

(Bra↓L) �sec c[&n∈N.einn+1] � c :N•
s →e :N•

s′
(Out?L) �sec y(c)c[&n∈N.einn+1] � y : (N•

s)?L , e :N•
s′

(In!L) �sec [[succ]]u � u : (N◦
sN

•
s′)!L

.

But if s
� s′ the inference is not possible.

More substantial examples will be presented in the next section through the
embedding of secrecy analysis of call-by-name and call-by-value functions in
the secrecy-analysis in π LA.

3.3 Basic Properties of Secrecy Typing in π LA

This section discusses key results in the secrecy analysis for π LA. We first show
that the typability is preserved under reduction. Then, we establish the prop-
erty that the secure typing guarantees for typable processes, noninterference.

PROPOSITION 3.7 (SUBJECT REDUCTION). If �sec P � A and P →→ Q then
�sec Q � A.

PROOF. First, we prove commutativity and associativity of the operator �
on action types. Second, we show closure under ≡. The closure under −→ is
proved using the following substitution lemma:

(1) (linear type) If �sec P � x : τ, A, md(τ) ∈ M↑ and y
∈ fn(A), then we have
�sec P{ y/x} � y :τ, A and tamp(x :τ, A) = tamp(y :τ, A).

(2) (client type) If �sec P � x : τ, A and A(y) = τ , then �sec P{ y/x} � A and
tamp(x :τ, A) = tamp(A).

The rest is a routine, by rule induction on the reduction rules. See Appendix A
for details. Note this result immediately implies the subject reduction for the
calculus in Section 2 by making the secrecy lattice trivial.

Next we prove the noninterference property. Its formulation uses a family
of contextual congruences relativized by secrecy levels, which is a significant
element of the present theory in its own right. Some preliminaries:

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:24 • K. Honda and N. Yoshida

Definition 3.8.

(1) We write P ⇓x when P −→∗ P ′ such that either P ′ ≡ (ν �z)(x〈 �y〉|R) or
P ′ ≡ (ν �z)(xini〈 �y〉|R) such that x
∈ {�z}.

(2) A typed context C[·]B
A is a context with a hole which, when filled with a term

of type A, will produce a term of type B.

(3) A typed congruence is an equivalence on π LA-terms such that: (i) it relates two
terms with the same action type and (ii) it is closed under typed contexts.

In (1) above, it is enough to take only an output observable [Honda and
Tokoro 1991; Honda and Yoshida 1995] (in fact, in the following definition of
contextual congruence, we only consider an output of an affine type). A typed
context is often simply written C[·], omitting type scripts. We now introduce
the secrecy sensitive congruence.

Definition 3.9 (Secrecy-Sensitive Contextual Congruence). Fix some s. Then
s-sensitive contextual congruence, denoted ∼=s, is the maximum typed congru-
ence that satisfies the following condition: whenever P1 ⇓x and �sec P1

∼=s P2 �
x : ()

↑A

s′ such that s′ � s, we have P2 ⇓x . When s = H (the top element of the
secrecy lattice), we write ∼= for ∼=s.

The notation ∼= for ∼=H makes sense because the latter coincides with the
contextual congruence in π LA without secrecy.

Intuitively, ∼=s ignores actions that should not be observable from the level s.
More concretely, consider a process that can legitimately receive information at
level s (hence, also at levels lower than s). ∼=s can then be considered as equality
from the viewpoint of such processes. By definition, we immediately obtain:

PROPOSITION 3.10. If �sec P1
∼=s P2 � A then s � s′ implies �sec P1

∼=s′ P2 � A.
In particular, �sec P1

∼= P2 � A implies �sec P1
∼=s P2 � A for each s.

For reasoning about processes using ∼=s, one of the basic tools is a context
lemma. The proof given below follows the standard method, cf. Kobayashi et al.
[1999] and Pierce and Sangiorgi [1996].

LEMMA 3.11 (CONTEXT LEMMA). Let �sec Pi � A (i = 1, 2). Then P1
∼=s P2 if

and only if, for each �sec R � A, x : ()
↑A
s , (ν fn(A))(P1|R) ⇓x iff (ν fn(A))(P2|R) ⇓x.

PROOF. The “only if” direction is immediate from the definition. For the
“if” direction, let C[·] be a context with hole typed A and the result typed
x : ()

↑A
s with x fresh. Assume, for each �sec R � A, x : ()

↑A
s , (ν fn(A))(P1|R) ⇓x

iff (ν fn(A))(P2|R) ⇓x . If the hole of C[·] is not under an input prefix, then we

already have C[·]
def= (ν fn(A))(R|[·]). Suppose the hole is under an input prefix.

If C[P1] ⇓x by C[P1] →→ x|C′[P1σ] keeping P1 under the input prefix along the
way (possibly with some substitution σ) then, since P1 could not contribute to
the reduction, we have C[P2] →→ x|C′[P2], that is, C[P2] ⇓x . If not, then suppose
C[P1] →→ C′[P1σ] where C′[P1σ] is the first configuration in which the input
prefix is taken off. Using forwarders, we can represent σ by parallel composition
and hiding, so that the former condition gives us C[P2] ⇓x , as required.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:25

One of the central properties in secrecy analysis is noninterference, which
essentially says that high-level data/actions never interfere with low-level ob-
servable behavior. Since data and programs are all processes in the present
context, and because P ∼=s Q means P and Q have the same s-level behav-
ior, the noninterference result simply says that two processes that behave at a
secrecy level strictly higher than, or incompatible with, s are always equated
by ∼=s. The level of the behavior of P is taken to be the tampering level of its
process type.

PROPOSITION 3.12 (NONINTERFERENCE IN π LA). If �sec Pi � A (i = 1, 2) such
that tamp(A) = s and s
� s′, then �sec P1

∼=s′ P2 � A.

Remark 3.13 (Treatment of Incompatibility in Noninterference). In the
statements for noninterference properties found in the literature, the condition
on s′ given above, s
� s′, often takes a weaker form, “s′ is strictly smaller
than s”. We first observe that, from an engineering viewpoint, it makes more
sense to say a subject (principal) can observe an object (datum) only if the
former’s security level is the same as, or higher than, the latter (this is indeed
what Bell–La Padula [Bell and La Padula 1973, p.19] stipulated). Second, this
invisibility principle enjoys the following closure property. Fix s and s′ such
that s
� s′ but s′ is not strictly lower than s (so they are distinct but has no
ordering). Take, for example, the following simple process:

�sec u � u : ()↑A
s .

Assume we stipulate the information contained, that is, an affine output at u
at level s, should be invisible from s′. Assume a secure process, say P , receives
information from this process via u. Then, P can transmit this effect only to an
action at s or higher. Let the level of that action be s′′. By s
� s′ and s � s′′, we
know s′′
� s′, that is s′′ either has no ordering with respect to s′ or, if it has, s′′ is
strictly higher than s′. In either case, an observer at level s′ can never observe
information.

There are at least two methods which may be used for proving Proposition
3.12. One is based on the secrecy-sensitive bisimilarity studied in Yoshida et al.
[2002], which would shed light on the semantic aspects of the present secrecy
analysis. The bisimilarity can also be used for guaranteeing secrecy in processes
which are not syntactically typable. The proof based on this method is discussed
in Yoshida et al. [2002] for the secrecy typing in the linear π -calculus. Another
method is based on an inductive analysis of causal chains of actions in secure
processes, and sheds light on the logic underlying the present secrecy typing and
its extensions. The proofs of Proposition 3.12 and its refinement discussed later
based on this method, together with the development of the ambient theory,
are presented in a separate paper [Honda and Yoshida 2005].

Because ∼=s is a congruence on securely typed processes, Proposition 3.12
immediately gives us the following compositional principle for secrecy analysis
on linear/affine processes.

COROLLARY 3.14. Let �sec Pi � A (i = 1, 2) such that tamp(A)
� s. Let C[·]B
A

be a typed context. Then we have �sec C[P1] ∼=s C[P2] � B.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:26 • K. Honda and N. Yoshida

Example 3.15 (Reasoning Based on Noninterference). We shall explain the
use of Corollary 3.14 for a compositional noninterference analysis. Let us con-

sider the following processes, with τ
def= [⊕]

↑L

H

�sec [[left]]w
def= !w(c).cinl � w :τ, �sec [[right]]w

def= !w(c).cinr � w :τ.

Then [[left]]w ∼=L [[right]]w. By Corollary 3.14, for any well typed context C[]A
w:τ ,

we have C[[[left]]w] ∼=L C[[[right]]w]. As a concrete context, we can take:

C[·]x:τ
w:τ

def= (ν w)([·] | w(u)P) where τ = (N◦
H)

↑L , P def= u[.x(y)[[1]] y&.x(y)[[2]] y].

Note P is from Example 3.6(4). Then, we have C[[[left]]w] ∼=L C[[[right]]w],
which relies on the typability of this context: different outputs from the two
filled contexts depend on two high-level inputs, hence the former cannot be
observed by low-level observers (one may observe that the secure typability of
contexts means that context is safe as a transformer of information/behavior).
Note this equality says nothing about the equality for high-level observers.
Indeed, as can be easily seen, we have C[[[left]]w]
∼=H C[[[right]]w] (which does
not contradict Corollary 3.14 since �sec [[left]]w
∼=H [[right]]w � w :τ).

More substantial applications of Corollary 3.14 will be presented in the next
section, where the noninterference in π LA is reflected onto the corresponding
property in two prototypical secure programming languages via their process
encoding.

In the rest of Section 3, we explore two natural refinements of the secrecy
typing we have just introduced. Not only are these refinements useful in prac-
tice (the first refinement, subtyping, will be used throughout our embedding
results, while the second one, called inflation, will be used in the embedding
of the extended Smith–Volpano calculus), but also they offer new insights on
the secrecy analysis in π LA and connects it to significant ideas in the existing
secrecy analyses in the literature. Those readers whose main interests lie in
applications may safely skip the remaining parts the section, referring back to
them as needed.

3.4 Refinement (1): Subtyping

A type-based secrecy analysis is often associated with subtyping [Abadi 1999;
Honda et al. 2000; Volpano et al. 1996; Smith and Volpano 1998]. In the fol-
lowing, we present a natural subtyping relation for the secrecy typing given in
Figure 5, based on the ideas from Honda et al. [2000].

Let us first illustrate the key ideas of this secrecy subtyping using simple
examples. Below we show two cases of subtyping on channel types, one for
output and one for input. Let L � M � H.

()
↑A

M ≤ ()
↑A

H ()
↓A

M ≤ ()
↓A

L . (2)

Note the ordering is reversed (dualized) between input and output. For both
cases, we use the following simple agent for illustration.

�sec x. y � x : ()
↓A

M , y : ()
↑A

M . (3)

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:27

Note this process is immediately secure. Applying the standard subsumption
to (3) using the output subtyping in (2), we obtain:

�sec x. y � x : ()
↓A

M , y : ()
↑A

H . (4)

which still remains secure. Intuitively raising an output level still keeps secrecy
since, if the output is done as a result of an input at some level, we may as well
raise the level of the former. The input is completely dual: we again apply the
subsumption to (3), this time using the input subtyping in (2), to obtain:

�sec x. y � x : ()
↓A

L , y : ()
↑A

H , (5)

which remains secure. The justification for this subsumption is dual to that for
the output subtyping in (4).

The subtyping we obtained above carries over to carried types, nested at an
arbitrary depth. For example, from the following obviously secure process:

�sec !u(y).w(x)x. y � x : (()
↓A

M)?A , y : (()
↑A

M)!A , (6)

we may as well derive:

�sec !u(y).w(x)x. y � x : (()
↓A

L)?A , y : (()
↑A

H)!A , (7)

which is again safe. Thus, we may as well have the following subtyping:

(()
↑A

M)!A ≤ (()
↑A

H)!A (()
↓A

M)?A ≤ (()
↓A

L)?A (8)

in which the ordering is covariant with respect to (8). This covariance in sub-
typing, which follows [Honda et al. 2000], is because each type abstracts the
behavior of the process rather than that of the environment in the present
system (in contrast to Pierce and Sangiorgi [1996]).

We can now formalize the above ideas as subtyping rules.

p ∈ {?L, ?A, ↑L}
τi ≤ τ ′

i

(�τ)p ≤ (�τ ′)p

τi ≤ τ ′
i s � s′

(�τ)
↑A
s ≤ (�τ ′)↑A

s′

p ∈ {?L, ?A}
τi j ≤ τ ′

i j

[⊕i�τi]
p ≤ [⊕i�τ ′

i]
p

p ∈ {↑L, ↑A}
τi j ≤ τ ′

i j s � s′

[⊕i�τi]
p
s ≤ [⊕i�τ ′

i]
p
s′

τ ′
I
≤ τI

τI ≤ τ ′
I

.

For � we set � ≤ �. We call this relation, as well as its pointwise extension to
action types denoted A ≤ A′, secrecy subtyping. We can then extend the secrecy
analysis by adding the following standard subsumption rule

(Subs)
�sec P � A A ≤ B

�sec P � B
. (9)

The resulting system satisfies the subject reduction (the proof follows [Honda
et al. 2000]). The following example shows that the subsumption strictly adds
typability:

(Out)
−

(Subs)
�sec x〈 y〉 � x : (()

↓A

M)?A , y : ()
↑A

M

�sec x〈 y〉 � x : (()
↓A

L)?A , y : ()
↑A

H

.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:28 • K. Honda and N. Yoshida

How do we know that the resulting typed process is secure? We first observe
x〈 y〉 behaves precisely as x(u)u. y up to the contextual equality in π LA. But,
with the action type in the second line (i.e., x : (()

↓A

L)?A , y : ()
↑A

H), the process
x(u)u. y is indeed typable without subsumption. Hence, by Proposition 3.12,
�sec x〈 y〉 � x : (()

↓A

L)?A , y : ()
↑A

H should also be secure.
The translation we used above — transforming a free output into a bound

output using transforming agents — is a key method used in the noninter-
ference result for secrecy subtyping. Before proving it, we first introduce the
general transforming agents, the copycats, extending the construction for the
unit type in Example 2.1 (4). Below 	i Pi denotes P1 | . . . | Pn for some n ≥ 1.

Definition 3.16 (Copycat). Let md(τ) be an input type in π LA. Then a copycat
of type τ from x to x ′, written [x → x ′]τ , is given by the following induction (we
omit secrecy annotations since they are irrelevant):

[x → x ′](�τ)p def= x(�y).x ′〈 �y〉�τ (p ∈ M↓)

[x → x ′](�τ)p def= !x(�y).x ′〈 �y〉�τ (p ∈ M!)

[x → x ′][&i �τi]
p def= x[&i(�yi).x ′ini〈 �yi〉τi j] (p ∈ M↓)

[x → x ′][&i �τi]
p def= !x[&i(�yi).x ′ini〈 �yi〉 �τi j] (p ∈ M!)

x〈 y1.. yn〉τ1..τn
def= x(y ′

1.. y ′
n)	i[y ′

i → yi]
τi

xin j 〈 y1.. yn〉τ1..τn
def= xin j (y ′

1.. y ′
n)	i[y ′

i → yi]
τi ,

where, in the last two lines, each τi is an output mode.

Processes x〈 y1 . . yn〉τ1..τn and xin j 〈 y1 . . yn〉τ1..τn emulate free name passing by
bound name passing. Just like a forwarder, a copycat precisely transmits the
behavior at one point to the behavior at another point, as the following example
shows.

[[2]] y |[x → y]N
◦ |x〈e〉 −→ [[2]] y |[x → y]N

◦ | y(c′)c′[&i.eini]

−→ [[2]] y |[x → y]N
◦ |(ν c′)(c′in2|c′[&ieini])

−→ [[2]] y |[x → y]N
◦ |ein2

We contrast the above reduction with one using a forwarder, which uses free

name passing. Let fw〈x y〉N
◦ def= !x(c). y〈c〉 below.

[[2]] y |fw〈x y〉N
◦ | x〈e〉 −→ [[2]] y |fw〈x y〉N

◦ | y〈e〉
−→ [[2]] y |fw〈x y〉N

◦ | ein2.

PROPOSITION 3.17 (FLOWS IN COPYCATS). Below the typability is that of the se-
crecy typing without (Subs).

(1) Let md(τ1) ∈ {!L, !A, ↓L, ↓A} and τ2 ≤ τ1, we have �sec [x → y]τ � x :τ1, y :τ2.
(2) �sec x〈 �y〉�τ � x :τ, �y : �τ if (�τ)↑L ≤ τ or (�τ)

↑A
s ≤ τ .

(3) �sec xin j 〈 �y〉�τ j � x :τ, �y : �τi if [⊕i�τ j]
↑L
s ≤ τ or [⊕i�τ j]

↑A
s ≤ τ .

PROOF. By induction on the structure of secrecy annotated channel type τ .
First, the base cases are: (a) τ = ()↑L , which is immediate from �sec x � x : ()↑L ;
(b) τ = ()

↑A
s , which is again immediate from �sec x � x : ()

↑A

s′ when s � s′; and

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:29

(c) the corresponding branching cases, which are similarly reasoned. For induc-
tion, we only show the case of unary linear/affine types. Assume τ ′ = (�τ)↓L and
ρ ≤ τ ′. Then we reason, starting from induction hypothesis:

�sec y〈�z〉�τ � y :ρ, �z : �τ
�sec [x → y]τ � x :τ ′, y :ρ

The case when τ ′ = (�τ)
↓A

s′ needs to take secrecy levels into consideration. Let
ρ ≤ τ ′ so that, with tamp(ρ) = s, we have s′ � s. Then we infer:

�sec y〈�z〉�τ � y :ρ, �z : �τ s′ � tamp(ρ)(
def= s)

�sec [x → y]τ � x :τ ′, y :ρ

Other cases are similar.

These copycats bridge different types related by the subtyping, so that they
explicitly embody the notion of subsumptions as behaviors. This observation
can now be used for proving the noninterference of the secrecy typing without
subsumption.

PROPOSITION 3.18 (NONINTERFERENCE WITH SUBTYPING). If �sec Pi � A (i =
1, 2) in the secrecy analysis with (Subs) and, moreover, tamp(A) = s and s
� s′,
then �sec P1

∼=s′ P2 � A.

PROOF. Given a derivation in the system with (Subs), replace each instance
of the application of (Subs) by parallel composition with copycats which mediate
two levels (for which we do not need (Subs)). For example, in the simplest case,
we replace, assuming τ is an output type:

(Subs)
�sec P � x : τ τ ≤ τ ′

�sec P � x : τ ′

with, assuming y fresh:

(Par, Res)
�sec P{ y/x} � y : τ �sec [y → x]τ � y :τ , x :τ τ ≤ τ ′

�sec (ν y)(P{ y/x}|[y → x]τ) � x : τ ′

Symmetrically when τ is an input type. Since subsumption can be done channel
by channel, this generalizes to the case when an action type contains multiple
names. Since composition with copycats do not change the behavior up to ∼= (see
e.g., Berger et al. [2001]), we know whenever �sec P � A with (Subs) we have
�sec P ′ � A without (Subs) such that P ′ ∼= P . By Propositions 3.10 and 3.18,
this implies the noninterference of P .

3.5 Refinement (2): Inflation

Another refinement of a different nature, suggested by the dependency core
calculus [Abadi et al. 1999] (discussed in the next section), allows local violation
of secure flow inside a process while guaranteeing global secrecy. To illustrate
the idea, take Q below.

Q def= y(ab)(!a(c).z(c′)c′H.cL | bH.eH) (10)

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:30 • K. Honda and N. Yoshida

where we attach the secrecy levels on channels for readability. Let us define

B def= y : (unitA

L ()
↓A

H)?L , z : unitA

H, e : ()
↑A

H , As the annotation in (10) indicates, Q
under B has a secrecy violation since a high-level input c′ suppresses a low-level
output c. Observe however this process only affects the environment at e, and
never at y and z. For example, we may compose Q with:

R def= ! y(ab).a(c)cL.b
H | !z(c′).c′H (11)

Note how the insecure action at cL by Q is, so to speak, “nullified” by the high-
level action at bH by R: in fact, given Q is in effect going to output only at eH,
there can be no semantically insecure flow induced by Q . In other words, the
local secrecy violation in Q is as a whole ineffective.

We now introduce the refined secrecy analysis that allows processes such as
Q to be well typed. We use an operation called inflation, which essentially acts
as a nullifier of a local secrecy violation in view of the global tampering level of
the process.

Definition 3.19 (Iinflation). The inflation of τ by s, written τ!s, is the result
of taking the join of each secrecy level in τ . Concretely:

(�τ)
p
s′ ! s def= (�τ ! s)

p
s′!s [&i�τi]

p
s′ ! s def= [&i�τi ! s]

p
s′!s [⊕i�τi]

p
s′ ! s def= [⊕i�τi ! s]

p
s′!s

(�τ)p ! s def= (�τ ! s)p [&i�τi]
p ! s def= [&i�τi ! s]p [⊕i�τi]

p ! s def= [⊕i�τi ! s]p,

where �τ ! s stands for (τ1 ! s) . . (τi ! s) . . (τn ! s) with �τ = τ1 . . τn. The operation
is pointwise extended to action types, written A ! s.

Noting (A! s) ! s′ = A! (s ! s′), we know A! s is idempotent, associative and
compatible with � (i.e., A � B implies (A ! s) � (B ! s) and (A ! s) � (B ! s) =
(A � B) ! s). These properties give us:

PROPOSITION 3.20. If �sec P � A then �sec P � A ! s for each s.

The extension of the analysis is done by incorporating the converse of Propo-
sition 3.20 in a limited form.

Definition 3.21. We say �sec P � A is well typed with inflation if it is typable
with the secrecy typing in Figure 5, Section 3.2, augmented with the following
rule.

(Inf)
�sec P � inf(A)

�sec P � A
,

where we define: inf(A)
def= A ! tamp(A).

Intuitively inf(A) inflates the secrecy level which may contribute to the final
effect up to tamp(A), and those which are not to some level higher than A. As a
simple example of the use of (Inf), we show the derivation of Q under B above.

(Inf)
�sec Q � y : (unitA

H ()
↓A

H)?L , z :unitA

H, e : ()
↑A

H

�sec Q � y : (unitA

L ()
↓A

H)?L , z :unitA

H, e : ()
↑A

H

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:31

For noninterference, we first define ∼=s in precisely the same way as Definition
3.9, except we use processes typed with inflation this time. Then, we have the
same noninterference result as before.

PROPOSITION 3.22 (NONINTERFERENCE WITH INFLATION). If �sec Pi � A (i =
1, 2) is well typed with inflation such that tamp(A) = s and s
� s′, then
�sec P1

∼=s′ P2 � A.

For the proof, see Honda and Yoshida [2003, Section 6.1] (which also illus-
trates how this operation arises naturally from the viewpoint of inductive flow
analysis). Intuitively, a process with a tamper level s and which is typed with
inflation will still transform information from levels which are the same as, or
lower than, s, just as the one typed without inflation, since inflation is done
only up to s.

The noninterference proof in Honda and Yoshida [2003, Section 6.1] does
not depend on subject reduction of the secrecy type discipline with inflation.
We nevertheless believe that, at least for sequential processes (in the sense of
Berger et al. [2001]) including its extension to stateful behaviors, the subject
reduction holds.

4. SECRECY IN PURE FUNCTIONS: DEPENDENCY CORE CALCULUS

This section applies the secrecy analysis for π LA presented in the previous sec-
tion to the secrecy analysis for functional calculi, following the general frame-
work we advocated in Introduction. First, in Section 4.1–4.4, we show that a
representative existing secrecy analysis for pure functions is embeddable into
the secrecy analysis for π LA, taking the dependency core calculus by Abadi and
others as an example. Second, in Section 4.5–4.7, we show how we can develop
a new secrecy analysis for call-by-value higher-order functions by reflecting
the secrecy analysis for π LA onto the target calculus using the standard process
encoding of call-by-functions [Milner 1992a; Honda and Yoshida 1999].

4.1 Dependency Core Calculus

The dependency core calculus [Abadi et al. 1999] (DCC) is interesting in the
present context at least in two ways. First, the calculus is one of the signifi-
cant examples of a functional meta-language for type-based information flow
analysis. DCC demonstrates how diverse forms of dependency/secrecy analy-
ses for sequential programming languages can be analyzed using the calculus.
It is thus intriguing to see if its expressive secrecy analysis is embeddable
into the secrecy-enhanced π LA. Secondly, DCC uses pointed types4 [Howard
1996; Mitchell 1996] for a refined secrecy analysis. In Howard’s framework,
types are first nonpointed, which means they are for total (or terminating) pro-
grams. Pointed types are obtained by lifting nonpointed types, and represent
behaviors that may diverge. In DCC, the fine-grained mixture of pointed and
nonpointed types allows a refined type-based secrecy analysis that can take

4Howard [1996] originally presented pointed types in a framework that also combines other (in-

ductive and coinductive) type operators.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:32 • K. Honda and N. Yoshida

different kinds of causality—one for convergent computation and another for
possibly divergent one—into account, by considering distinction between con-
vergence/divergence in pointed types directly carries information. Thus, we may
ask whether the distinction between nonpointed types and pointed types relate
to the one between linearity and affinity in π LA.

Before answering these questions, we first review DCC. We present this cal-
culus in the form that does not use explicit coercion of secrecy levels (both in
types and terms). This does not result in any loss of precision or generality,
while simplifying the presentation of the calculus and its embedding into the
π -calculus.

The set of DCC-types are given by the following grammar. We use the same
lattice L of secrecy levels as we set in Section 3, whose elements are ranged
over by s, s′, . . .

T ::= units | T1 × T2 | T1 +s T2 | T1 ⇒T2 | �T�s.

Unit, products, sums and function types should be familiar. The lifted type �T�s

is the so-called pointed type [Howard 1996; Mitchell 1996], which indicates
potential divergence. On these types we introduce the mapping (T)s by the
following clauses. This operation appears as an explicit type constructor in
Abadi et al. [1999] with the notation Ts(T), such that the equations below arise
as type isomorphisms in their denotational universe.

(units)s′
def= units!s′ , (T1+s T2)s′

def= T1+s!s′ T2, (T1×T2)s′
def= (T1)s′ ×(T2)s′ ,

(T1⇒T2)s
def= T1⇒(T2)s, and (�T�s)s′

def= �T�s!s′ .

We now introduce two key ideas in the DCC-types, protection level and point-
edness. Of them, the protection level is in direct correspondence with the tam-
per level in Section 3 through the embedding of DCC in the secure π LA, see
Section 4.2. Similarly, pointedness indicates whether (intuitively) a type is in-
habited by a divergent behavior: again there is a direct correspondence with
affinity, as shown in Section 4.2.

Definition 4.1 (Protection Level and Pointedness).

(1) The protection level of T , denoted protect(T), is given by:
� protect(units) = protect(T1 +s T2) = protect(�T�s) = s.
� protect(T1 × T2) = protect(T1) � protect(T2) and:
� protect(T1 ⇒T2) = protect(T2).

(2) �T ′�s is pointed; if T1 and T2 are pointed then T1 × T2 is pointed; and if T ′

is pointed then T ⇒T ′ is pointed. These are all and only pointed types.

PROPOSITION 4.2.

(1) T is pointed in Abadi et al. [1999] iff, regarding each Ts(T ′) occurring in T
as (T ′)s, it is pointed in the above sense.

(2) T is protected at s in Abadi et al. [1999] iff s � protect(T), again through
the translation of each Ts(T ′) in T to (T ′)s.

PROOF. By mechanical structural induction.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:33

Fig. 6. Dependency core calculus.

The sequent of DCC has the form E � M : T where M is a λ-preterm with
units, sums, recursion, lifting and two let-like constructs, bind and seq, with
annotations on bound names; while E is an environment, which is a finite map
from variables to types. We often omit type annotations from DCC-terms. The
reduction relation −→ is the standard call-by-name one-step reduction, with
the rules for seq and bind given as follows.

seq x =lift(N) in M −→ M {N/x}
bind x = N in M −→ M {N/x}.

The typing rules are given in Figure 6. Apart from the lack of coercion, these
rules are slightly strengthened without changing semantics, so that the typa-
bility is closed under reduction (this strengthening also makes [UnitM] and
[BindM] redundant). See B.1 in Appendix B for detailed illustration of the typ-
ing rules and their difference from the original presentation. A few examples
of well typed terms follow.

Example 4.3 (DCC-Terms). Below let Bs
def= units +s units (the levels of the

unit types are in fact irrelevant).

(1) Let L def= λx.x. Then L : BL ⇒ BH is well typed. This is a function which
outputs a low-level datum as a high-level datum, which is surely safe. This
term is derived thus:

−
(Var)

x :BL � x : (BL)H (BL)H=BH
(Lam) � λx.x : BL⇒BH

.

(2) Let M def= λx.in1(()). Then M : BH⇒BL is well typed. This function receives
a high-level datum and returns a low-level datum: if it nontrivially uses
the former it violates the secrecy, but since it does not it is safe. For its

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:34 • K. Honda and N. Yoshida

derivation:

−
(Unit)

x :BH � () : unitL
(Inl)

x :BH � inl(()) : BL
(Lam) � λx.inl(()) : BH⇒BL

.

(3) Let N = in1(()) : BH, which is obviously well typed. Then, using M given in
(2) above, M N : BL is well typed, which is derived as:

� M : BH⇒BL � N : BH (BH)L = BH
(App) � M N : BL

.

(4) Using L in (1) and N in (3), LN : BH is well typed and is derived as:

� L : BL⇒BH � N : BH (BL)H = BH
(App) � LN : BH

.

Here a high-level datum N is used as a low-level datum: however, this is
safe since, as a whole, the information is only emitted at the high-level.

(5) The term:

y : BL⇒BH, z : BH � bind x = z in yx : BH. (12)

is well typed as follows, with E def= x :BL, y :BL⇒BH, z :BH.

E � y : BL⇒BH, E � x : BL
(App)

E � yx : BH (BL)H = BH
(Bind)

y : BL⇒BH, z : BH � bind x = z in yx : BH

This example shows a subtle use of bind: a local violation of secrecy is
permitted (a high-level z is used at a low-level) while retaining safe global
flow.

PROPOSITION 4.4

(1) (TYPABILITY). If E � M : T in Abadi et al. [1999] then E � Erase(M) : T in
the present system where, in the latter, we regard each Ts(T ′) occurring in T
as (T ′)s and Erase(M) erases coercions from M.

(2) (SUBJECT REDUCTION). If E � M : T and M −→ M ′ then E � M ′ : T.

PROOF.

(1) is by rule induction via Proposition 4.2.

(2) uses a strengthened substitution lemma, showing E, x : T � M : T ′ and
E � N : (T)s with s � protect(T ′) implies E � M {N/x} : T ′. See B.2 of
Appendix B.

We conclude the presentation of DCC by stipulating a Morris-like contex-
tual congruence on DCC-terms, relativized by secrecy levels. It suffices to use

the simplest pointed observable. Let Os
def= �unit�s. Below M ⇓ stands for

∃N .M −→∗ N
−→.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:35

Definition 4.5. Fix some s. Then, ∼=DCC

s is the maximum typed congruence
on DCC-terms such that whenever � Mi : Os (i = 1, 2), we have M1 ⇓ iff M2 ⇓.

4.2 Embedding DCC: Types

The embedding of DCC in π LA is done by mapping nonpointed types to linear
types and pointed types to affine types. The lifting �T� is replaced by a trans-
formation from linearity to affinity. The translation scheme is based on Milner,
Hyland-Ong, as well as our own studies [Milner 1992a; Hyland and Ong 2000;
Berger et al. 2001]. Since the encoding of call-by-name product [Hyland and
Ong 2000] may look slightly complex (though the framework itself is simple),
we first work with types without product up to the noninterference result, pre-
senting the extension to product types at the end of Section 4.4. The encoding
of types follows. Below [T1T2 · · · Tn−1γ] stands for T1 ⇒ (T2 ⇒ (· · · (Tn−1 ⇒γ) · · ·)
with γ is either a unit or a sum.

(TYPE) unit•
s

def= ()↑L (T1+s T2)• def= [T ◦
1 ⊕T ◦

2]
↑L
s �T�•

s
def= (T ◦)↑A

s

[T1 . . . Tn−1γ]◦ def=
{

(T ◦
1 . . . T ◦

n−1γ
•)!L γ nonpointed

(T ◦
1 . . . T ◦

n−1γ
•)!A γ pointed

(ENVIRONMENT) ∅◦ def= ∅ (E, x : T)◦ def= E◦, x : T ◦

(ACTION) 〈T 〉E
u

def=
{

(u : T ◦ → A), B T nonpointed, E◦ = ?L A, ?A B

u : T ◦, E◦ T pointed

As examples, we have unit◦
s

def= (()↑L)!L and �unit�◦
s

def= ((unit◦)↑A
s)!A . Further, we

have B•
s = [⊕]

↑L
s , B◦

s = ([⊕]
↑L
s)!L , �Bs�•

L

def= (B◦
s)

↑A

L , and (BL ⇒BH)
◦ = (B◦

LB
•
H)

!L . As
an example of the encoding of action types, we have 〈BH〉x:BL

u = u : B◦
H→x : B◦

L.
Below T is trivial when T is: (1) units; (2) T1 ×T2 where T1 and T2 are trivial;

and (3) T1 ⇒T2 where T2 is trivial.

LEMMA 4.6. (1) tamp(T ◦) = H if T is trivial. tamp(T ◦) = protect(T) if else.
(2) tamp(〈T 〉E

u) = tamp(T ◦). (3) T ◦ � ((T)s)
◦.

PROOF. For (1), noting tamp([T1 . . . TnT ′]◦) = tamp(T ′) (since
md((Ti)◦s) ∈ {?L, ?A}), we have tamp([T1 . . Tnunits])

◦ = tamp(unit•
s) = H and

tamp([T1 . . Tn(T ′
1 +s T ′

2)]◦) = s = tamp([T ′
1
◦ ⊕ T ′

2
◦]↑L

s), similarly for [T1 . . Tn�T ′�s].
(2) is because types in E◦ are innocuous. (3) is immediate.

The translation of DCC-types into process types sheds a new light on DCC
in a way quite different from their original denotational interpretation [Abadi
et al. 1999]: [T1 . . . Tn−1γ] is now interpreted as the abstraction of interaction
which may inquire at each Ti, to receive a datum (at specific secrecy levels)
and finally emits a datum at γ again (at a specific secrecy level). Further, we
observe:

—The equation protect([T1 . . . Tn−1γ]) = protect(γ) is now given a clear opera-
tional understanding: the translation of each Ti has either ?L or ?A mode, so
its tamper level is irrelevant.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:36 • K. Honda and N. Yoshida

Fig. 7. Encoding of dependency core calculus.

—s in units is ignored in translation. [T1 . . Tnunits]
◦ says that, regardless of

the results of interactions at T1.n, it simply signals a unique output, hence in
effect there is no flow of information (a similar treatment of the unit is found
in Pottier and Simonet [2003]).

—The encoding of T1 +s T2 is a linear selection type, which is immediately
tampering and which needs a secrecy annotation.

4.3 Embedding DCC: Terms

The translation of DCC-terms into processes, written [[M : T]]u (often omitting
T for brevity), closely follows that of types, and are defined inductively by the
clauses in Figure 7 (omitting the obvious symmetric cases). The translation
follows [Milner 1992a; Hyland and Ong 1995] and does not rely on secrecy
annotation of DCC-types, hence the translation is uniquely determined from a
given DCC-term (however the translation does rely on the following property:
each subterm of M in a DCC-term E � M : T is assigned a unique type if we
neglect secrecy annotations). Some of the rules use a general form of forwarder
(cf. Example 2.1(3)), written fw〈x y〉τ for each input type τ :

fw〈x y〉τ def=
{

x(z1 . . zn). y〈z1 . . zn〉 if τ = (ρ1 . . ρn)p with p ∈ {↓L, ↓A}
!x(z1 . . zn). y〈z1 . . zn〉 if τ = (ρ1 . . ρn)p with p ∈ {!L, !A}

We discuss some of the key aspects of the encoding.

(1) [[M]]u is always a replicated input (of the form (ν �w)(!u(�z).P |R) with R
having subjects �w). This directly follows Milner’s encoding [Milner 1992a];

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:37

it also corresponds to game-based model [Abramsky et al. 2000; Hyland and
Ong 2000; Hyland and Ong 1995] where interaction always starts from the
opponent’s question.

(2) A variable x is encoded into a forwarder located at u. The encoding of unit
and natural numbers have appeared in Example 3.6.

(3) When M has a type [T0T1 · · · .Tnγ] and N a type T0, M N is translated

into [[M N]]u
def= ! u(�xz).(ν mx0)([[M]]m | [[N]]x0

| m〈x0�xz〉). This agent, when in-
voked, calls [[M]]m with parameters �x plus x0 standing for N .

(4) If T = [T0T1Tnγ], an abstraction λx0.M of type T located at u is trans-
lated into ! u(x0�xz).(ν u′)([[M]]u′ | u′〈�xz〉). When it is invoked at u with ar-
guments x0�xz, it in turn calls its body with the same arguments except the
initial x0 is taken off (which adjusts types). The agent will only affect the
outside at its output at z, hence, its level lies only at z. The behavior is in
clear contrast with the encoding of abstraction of the call-by-value version
of DCC, which will be discussed in Section 4.5.

(5) An injection and a case construct are mapped into selection and branching,
respectively. We can then justify the typing rule for [Case] using the secrecy

typing in π LA. Let [[Mi]]m
def= !m(�z y).Pi with �z = z1 · · · zn and E, x :α1 +s α2 �sec

Mi � β and E �sec L � α1+sα2 (i = 1, 2). By observing (ν u′)([[Mi]]m |m〈�z y〉)
can be optimized to Pi, we infer:

(Par,Res)

�sec [[L]]l � l : ([T ◦
1 ⊕ T ◦

2]
↑L
s)!L , E◦

�sec l (c)c[&i=1,2(xi).Pi] � l : ([T ◦
1 &T ◦

2]
↓L
s)?L , z1 :T ◦

1 , .., zn :T ◦
n , y :γ •, E◦

�sec (ν l)([[L]]l | l (c)c[&i=1,2(xi).Pi]) � z1 :T ◦
1 , .., zn :T ◦

n , y :γ •E◦
.

For securely typing the process in the second antecedent, we should have s �
tamp(z1 : T ◦

1 , . . , zn : T ◦
n , y :γ •, E◦) = tamp(γ •) by (Bra↓A) (noting tamp(E◦) =

tamp(T ◦
i) = H). Using Lemma 4.6, we can check that this condition exactly

corresponds to the side condition of [Case], s � protect(γ) = protect(T ′).
Note the analysis clarifies information flow involved in each construct.

(6) The encoding of bind simply connects a channel of a variable to a channel
of a behavior which it is bound.

(7) The lifting is translated into [[lift(M)]]u
def= ! u(c).c(m)[[M]]m where m of M

is transformed into an affine replicated u via additional interactions. As-
suming E � M : T , this agent is typed as � [[lift(M)]]u : u : ((T ◦)↑A

s)!A , E◦.
For [Seq], let T ′ = [T1 . . . Tnγ] and [[M]]u =!u(�z y).P with �z = z1 . . zn. Cen-
tral to the secrecy typing of [[seq x = N in M]]u is the affine prefixing of P
by c(x) in !u(�z y).n(c)c(x).P , shown below.

(In↓A)
�sec P � x : T ◦, �z : �T ◦, y : γ •, E◦

�sec c(x).P � c : (T ◦)↓A
s , �z : �T ◦, y : γ •, E◦

For this to be typable, (In↓A) in Figure 5 demands: (1) γ • is affine, that is,
T ′ = [T1 . . Tnγ] is pointed, and (2) s � tamp(�z : �T ◦, y : γ •, E◦) = tamp(γ •) =
protect(γ) = protect([T1 . . Tnγ]), reaching the side condition in [Seq].

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:38 • K. Honda and N. Yoshida

(8) The recursion is translated by connecting a recursive variable x and the

location u by using a forwarder as: [[μxT .M]]u
def= (ν x)([[M]]u | fw〈xu〉T ◦

).
Since fw〈xu〉 creates a cycle between u and x, x should be typed with a
?A-type (by the DCC-type of x being pointed). This corresponds to the side
condition of [Rec], that is T is pointed.

A few concrete examples of the encoding follow. The final example, (7), shows
the encoding of bind where the inflation rule, (Inf), in Section 3.5 is needed for
justifying its well typedness of the encoding.

Example 4.7 (DCC Translations). Below, we omit secrecy levels when
irrelevant.

(1) � () : units is translated into �sec!u(c).c � u : ()↑L , which is obviously secure.

(2) A DCC-term x : units � x : units′ is translated into a secure π LA-term
�sec!u(c).x〈c〉 � u : unit◦

s → x : unit◦
s′ . Since s and s′ are ignored in the

translation of units, this is well typed for arbitrary s and s′.
(3) x : Bs � x : Bs′ is translated into �sec !u(c).x(c′)c′[.cinl& .cinr] � u : B◦

s →x :
B◦

s′ . Then, it is well typed iff s � s′ by the side condition of (Bra↓L), since c′

has level s while c has level s′.
(4) An identity function � λx.x : BL⇒BH is translated into

�sec !u(xc).x〈c〉 � u : (B◦
LB

•
H)

!L

applying the optimization (ν u′)(fw〈u′x〉Bs | u′〈c〉) −→ x〈c〉. This process is
secure since, after obtaining �sec x〈c〉 � x : B◦

L, c : B•
L, we can use (Subs) to

get �sec x〈c〉 � x : B◦
L, c : B•

H, thus, by (In!L) we reach the above sequent. But
the translation of � λx.x : BH ⇒BL is untypable; in !u(xc).x〈c〉, x should be
assigned by H, but then c cannot be by L.

(5) A function � λx.inl(()) : BH⇒BL is translated into

�sec !u(xc).cinl(m)!m(z).z � u : (BH⇒BL)
◦

applying the optimization as the above. This process is well typed. First we
type its body as �sec cinl(m)!m(z).z � c : B•

L. Then, we can apply (Rep!L) to
obtain the above term.

(6) � M N : BL with M def= λx.inl(()) : BH⇒BL and N def= inl(()) : BH becomes:

!u(z).(ν mx0)(!m(xc).cinl(m)!m(y). y | !x0(e).einl(w)!w(v).v | m〈x0z〉),
where u is typed by B◦

L, x0 by B◦
H, and e by B•

H. This process is securely typed:
although x0 has the tampering level H, it is not used in [[M]]m, so it is safe.

(7) A DCC-term y : BL⇒BH, z : BH � bind x = z in yx : BH in Example 4.3(3) is
translated into the following process (with some optimization for simplicity)

!u(a). y(bc)(!b(e).z(f) f H[.eLinl & .eLinr] | c[.ainl & .ainr]).

Here we annotate channels by the level explicitly. Note y has type (B◦
LB

•
H)

?L

while z has type B◦
H, so that f is high while e is low, making the process

untypable without (Inf). Using (Inf), we can regard the type of y as (B◦
HB

•
H)

?L ,
making e high and the process as a whole typable.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:39

4.4 Noninterference via Embedding

Basic properties of the embedding follow. Below �τ
u

def= (ν y)(fw〈uy〉τ |fw〈 yu〉τ).
Throughout the rest of the section, we consider the typability in π LA incorporat-
ing both subtyping and inflation.

PROPOSITION 4.8

(1) (TYPABILITY). If E � M : T, then �sec [[M]]u � 〈T 〉E
u is securely typed.

(2) (COMPUTATIONAL ADEQUACY). Let � M : Os. Then, M ⇓ iff [[M]]u
∼=s �
O

◦
s

u .
(3) (SOUNDNESS). [[M1]]u ∼=s [[M2]]u implies M1

∼=DCC

s M2.

PROOF. (1) is straightforward induction, using (Subs) and Lemma 4.6 (3)
for [Var] and [UnitM]; and (Inf) for [App] and [BindM]. For (2), “only if” is by
both-way simulation of reduction, following Berger et al. [2000, Section J.1].
(3) is standard, using (2).

We believe the converse of (3) holds. The clause (1) may also be strengthened
with its converse, assuming we use the explicitly typed version of π LA.

We are now ready to establish the noninterference of DCC-terms. The result
also follows from the soundness of the denotational interpretation in Abadi et al.
[1999]. The present proof method has interest in that it smoothly extends to
other settings such as stateful computation, cf. Section 7. A closing substitution
is the one which substitutes closed terms for all free variables of a given term.

Definition 4.9. We write E � σ1 ∼s σ2 if, for well typed substitutions σ1 and
σ2, we have σ1(x) = σ2(x) whenever protect(E(x)) � s.

THEOREM 4.10 (NONINTERFERENCE). Let E � M : Os. Then, for any closing σ1

and σ2 such that E � σ1 ∼s σ2, Mσ1 ⇓ iff Mσ2 ⇓.

PROOF. Assume x : T � M : Os (the reasoning trivially extends to multiple
variables). Let � Ni : T (i = 1, 2) with protect(T)
� s. If protect(T) � tamp(T ◦),
then protect(T ◦)
� s, hence, by Proposition 3.22, we obtain [[N1]]x ∼=s [[N2]]x

under x : T ◦. Thus, x : T � {N1/x} ∼s {N2/x} implies [[N1]]x ∼=s [[N2]]x . Below
(replication) indicates the use of the standard replication theorem [Berger et al.
2001, Proposition 7].

x : T � {N1/x} ∼s {N2/x}
⇒ [[N1]]x ∼=s [[N2]]x (above)
⇒ (νx)([[M]]u|[[N1]]x) ∼=s (νx)([[M]]u|[[N2]]x) (congruency)
⇒ [[M {N1/x}]]u ∼=s [[M {N2/x}]]u (replication)
⇒ M {N1/x} ∼=DCC

s M {N2/x} (Proposition 4.8 (3))
⇒ M {N1/x} ⇓ iff M {N2/x} ⇓, (Definition 4.5)

hence done.

Remark 4.11 (A Stronger NI Property Through Full Abstraction). If the
converse of Proposition 4.8 (3) (hence full abstraction) holds, which we believe
to be so, then we can strengthen Theorem 4.10 by replacing “E � σ1 ∼s σ2” with
“E � σ1

∼=s σ2” where E � σ1
∼=s σ2 indicates σ1(x) ∼=s σ2(x) for each x ∈ dom(σi).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:40 • K. Honda and N. Yoshida

The proof is identical with the above except for the first step. This shows how a
stronger embedding property can be used for establishing a stronger property
for the source language by reflecting the result for the embedding.

Remark 4.12 ([BindM] and (Inf)). In Example 4.7(6), we observed the need
of (Inf) for justifying the encoding of [BindM] (which corrects our development
in [Honda and Yoshida 2002]). However the encoding of many significant usage
of [BindM] in the original DCC are typable in the secrecy typing without (Inf)
(which include [Case] and [Seq] in Figure 6). It may be worth studying in which
practical situations [BindM] becomes indispensable in a way which necessitates
(Inf) for its justification. A related discussion is also found in Abadi [1999].

Remark 4.13 (Extension to Product). We conclude our discussion on call-
by-name DCC by extending the encoding to product types. The following treat-
ment comes from Hyland and Ong [2000], which allows a clean embedding of
pointed types and recursion (the encoding of call-by-value products, which is
quite different, is treated in Section 4.6 later). We first stipulate the following
equation on types (let n ≥ 1 below)

[T1 . . Tn(T ′
1 × T ′

2)] = [T1 . . TnT ′
1] × [T1 . . TnT ′

2].

By reading the equation as a rewrite rule (from the left to the right), any type
can be rewritten into the following normal form:

	1≤i≤n[�Tiγi]
def= [�T1γ1] × · · · × [�Tnγn]

where, as before, each γi is either a unit, a sum or a lifted type, and each type in
�Ti is again a normal form. As seen from the above notation, we take a normal
form up to associativity. We call a type of the form [�Tiγi] prime. Prime types
are ranged over by θ , θ ′, We now define the encoding of types. Setting γ • as
before, T ◦ is translated into a sequence of channel types.

[T1 . . . Tn−1γ]◦ def=
⎧⎨
⎩

(T ◦
1 . . . T ◦

n−1γ
•)!L γ nonpointed

(T ◦
1 . . . T ◦

n−1γ
•)!A γ pointed

(1≤i≤nθi)
◦ def= θ◦

1 . . . θ◦
n

Thus, a product of DCC-types becomes a vector of channel types. In the above
map, the dualization is generalized to that on a vector of types in the obvious
way.

The mapping of the environment and the action type needs an additional
construction, which concerns how we treat a free variable. In brief, a free vari-
able x of type T = 	1≤i≤nθi is decomposed into n names, say x1 . . xn, so that
each xi is given a prime type. We need a function which maps each free vari-
able to a sequence of names, written ψ . We assume ψ always conforms to the
given typing in the sense that, for example, if x is given a type BH × BH, then
x is mapped to a vector of length two, say x1x2. The notation �x : �τ stands for

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:41

⋃
i{xi : τi}.

(environment) ∅◦
ψ

def= ∅ (E, x : T)◦ψ
def= E◦

ψ , ψ(x) : T ◦

(action) 〈T 〉E,ψ
�u

def=
{

(�u : T ◦ → A), B T nonpointed, E◦
ψ = ?L A, ?A B

�u : T ◦, E◦
ψ T pointed

The encoding of terms follow that of types, written [[M : T]]
ψ

�u where, as above, ψ

maps free variables in M . The pair [[〈M1, M2〉]]ψ�u1 �u2
becomes [[M1]]

ψ

�u1
| [[M2]]

ψ

�u1
, the

projection [[π1(M)]]
ψ

�u1
becomes (ν �u2)[[M]]

ψ

�u1 �u2
, and the recursion [[μxT .M : T]]

ψ

�u
becomes (ν �x)([[M : T]]

ψ ·x #→�x
�u | 	fw〈xiui〉τi) where T ◦ = �τ . Note this is typable iff

all prime type in T ◦ are affine, that is, iff T is pointed, conforming to the typing
of recursion in Figure 6.

The encoding gives the semantic embedding of the full DCC in secrecy-
enhanced π LA, leading to the noninterference with exactly the same reasoning
as we have done in the proof of Theorem 4.10.

4.5 Call-by-Value Dependency Core Calculus

This section introduces a call-by-value version of DCC. Our goal is to experiment
with the effectiveness of the schema mentioned in Introduction, developing a
type-based secrecy analysis for call-by-value functional calculi by reflecting
the secrecy analysis in π LA. The resulting call-by-value calculus is useful when
we consider integration of higher-order computation and imperative features,
including concurrency. It is different from the calculus called vDCC in Abadi
et al. [1999] in that it is directly based on call-by-value (big-step) evaluation. To
distinguish it from vDCC, the calculus is called DCCv. We use a syntax based
on call-by-value PCF, which is convenient for our later applications. We first
give the grammar of types, which use nonstandard lifting motivated from the
π LA-encoding.

(common) T ::= S | U
(total) S ::= Ns | S ⇒T | S1 × S2 | S1 +s S2

(partial) U ::= �S�s

We call a type of form S ⇒ U pointed (note pointed types are total). Notice
we allow only total types to occur at the argument position of an arrow type.
Further products and sums only use total types. These restrictions do not lead
to a loss of generality, as we shall discuss in Remark 4.14 later. As before, we
define the operation (T)s and the map protect(T).

—(Ns)s′ = (Ns!s′), (�S�s)s′ = �S�s!s′ , (S ⇒T)s = S ⇒ (T)s, (S1 ×S2)s = (S1)s ×(S2)s

and (S1 +s S2)s′ = S1 +s!s′ S2.

—protect(Ns) = protect(�S�s) = protect(S1 +s S2) = s and protect(S ⇒ T) =
protect(T).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:42 • K. Honda and N. Yoshida

Fig. 8. Typing rules of call-by-value DCC.

Preterms are those of the standard PCFv extended with seq, products and sums.

M ::= n | succ(M) | pred(M) | x | λxS.M | M N | 〈M , N 〉 | πi(M) |
ini(M) | case M of {ini(x

Si
i).Mi} | μxS.λy S′

.M | seq xS= N in M .

bind is not used since it is redundant in our presentation, cf. Remark B.3. We
often omit type annotations of bound variables for brevity.

The reduction −→ in DCCv is the standard call-by-value one-step reduction,
generated from the following rules together with closure under all contexts
except λ-abstraction. V stands for either a variable, a natural number, a λ-
abstraction or a recursion.

succ(n) −→ n + 1
pred(n) −→ n − 1

(λx.M)V −→ M {V/x}
π1(〈V1, V2〉) −→ V1

case in1(V) of {ini(x
Si
i).Mi} −→ M1{V/x1}

(μx.λy .M)V −→ M {μx.λy .M/x}{V/ y}
seq x =V in M −→ M {V/x}.

The typing uses the sequent E � M : T , where the environment E is a fi-
nite map from variables to total types. The typing rules are given in Figure 8.
pred(M) is typed as succ(M). The main difference from the typing rules for
DCC (cf. Figure 6) is in the distinction between total types and partial types in
DCCv. [Seq] demands the resulting type to be partial, taking the secrecy level
of a possibly diverging argument into account. This is the only rule in which
the secrecy level of divergence is taken into consideration.

Remark 4.14 (Partiality). We now discuss how the following two kinds of
partial arrow types [Fiore 1994] can be embedded in the present system.

—U⇀⇀U ′, which is a total type. Intuitively, this type represents a closure which
expects a possibly nonterminating argument and, therefore, produces a pos-
sibly nonterminating datum.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:43

—U⇀⇀sU ′, which is a partial type (this notation restores the partial function
space constructor in our original presentation in Honda and Yoshida [2005]).
This is a partial version of ⇀⇀, representing a divergence or, when conver-
gent, a closure of type ⇀⇀, and is convenient when we have successive partial
applications.

These partial arrow types are used in the system whose environments use
partial types. Two rules which use partial arrow types are:

[LamP]
E, x :U ′ � M : U

E � λxU ′
.M : U ′⇀⇀U

[AppP]
E � M : U1⇀⇀U2 E � N : U1

E � M N : U2

protect(U1)

� protect(U2)

These partial arrow types and their typing rules can be encoded into total
arrow types by forgetting partiality at the level of types (translating U⇀⇀U ′

into S ⇒U ′ and U⇀⇀sU ′ into �U⇀⇀U ′�s, both with U def= �S�s), while regaining it
at the level of terms. For example, by encoding the partial application M N into
seq x = N in M x and applying [Seq], we can justify [AppP] above including
its side condition. Note the partiality is already used when we apply [Seq].
Similarly, given U1 = �S1�s1

and U2 = �S2�s2
, we can encode their product as

�S1 × S2�s1!s2
(for the use of !, see Example 4.18(4) for illustration).

Two simple DCCv-terms follow.

Example 4.15 (DCCv-Terms). Below we write N for NL for brevity.

(1) Assume E � N : �N�M. Then E, y : N ⇒ �N�H � seq x = N in yx : �N�H is
well typed, with M being a secrecy level between H and L. The use of possibly
diverging N in seq, to be observed at level M, is justified by having a high-
level partial type for the whole term.

(2) Using [LamP] and [AppP] given above, as well as the notation ⇀⇀s, the
sequent � λx.λy .x y : (�N�L⇀⇀L�N�H)⇀⇀L�N�L⇀⇀M�N�H is well typed. This term
denotes a higher-order partial function, receiving two potentially diverging
data and applying one to the other. The type specifies a level of observation
at each termination. The initial termination may be observed at L. Next,
the result of application of the first argument may be observed at level M.
Finally, the result of the second application may be observed at H.

PROPOSITION 4.16 (SUBJECT REDUCTION IN DCCV)). If E � M : T and M −→
M ′, then E � M ′ : T.

PROOF. For total types, we show a strengthened (call-by-value) substitution
lemma as in DCC. For partial types we prove E, x : S � M : T ′ and E � V : �S�s

with s � protect(T ′) implies E � M {V/x} : T ′. See B.2 of Appendix B.

Remark 4.17 (Typing for Call-by-Value Secrecy). The typing in Figure 8
simplifies our presentation in [Honda and Yoshida 2002], while maintaining
its essential features. In particular, [LamP] and [AppP] in Honda and Yoshida
[2002] are derivable (via [LamP] and [AppP] in Remark 4.14), [Rec] in Honda
and Yoshida [2002] from [Rec] in Figure 8 via the embedding of lifted partial
arrow types to pointed types. The simplification is based on the analysis of its
embedding into π LA via Milner’s encoding, detailed in the next subsection. The

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:44 • K. Honda and N. Yoshida

encoding directly suggests the use of total types in environments and in con-
travariant positions: which is also an insight from the denotational study of
partial computation [Moggi 1991].

4.6 Embedding DCCv: Types

DCCv is strongly motivated by the projection of the secrecy analysis in Section 3
onto the standard process encoding of call-by-value functions. We first present
the encoding of types.

(type) S• def= (S◦)↑L U •
s

def= (U ◦)↑A
s (s = protect(U))

N◦
s = ([⊕i∈N]

↑L
s)!L (S ⇒T)◦ def=

{
(S◦T •)!L T total

(S◦T •)!A T partial

(S1 × S2)◦ def= ((S◦
1 S◦

2)↑L)!L (S1 +s S2)◦ def= ([S◦
1 ⊕ S◦

2]
↑L
s)!L

�S�◦
s

def= S◦

(environment) ∅◦ def= ∅ (E, x : S)◦ def= E◦, x : S◦

(action) 〈T 〉E
u

def= u : T •, E◦

In the standard process encoding of call-by-value computation, interaction
starts from an output [Milner 1992a; Honda and Yoshida 1999; Fiore and Honda
1998]. The encoding above reflects this idea, motivating the construction of
DCCv-types. We observe:

(1) The encoding T • indicates whether this output comes from a linear channel
or from an affine channel. If the channel is affine, then this emittance itself
has information, hence we should specify its secrecy level. This is s in �S�s.

(2) The encoding of the environments (as well as types in contravariant posi-
tions) uses the dual of ()◦, and shows why it suffices to use only total types
in them in the DCCv-typing. Even if we use a partial type, say, �S�s, in an
environment, its translation is the same as S◦, so that it does not differ
from having just S.

(3) 〈T 〉E
u represents the operational structure of call-by-value which is distinct

from that of call-by-name. While, as before, the process may still inquire at
the environment by ?L and ?A-actions, it directly emits (if ever) information
at u, rather than getting invoked at it.

Example 4.18 (Encoded DCCv Types).

(1) N ⇒ N and its (least-level) lifting �N ⇒ N�L are respectively translated as
((N◦N•)!L)↑L and ((N◦N•)!L)

↑A

L . Thus, the lifting in DCCv simply changes ↑L to
↑A and adds a mandatory secrecy level (which is essentially the canonical
embedding of a total type to its partial counterpart [Honda and Yoshida
1999]).

(2) The encoding of S1 × S2 by ()◦ becomes ((S◦
1 S◦

2)↑L)!L , representing the be-
havior that, when invoked, immediately returns a linear unary output
of two data (cf. Example 3.6(1)). Since these initial two actions have no

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:45

Fig. 9. Encoding of call-by-value DCC.

information content, they are not secrecy annotated, illustrating the rea-
son for the lack of a secrecy annotation in T1× T2.

(3) Consider �N�⇀⇀L�N�⇀⇀M�N�H. This lifted partial arrow type is translated as
((N◦((N◦(N◦)↑A

H)!A)
↑A

M)!A)
↑A

L , indicating the behavior that first signals at L, then,
if the result of the first application terminates, signals at M, and finally if
the second application terminates, signals at H, emitting a natural number.

(4) The encoding of a partial product �S1�s1
× �S2�s2

def= �S1 × S2�s1!s2
(cf. Remark

4.14) via ()◦, becomes ((S◦
1 S◦

2)
↑A
s1!s2

)!A . Intuitively, �S1�s1
× �S2�s2

waits for two
data to converge and emits the resulting data, so that the level of the final
output can only be higher than two convergence levels.

(5) 〈�N�H〉E
u with E def= x : N is encoded as u : (N◦)↑A

H , x : N◦. This type represents
the behavior which may inquire at x for a natural number and may emit
one at u. The use of x : N◦ in the environment indicates we already assume
that (the datum corresponding to) x is already in a terminated form.

The protection level and the tamper level completely match via the encoding.

PROPOSITION 4.19 (protect(T) = tamp(T •) FOR EACH T). Further
tamp(〈T 〉E

u) = tamp(T •) for each T, u and E.

4.7 Embedding DCCv: Terms and Noninterference

Figure 9 lists the encoding of DCCv-terms. The encoding is standard [Milner
1992a; Honda and Yoshida 1999; Fiore and Honda 1998].

(1) 〈V 〉u immediately outputs at u, having the shape u〈x〉 if V = x, u(c)P if
else.

(2) The application 〈M N 〉u
def= (ν m)(〈M 〉m | m(a).(ν n)(〈N 〉n | n(b).a〈bu〉) first

waits for 〈M 〉m to provide the name of a function a via m; then it waits for
N to output an argument b via n. Finally, it sends b and the name u of a
final value to the function via a. Note m and n are potential points at which

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:46 • K. Honda and N. Yoshida

information may flow down if they are affine (as in the derived [AppP] in
Remark 4.14).

(3) For the encoding of a pair, consider (as our default treatment says) that
a product pairs total types. Then a pair is essentially that of values. Let

〈Vi〉u
def= u(mi)Pi (i = 1, 2). By applying simple syntactic equality to the

encoding in Figure 9, we obtain 〈V1, V2〉u = u(m).c(m1m2)(P1 | P2). By noting
u is linear, true information of this behavior only gets unfolded from m1

and m2 (hence the level of a total product is the meet of the levels of its
components).

(4) The encoding of a pair also elucidates information flow in partial pairings
(cf. Remark 4.14 and Example 4.18(4)). Assume, in 〈M1, M2〉u in Figure 9,
that M1 and M2 have partial types. Then m1 and m2 are affine; since u is
outputted after inputting at m1 and m2, the level of u can only be the same
as, or higher than, the levels of m1 and m2. Thus, taking the join makes
sense (observationally, this says convergence of a partial pair may only be
observed after both components converge, whereas one can freely extract
either component and observe its behavior in a total product).

(5) seq is encoded as 〈seq x = N in M 〉u ≡ (ν n)(n(x).〈M 〉u|〈N 〉n). Here, n is
affine; hence, it can receive a nontrivial information from 〈N 〉n. Another
use of affinity is in recursion which relies on the fact that x in 〈μx.λy .M 〉u

should be typed with a ?A-type (since, in DCCv, x is pointed).

The typing rules of DCCv are easily justifiable by the secrecy typing in π LA via
the encoding. Here, we only show the case of [Seq]. In this rule, we wish to infer
E � seq x = N in M : U from E � N : �S�s and E, x : S � M : U . Assuming
the encoding of these terms are well typed, our purpose is to make the following
derivation secure.

(In↓A , Par, Res)

�sec 〈N 〉n � n : (S◦)↑A
s , E◦

�sec 〈M 〉u � u : U •, E◦, x : S◦

�sec (ν n)(n(x).〈M 〉u | 〈N 〉n) � u : (U •)!A , E◦
.

Secrecy-wise, the only nontrivial inference is for the affine input “n(x)”, us-
ing the secure version of (In↓A), which demands s � tamp(U •) = protect(U)
(cf. Proposition 4.19), reaching the side condition in [Seq]. Typability of other
encodings can similarly be verified, so that we obtain:

PROPOSITION 4.20 (TYPABILITY). If E � M : T in DCCv, then �sec 〈M 〉u �
〈T 〉E

u is well typed in the secrecy analysis with inflation.

As before, the noninterference in DCCv is proved via Proposition 4.20, sound-
ness and computational adequacy. The argument is identical except for the use
of observable at �N�s. We conclude:

THEOREM 4.21 (NONINTERFERENCE). Let E � M : �N�s. Then for any closing
σ1 and σ2 such that E � σ1 ∼s σ2, Mσ1 ⇓ iff Mσ2 ⇓.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:47

5. STATE IN LINEAR/AFFINE π -CALCULUS

5.1 Reference Agent

The purpose of this section is to introduce a simple extension of π LA to stateful
computation. A basic stateful process is an encoding of an imperative vari-
able, which we call reference. Using a recursive definition (which is often more
convenient for representing stateful behaviors), we can define this agent as
follows.

Ref〈xv〉 = x[(c).(Ref〈xv〉|c〈v〉)&(v′e).(Ref〈xv′〉|e)]. (13)

In Ref〈xv〉, x is its principal channel and v is (the name of) its stored value.
This process waits for invocation with two branches at x, with its left branch
for reading and its right branch for writing. The read branch receives from the
request a single name c as a continuation. This continuation is used to return
its content v. In the write branch, it receives two names, v′ and e, and uses v′

as its new value (thus changing its state) and acknowledges the receipt of the
new value via e.

Regarding this agent as a constant behavior, we introduce its reduction rules.
Below we write read and write for read and write actions (instead of writing
inl and inr), to gain the readability.

Ref〈xv〉 | x read〈c〉 −→ Ref〈xv〉 | c〈v〉
Ref〈xv〉 | x write〈v′c〉 −→ Ref〈xv′〉 | c

If we add this agent to the sequential version of π LA, we obtain a large class
of stateful higher-order sequential behaviors. In this article, we introduce ref-
erences into π LA as is, that is, without sequentiality constraint (cf. Berger et al.
[2001]). As is well-known, combination of state and concurrency leads to a loss
of Church–Rosser property via interference [Jones 1983b, 1983a; Milner 1980],
as the following simple example shows.

R def= Ref〈x1〉 | x write(2c)c.0 | x read(c)c(y). y(e)e[.u〈v〉 & .�u], (14)

where, for legibility, we write Ref〈xn〉 for (ν v)(Ref〈xv〉|[[n]]v), while x write(nc)P
stands for x write(wc)([[n]]w | P). By the racing condition at x, this agent may
or may not emit an output at u, that is, if the write action interacts with the
reference first, then R diverges, while if the read action reaches first, then it
terminates as seen in the following reductions:

R −→+ Ref〈x2〉 | x read(c)c(y). y(e)e[.uinn & .�u] −→+ Ref〈x2〉 | �u or
R −→+ Ref〈x1〉 | x write(2c)c.0 | uinn −→+ Ref〈x2〉 | uinn.

Hence, the write action at x affects termination at u.
Another significant property of a reference agent is that we can represent a

large class of stateful and nondeterministic behaviors by combining references
and replication (for a formal result in the context of sequential computation,
see Abramsky et al. [1998]). As an example, a counter agent that increments a

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:48 • K. Honda and N. Yoshida

number at each time it is invoked, can be defined from a reference and replica-
tion.

Counter〈x〉 def= (ν y)(!x(f). y read(c)c(n). y write(n+1, e)e. f 〈n〉|Ref〈 y0〉), (15)

where y write(n+1, e)P def= y write(me)([[succ〈n〉]]m|P), with [[succ〈n〉]]m being

a successor of n defined as [[succ〈n〉]]m
def= !m(c).n(e)e[&i .cini+1]. This process

first reads the value n stored in a local reference and write n + 1 to it, and
finally returns n to a channel f .

In the light of its expressiveness as well as for the sake of a clean presenta-
tion, we incorporate stateful behaviors into π LA by introducing a reference agent
as a constant. The grammar of processes now becomes:

P :: = · · · | Ref〈xy〉.
The constant Ref〈x y〉 has the same reduction rules as (14) above.

As we already observed, the incorporation of references into π LA results in
nondeterminism.

5.2 Typing Stateful Agents

5.2.1 Action Modes. In the following incorporation of stateful interaction,
our main goal is to maintain the behavioral constraint of (pure) linear/affine
interaction for processes in π LA while seamlessly integrating them with stateful
behavior. The following action modes are additionally used.

!R Reference server ?R Client requests to !R

!R and ?R are mutually dual. We add !R (respectively, ?R) to M! (respectively, M?).

5.2.2 Channel Types. The channel types are extended by the following syn-
tax.

τI ::= . . . | ref〈τ 〉 | refr〈τ 〉 | refw〈τ 〉
τO ::= . . . | rw〈τ 〉 | r〈τ 〉 | w〈τ 〉.

These added types are abbreviations for branching/selection types that repre-
sent the behaviors of references and the behaviors that interact with references.
First, ref〈τ 〉 is a type of a reference agent whose value has type τ .

ref〈τ 〉 def= [(τ)↑L&τ ()↑L]!R ,

where we demand md(τ) ∈ M! . rw〈τ 〉, with md(τ) ∈ M? , is its dual:

rw〈τ 〉 def= [(τ)↓L ⊕ τ ()↓L]?R .

The remaining types are subtypes of these types. First, refr〈τ 〉 (respectively,
refw〈τ 〉) with md(τ) ∈ M! is the types for a read-only (respectively, write-only)
reference, so that:

refr〈τ 〉 def= [(τ)↑L&]!R , refw〈τ 〉 def= [&τ ()↑L]!R .

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:49

Fig. 10. Typing rules for reference.

Finally, r〈τ 〉 (respectively, w〈τ 〉) with md(τ) ∈ M? is the dual of refr〈τ 〉 (respec-
tively, refw〈τ 〉).

r〈τ 〉 def= [(τ)↓L ⊕]?R , w〈τ 〉 def= [⊕ τ ()↓L]?R .

Observe a reference contains the linear behavior since it necessarily returns an
answer (respectively, acknowledges) whenever it is read (respectively, written).
This linear nature of reference is essential for the secrecy analysis in the next
section. The definitions of � and � follow precisely those given for general
replicated types.

5.2.3 Typing. The additional typing rules for stateful actions are given by
Figure 10 (which may be understood in the light of the reduction rules in (14)
of Section 5.1). These rules are combined with those in Figure 3, where ? A
now indicates A may include ?R-types (so that (In!A) and (Bra!A) prefix free write
actions).

We also use the subsumption, in which we conclude � P � A from � P � B
if B ≤ A, where ≤ is induced by the identity on nonreference types together
with:

τ ≤ τ ′

r〈τ 〉 ≤ r〈τ ′〉
τ ′ ≤ τ

w〈τ 〉 ≤ w〈τ ′〉
τ ≤ τ ′

r〈τ 〉 ≤ rw〈τ ′〉
τ ′ ≤ τ

w〈τ 〉 ≤ rw〈τ ′〉 rw〈τ 〉 ≤ rw〈τ 〉 .

In these rules, the value type τ appears in the covariant position in the read
type, and in the contravariant position in the write type. Hence, the ordering of
the value is covariant in the read type, while contravariant in the write type.

In the last rule, we cannot vary τ since τ in rw〈τ 〉 def= [(τ)↓L&τ ()↓L]?R occurs both
as itself (covariant position) and as its dual (contravariant position), cf. Pierce
and Sangiorgi [1996].

The subtyping based on distinction between read and write capabilities will
be used for the fine-grained secrecy analysis in Section 6, integrated with the
secrecy subtyping discussed in Section 3.4.

Remark 5.1 (Read/Write Subtyping). The subtyping based on read/write
capabilities is a special case of a more general subtyping relation generated
from [�τ1 ⊕· ·⊕�τn] ≤ [�τ ′

1 ⊕· ·⊕�τ ′
n+m] with τi j ≤ τ ′

i j (1 ≤ j ≤ n), and dually, which is
covariant in carried types (this subtyping has close connection to the subtyping
in functional calculi). The present study however only uses its restriction to
reference types.

Remark 5.2 (Linearity and Reference). By definition, “?L A, ?A B” in the
premise of (In!L) and (Bra!L) do not include read/write actions. This is for en-

suring linearity. Take P def= !u(z).x read(c)c(y). y(w)w.z. Then, P |Ref〈xu〉|u〈z〉
ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:50 • K. Honda and N. Yoshida

diverges, so we should not type u with (()↑L)!L and x with ref〈(()↑L)!L〉. However,
if we were to allow ?L A to include a read action, we could (wrongly) assign these
types to u and x of P |Ref〈xu〉.
A few examples of stateful processes follow.

Example 5.3 (Reference).

(1) (newref) In ML, ref M creates a new reference and stores M in it (after
evaluating M). To represent ref as a process, we first decompose it into
finer operations: λm.new y #→ m in y (where new y #→ V in N creates a
new reference y with value V in N). This is then encoded as

[[λm.new y #→ m in y]]u
def= !u(mz).z(y)Ref〈 ym〉,

which is well typed under u : (τ (ref〈τ 〉)↑L)!L assuming the type of m is τ .
The process, when invoked, receives a value v and a return channel z, and
finally sends, via z, a pointer to a new reference with value v.

(2) (read) In ML, !M indicates the result of evaluating M into a reference label
and reading from it. To represent this operation as a process, we again first
decompose it into λm.(let x = ! m in x), using finer operations. We can then
represent this expression as

[[λm.(let x = ! m in x)]]u
def= !u(mz).m read(c)c(x).z〈x〉.

The name u of this process has the typing u : (rw〈τ 〉(τ)↑A)!A , assuming the
type of x is τ . The process receives a value v and a continuation z upon
invocation, reads variable m, and finally sends, via z, a value stored in m.

(3) (reference as a product) It is well known that we can encode an imperative
variable as a pair of functions. For example, a variable x can be represented
as 〈λy . !x, λv.x := v〉. We can represent this behavior as the following
process:

Varrwx
def= !r(c).x read(c′)c′(v).c〈v〉 | !w(vc).x write〈vc〉

using the encoding of the λ-abstraction and a pair. We can then type this
agent as � Varrwx � r : ((τ)↑A)!A , w : (τ ()↑A)!A , x : rw〈τ 〉.

The stateful extension of π LA, denoted π LAR, satisfies the subject reduction (which
is established for its secure version in the next section) and allows faithful
embedding of languages with imperative features. Using π LAR, the next section
develops a theory of secrecy analysis for imperative, concurrent computation.

6. SECRECY WITH STATE

6.1 Secrecy Annotation on Channel Types

The presence of state changes how information flows among processes and,
therefore, how we may guarantee safety of flows. There are two main aspects
of information flow with state which are worth noting.

(1) An action of writing can transmit information. By writing to a reference,
the behavior of another agent which reads from that reference is affected,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:51

so we should take this action into account when we consider the tamper
level.

(2) An output to a replicated action can transmit information. A replicated
process can directly or indirectly write to a reference, thus transmitting
information. Note a reference written by such an indirect write action can
be hidden.

These observations suggest the following annotations for stateful types.

(1) A reference type will be annotated by a secrecy level, indicating the level
at which it receives a write action, and dually.

(2) A replicated type will be annotated by a secrecy level, indicating the level
at which it receives an invocation, and dually.

We thus arrive at the following refined grammar of channel types.

τI ::= . . . | (�τ)!L
s | [&i∈I �τi]

!L
s | (�τ)!A

s | [&i∈I �τi]
!A
s | refs〈τ 〉 | refrs〈τ 〉 | refws〈τ 〉

τO ::= . . . | (�τ)?L
s | [⊕i∈I �τi]

?L
s | (�τ)?A

s | [⊕i∈I �τi]
?A
s | rws〈τ 〉 | rs〈τ 〉 | ws〈τ 〉

We annotate read-only types with secrecy annotations, which is needed for
subtyping (to be discussed soon). The carried types obey the same conditions
as their non-secrecy counterpart (e.g., md(τ) ∈ M! for refs〈τ 〉). As before, we
may regard reference types and their duals as replicated branching types, for

example, refs〈τ 〉 def= [(τ)↑L&τ ()↑L]!R
s .

We define the subtyping relation on these channel types, which integrates
secrecy subtyping in Section 3.4 and read/write subtyping in Section 5.2. Thus,
the subtyping rules on reference types and their duals have now become:

τ ≤ τ ′ s � s′

rs〈τ 〉 ≤ rs′ 〈τ ′〉
τ ′ ≤ τ s � s′

ws〈τ 〉 ≤ ws′ 〈τ ′〉
τ ≤ τ ′ s � s′

rs〈τ 〉 ≤ rws′ 〈τ ′〉
τ ′ ≤ τ s � s′

ws〈τ 〉 ≤ rws′ 〈τ ′〉
s � s′

rws〈τ 〉 ≤ rws′ 〈τ 〉
(�τ)?A

s and [⊕i�τi]
?A
s are treated as (�τ)

↑A
s and [⊕i�τi]

↑A
s in Section 3.4 (and dually by

the duality rule). Hence, the subtyping rules in Section 3.4 are replaced by:

τi ≤ τ ′
i

(�τ)↑L ≤ (�τ ′)↑L

pO
= ↑L τi ≤ τ ′
i s � s′

(�τ)pO
s ≤ (�τ ′)pO

s′

τi j ≤ τ ′
i j s � s′

[⊕i �τi]
pO
s ≤ [⊕i �τ ′

i]
pO

s′

τ ′
I ≤ τI

τI ≤ τ ′
I

.

6.2 Tampering Level of Stateful Types

For the calculation of tampering levels, we use distinction between read ac-
tions and write actions, which is important for capturing flow of information
accurately: for example, if x is typed as rs〈Ns′ 〉 in some process, then the pro-
cess cannot affect the environment through x, simply because x can only be
used for reading. A further discussion on this point will be given later. In-
corporating the read/write distinction, the tampering level is now given as
follows.

Definition 6.1 (Tampering Levels). tamp(τ) is defined by the same clauses
as Definition 3.4, except:

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:52 • K. Honda and N. Yoshida

(1) (�τ)?L
s , [⊕i�τi]

?L
s , (�τ)?A

s , [⊕i�τi]
?A
s , rws〈τ 〉 and ws〈τ 〉 are immediately tampering;

(2) tamp(rs〈τ 〉) = tamp(τ).

tamp(A) is given as Definition 3.4.

τ with ?-mode is immediately tampering because the invoked process !x(�y).P
in the environment may, after invocation, be engaged in free write actions,
affecting the environment. However, the read-only type rs〈τ 〉 is not immediately
tampering and its level coincides with that of τ . The following property is easily
proved by the rule induction on ≤.

PROPOSITION 6.2. ≤ is a partial order and τ1 ≤ τ2 implies tamp(τ1) ≤
tamp(τ2).

Remark 6.3 (Read/Write Distinction). We illustrate the significance of
read/write distinction in secrecy analysis through examples. Consider the fol-
lowing imperative command (where x is an imperative variable of a Boolean
type; !x reads its content).

C def= if !x then C1 else C2.

The encoding of [[C]] f would be given as follows (with B◦
s = ([⊕]

↑L
s)!L):

� x read(c)c(b).b(g)g [.[[C1]] f &.[[C2]] f] � x : rs〈B◦
s〉, A (16)

where A indicates the unknown part of the action type. Note the first action of
this process reads from x, which does not change the state of x.

For example, even if s = L, if C1 and C2 tamper only at the high level, the
command C as a whole should be regarded as a high-level command. In fact,
the tampering level of x is calculated as tamp(rL〈B◦

L〉) = tamp(B◦
L) = H.

Now suppose C1 is y := 1 and C2 is y := 2. Each command writes a natural
number to a variable y , whose encoding is given by:

[[y := n]] f
def= (ν c)(y write〈c f 〉 | [[n]]c), (17)

where f is a channel for acknowledgement. The typing of the process in
(16) can now be elaborated as follows:

x : rs〈B◦
s〉, y : ws′ 〈N◦

s′ 〉, f : ()↑L . (18)

(f has a truly linear output since command “ y := n” always terminates). The
actions of this process at y changes the state of the reference y in the environ-
ment, hence the tamper level of an output at y should be recorded, unlike x.
Thus, if the level of the boolean type, s, is high, then for g [.[[C1]] f &.[[C2]] f] in
(18) to be typable, s′ should also be high (cf. (Bra↓L) in Figure 5), conforming to
the treatment of conditionals in Smith and Volpano [1998] and Volpano et al.
[1996].

6.3 Structural Security

A key element in secrecy typing for stateful behaviors is an additional well
formedness condition for reference types. It reflects a different way in which in-
formation leaks in stateful computing. A similar idea is found in SLam-Calculus

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:53

in Heintze and Riecke [1998, Appendix], and is in fact implicit in many existing
secrecy analyses for imperative languages [Volpano et al. 1996]. We first state
the condition, then illustrate the idea.

Definition 6.4 (Structural Security). τ is structurally secure if for each type
occurring in τ , say τ ′, the following two conditions hold: (1) sec(τ ′) � tamp(τ ′)
when md(τ ′) = !R, and (2) sec(τ ′) � tamp(τ ′) when md(τ ′) = ?R.

CONVENTION 6.5. Henceforth, we assume all channel types we treat are struc-
turally secure.

As a simple example, refL〈BH〉 is structurally secure while refH〈BL〉 is not. The
definition says a mutable type should have higher tampering levels in carried
types than enclosing types. This is because a reference transmits information
by:

(1) Receiving information when a datum is written; and

(2) Emitting information when a datum is read and used.

In (2), it suffices to measure the level only when the datum is used, since reading
itself is a semantically innocuous operation. With this understanding, we need
to make the level of (1) lower than, or the same as, the level of information in
(2).

We illustrate the need of structural security using a simple example (from
(14) in Section 5.1). We explicitly annotate channels and values with secrecy
levels.

R def= Ref〈x1〉 | x write(2c)c.0 | x read(c)c(y). y(e)e[.u〈v〉 & .�u].

As we already observed in Section 5.1, the write action at the channel x by
x write(2c)c.0 may affect termination at a channel u. Now assume x has ref-
erence type refH〈NL〉 violating structural security in Definition 6.4. Then e in
the above process has the low level. Suppose u in the above process has the
low level. Since e has the low level too, e[.u〈v〉 & .�u] is typable by (Bra↓A). For
clarity, we annotate the whole term explicitly by the levels.

Ref〈xH1L〉 | x write(2Lc)c.0 | x read(c)c(y). y(e)eL[.uL〈v〉 & .�L
u]

Thus, the high-level channel x affects an action at the low-level channel u. A
similar example is easily constructed for sequential processes.

Remark 6.6 (an Alternative to Structural Security). The above discussion
suggests that, if we consider the reading action as a disclosure of information
and type processes accordingly, we would be able to dispense with structural
security. However this alternative method may be too restrictive from an engi-
neering viewpoint. An example scenario is when a high-level datum is stored in
a low-level store, and a low-level principal forwards it to a high-level principal:
as far as “forwarding” does not involve getting affected by the datum, this ac-
tion does not violate secrecy (note such a datum is in general a handle to a real
datum). While the alternative method allows us to store a low-level datum in a
high-level store, this is treatable by the present method through subtyping. We

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:54 • K. Honda and N. Yoshida

Fig. 11. Secrecy typing for state.

shall illustrate these aspects using a concrete programming language in the
next section (Remark 7.6).

6.4 Secrecy Typing with State

The secrecy typing for stateful processes are given in Figure 11 (which refines
Figure 10). Other rules remain the same as before by replacing channel types by
secrecy-annotated ones. For reference, we present the summary of all secrecy
typing rules for π LAR is given in Figure 19 at the end of Appendix. (In!L) and
(Bra!L) require the secrecy level s to be lower than the tampering level of body
P , since each input directly receives information. The same holds for (In!A) and
(Bra!A).

Some examples follow. Below and henceforth we write, for example, (�τ)!L

(omitting the secrecy level) to indicate the omitted level is H.

Example 6.7 (Secrecy Typing for State).

(1) Recall a process [[y := n]] f in (17) in Section 6.2. Then, we have �sec [[y :=
n]] f � y : ws〈N◦

s′ 〉, f : ()↑L if s � s′. The tampering level of this process is s.

(2) Recall a process [[if ! x then y := 1 else y := 2]] f in (16) in
Section 6.2. Then, we have: �sec [[if ! x then y := 1 else y := 2]] f �
x : rs〈B◦

sb
〉, y : ws′ 〈N◦

sn
〉, f : ()↑L if s � sb � s′ � sn. The tampering level of this

process is s′.

(3) Let [[new y #→ x in y]]m
def= m(y)Ref〈 yx〉 (cf. Example 5.3 (1)). Then, we

have �sec [[new y #→ x in y]]m � x : τ , m : (refs〈τ 〉)↑L with s � tamp(refs〈τ 〉) =
tamp(τ) � tamp(τ). The tampering level of this process is tamp(τ) � tamp(τ).

(4) Recall the process representing [[λx.new y #→ x in y]]u from Example
5.3(1). Then, it is typable by type u : (τ (refs〈τ 〉)↑L)!L with s � tamp(τ)�tamp(τ)
(since this process does not write on any free reference), and its tampering
level is the same as above, that is, tamp(τ) � tamp(τ).

(5) Let [[let x = ! y in x]]z
def= y read(c)c(x).z〈x〉 (cf. Example 5.3(2)). Then

�sec [[let x = ! y in x]]z � z : (refs〈τ 〉)↑L , y : rs〈τ 〉 is well typed if s �
tamp(τ) � tamp(τ). The tampering level of this process is tamp(τ) � tamp(τ).

(6) Recall Counter〈x〉 in (15) in Section 5.1. Then we have: �sec Counter〈x〉 � x :
((N◦

sn
)
↑A
s)!A

s′ if s′ � s � sn. The tampering level of this process is s.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:55

6.5 Basic Properties of Secrecy Typing in π LAR

In the following, we summarize the key properties of the secure π LA. We start
from the subject reduction theorem.

PROPOSITION 6.8 (SUBJECT REDUCTION). If �sec P � A and P →→ Q then �sec

Q � A

PROOF. As in the proof of Proposition 3.7, we first prove the substitution
lemma. The remaining interesting case is references, which is similarly proved
as in [Yoshida 2002, Proposition 3]. See Appendix A for the full proof.

There are several ways for defining a secrecy-sensitive contextual congruence
for π LAR, which differ in the ways of treating branching structures of nondeter-
ministic state change. Here, we use the clause identical with the one given in
Definition 3.9, Section 3 (reproduced in the following) by which we obtain a
version of May-equivalence.

Definition 6.9 (Secrecy-Sensitive Contextual Congruence). Fix some s.
Then s-sensitive contextual congruence, denoted ∼=s, is the maximum typed con-
gruence that satisfies the following condition: whenever �sec P1

∼=s P2 � x : ()
↑A

s′

such that s′ � s, we have P1 ⇓x iff P2 ⇓x .

PROPOSITION 6.10 (NONINTERFERENCE). Let �sec Pi � A (i = 1, 2) such that
tamp(A) = s. Then s
� s′ implies �sec P1

∼=s′ P2 � A.

The statement is literally the same as the noninterference theorem for stateless
processes (Proposition 3.12). The proof of Proposition 6.10 is given in Honda and
Yoshida [2005], which uses, following the proof of noninterference of secure π LA-
processes, an inductive causality analysis of stateful processes.

Remark 6.11 (Alternative Formulations of Noninterference).

(1) In the presence of nondeterminism, it is often necessary to use equivalences
which capture branching structure due to nondeterministic state change,
such as failure/testing equivalences and bisimulations. In the present set-
ting, one may use the equality based on reduction-closure [Honda and
Yoshida 1995], for which we simply add the following clause to Defini-
tion 6.9: whenever P ∼=s Q and P −→ P ′, we have Q →→ Q ′ such that
P ′ ∼=s Q ′ for some Q ′. We conjecture that the non-interference property as
stated in Proposition 6.10 also holds for this refined equality (which implies
Proposition 6.10 since the reduction-closed congruence is strictly smaller
than ∼=s as we are presently using): the proof may use the bisimulation-
based method in Yoshida et al. [2002].

(2) Another possible extension is the incorporation of inflation. We believe some
form of the inflation following the basic framework of Section 3.5 can be
incorporated into the present system, even though a precise understanding
and sound incorporation of the notion of inflation in the concurrent, stateful
setting is left as an open issue.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:56 • K. Honda and N. Yoshida

7. CONCURRENCY, REFERENCE AND PROCEDURE

In this section, we use the secrecy analysis in π LAR for the development of a
secrecy typing for concurrent programs with general references and procedures.
The language is based on Smith–Volpano’s secure multi-threaded imperative
calculus, extended with higher-order procedures and general references. The
typing rules are directly suggested from the secrecy typing in π LAR. We discuss
the significance of fine-grained secrecy typing on imperative features coming
from π LAR, and establish the noninterference properties of the language through
its embedding in π LAR.

7.1 A Volpano-Smith Language

We first review the syntax and operational semantics of an imperative language
we consider. Below x, y , . . . range over a countable set of names, used both for
(function) variables and labels for reference.

(expression) e ::= 1, 2, . . . | x | succ(e) | pred(e) | λx.e | (e1)e2

| c return e | let x = ! y in e | seq x = e in e′

(value) v ::= 1, 2, . . . | x | λx.e
(command) c ::= skip | x := v | c1; c2 | if v then c1 else c2

| while e do c | let x = e in c | seq x = e in c
| let x = ! y in c | new x #→ v in c

(threads) o ::= ∏
i ci

The syntax of commands is from Smith and Volpano [1998], extended with gen-
eral references, local variables and higher-order procedures. We use let and seq
for clearer presentation of typing rules. Similarly, we use explicit dereference
following ML [Milner et al. 1990] (i.e., “!x” means the content of x while “x”
denotes x as a reference name). These constructs can be regarded as the result
of preprocessing. In examples, we shall use a short hand such as “x := ! y”,
which stands for “let z = ! y in x := z”, for legibility.

Expressions are from DCCv, incorporating dereference and commands (the
restricted position of “return” in the latter does not lose generality: the lack of
new in expressions does not lose generality either).

The reduction rules are given in Figure 12. We use the following reduction
context:

E ::= [] | succ(E) | pred(E) | Ee | vE | E return e
| E; c2 | while E do c | let x = E in c | seq x = E in c

The reduction takes the form (ν �x)(p, σ) −→ (ν �x ′)(p′, σ ′) where p and p′ are
either expressions, commands or threads. (ν �x)(p, σ) is called a configuration.
In a configuration (ν �x)(p, σ), the component σ denotes a store, which is a finite
map from reference names to values, and we demand xi ∈ dom(σ). Each xi in
(ν �x)(p, σ) indicates a local (hidden) reference. We regard (ν �x) as a set and xi is
bound in (ν �x)(p, σ), for which we assume the standard α-equality.

The reduction on expressions is the standard single-step call-by-value reduc-
tion, using a store as necessary. Other rules come from DCCv, cf. Section 4.5,
with appropriate state change. A dereference is treated just as in Figure 12.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:57

Fig. 12. Reduction of extended VS-calculus.

Among the reduction rules for commands given in Figure 12, observe how
the “new” command adds a binding to the hidden names.

Finally, the reduction rule for threads is given in Figure 12. In the rule, $
denotes a disjoint union. The rule allows component commands to run in an
interleaved fashion, sharing a same store. We set:

(ν �x)(p, σ) ⇓ ⇔ ∃�y , σ ′.((ν �x)(p, σ) →→ (ν �y)(skip, σ ′))

where →→=−→∗.

Remark 7.1 (Choice of Syntax). The presented syntax is based on distinc-
tion between commands and expressions, which would make clearer the com-
parison with, and heritage from, languages by Smith and Volpano. Another
possible choice of syntax is to consider commands as part of expressions (as in
ML), which is discussed in Section 8.

7.2 Secrecy with Reference and Procedure

We illustrate the subtlety in secrecy with local references and procedure by
examples. In Section 7.7, we shall see how the secrecy properties of each of
the following expressions are exactly analyzed through its encoding into the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:58 • K. Honda and N. Yoshida

π -calculus. For brevity, we assume u, v, w are low-level imperative variables,
x, y , z high-level ones, and a, ai, a′ those which can be either.

7.2.1 Local References. Local references give abstraction, while aliasing
may break this abstraction. As an example, let u be a low-level reference to a
natural number and consider the following command.

c1
def= new u #→ 0 in (u := !v; x := !u)

Here the locality raises abstraction, hiding the low-level writing at u: only the
writing at x is visible. Thus, in effect, c1 only writes at the high-level. Now
consider:

c2
def= new w #→ v in (w := u; let w′ = !w in w′ := 3)

The command writes at w and w′, which are both local; however, in fact, it
writes at u, which is free. Thus, c2 tampers at the low-level.

7.2.2 Imperative Procedures. DCC and DCCv capture nontrivial features
of secrecy in pure higher-order functions. With imperative features, higher-
order procedures add different kinds of subtlety.

—(Divergence) Let e1
def= λy .(!x) y and e2

def= λy . y . Consider:

c3
def= u :=1; (if z then x :=e1 else x :=e2); z ′ := (!x)0; u :=0.

Then c3 reveals z at u by diverging when z = true.

—(Side effects) Take e3
def= λx. u := x return 0. Then

c4
def= if z then let y = (e3)0 in skip.

leaks information at u, though e3 is secure as a function. If we use e4
def=

λx. skip return !u instead of e3, then c4 becomes secure, since it only reads a
natural number from u.

—(Aliasing) Given e5
def= λu. !u := 1 return 0. Then

c5
def= if z then new v #→ w in let x = (e5)v in skip

is not secure since w can be aliased. However, if we further hide w, the
command becomes secure.

7.2.3 Hidden Shared State. A leakage can take place through a hidden

store. Let e6
def= λyH.x := yH and e7

def= λw.if x then uL := 0 else uL := 1 (where
we omit return when we do not care the returned value) and consider:

c6
def= new x #→ 0 in ((e6)1 ; (e7)2).

Here, e6 writes a high-level datum to a hidden x, while e7 uses the value of x
to write to a low variable. Note the danger of this leakage cannot be observed
just by looking at the visible interface: only by measuring the level of x, we can
detect such unsafe flow.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:59

As another example of shared local state, define three expressions,

e8
def= λyH.w := 0; return y , e9

def= λyH.w := 1; return y and e10
def= λz.return !w

and consider the following expression:

c7
def= new wL #→ 0 in (a1 :=e8 ; a2 :=e9 ; a3 :=e10)

c8
def= if xH then a′ := !a1 else a′ := !a2

c9
def= vL := (!a3)0.

Now we consider whether the command “c7; c8; c9” is secure or not. If it is, then
e8 and e9 should be high-level data, so that a′ and a1 and a2 are high-level. We
observe three points.

—The functional behaviors of e8 and e9 (abstracted as NH ⇒ NH) are at the
high-level.

—The side effects of these procedures are at a hidden low-level variable w.

—The content of w, a low-level datum, can get revealed by c9.

Thus, c7; c8 is not safe because of unsafe implicit flow in the conditional in
c8: depending on the value of a high-level variable x, a′ stores either e8 or e9, so
that the effect of invoking !a′ has different effects on a local variable, which is
revealed as different low-level data when !a3 is invoked. However, if we should
use NH ⇒ NH as the types of e8 and e9 (which may be a natural idea given w is
hidden), we can never compositionally judge that c8 can induce a dangerous flow.

The aim of the proposed typing system is to detect any possible danger involv-
ing aliasing and side-effects, while type-checking pure functions generously.

7.3 Types

The syntax of types for commands and expressions follows. The latter extends
DCCv (Section 4.5), adding reference types and mutable arrow types. A base
is a finite function from variables to total value types. Following the syntax of
types of DCCv, we use S for total types and U for partial types.

(value) T ::= S | U
S ::= Ns | refs(S) | refrs(S) | refws(S) | S s⇒ T
U ::= �S�s

(base) E ::= ∅ | E · x : S
(command) ρ ::= cmd τs (τ ∈ {⇓, ⇑})

refs(S) is a reference type of value typed by S with side effect at level s.
refrs(S) (respectively, refws(S)) is a read (respectively, write) reference type

with side effect at the level s. S s⇒ T is a function space from a total type, with

side effect at the level s. We write S ⇒T (a pure function space) for S H⇒ T . The
restriction of argument types to total types is as in DCCv (cf. Section 4.5), and
does not lead to a loss of expressiveness. In cmd τs, τ = ⇓ (respectively, τ = ⇑)
indicates convergence (respectively, potential divergence), while s is a lower

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:60 • K. Honda and N. Yoshida

Fig. 13. Subtyping of the extended VS-calculus.

bound at which the termination may be observed (or, as Smith Smith [2001]
puts it, at which level of variables a termination depends upon). We denote
cod(E) for a codomain of E.

The following notion will be used for preserving totality in total function
types in the presence of general state (cf. Remark 5.2).

Definition 7.2. The set of nonreference types are those types that are of the

forms Ns, S s⇒ T and �S�s.

Another crucial elements in the present type discipline is the subtyping on
value types and command types, generated from the rules in Figure 13. The
subtyping is based on the secrecy subtyping for π LAR studied in Section 6, inher-
iting, at the same time, from the preceding work on imperative secrecy [Smith
and Volpano 1998; Honda et al. 2000; Smith 2001]. In Figure 13, S in refrs(S)
is covariant, while S in refws(S) is contravariant. Hence, in refs(S), S is in-
variant [Pierce 2002]. The subtyping on reference types, refs(S), refrs(S) and
refs(S), is dual to the subtyping on rw〈τ 〉, r〈τ 〉 and w〈τ 〉 in π LAR as given in Sec-
tion 6.1. The subtyping of the environment is defined pointwise. In converging
command types, secrecy levels are irrelevant, while nonconverging ones, they
are covariant. For this reason, we sometimes omit s from ⇓s without loss of
precision.

We can easily observe that ≤ is a partial order. The subtyping on expression
types, environments and command types will be later illustrated regarding
its interplay with structural security at the end of the next section and in its
connection to π LAR in Proposition 7.13.

7.4 Tampering Level and Structural Security

As in DCC and DCCv, we define the protection level of each value type T ,
denoted by protect(T), which indicates the level of information T embodies. One
difference from DCC and DCCv is that protection levels should be assigned not

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:61

only to value types but also to their duals. To motivate their introduction, we
start from stateless interactions in a DCCv-term E � M : T . In its π -calculus
translation, this becomes �sec 〈M 〉u � u : T •, E◦. The tampering level of this
behavior is calculated from the action type u : T •, E◦. Since all channel type in
E◦ has mode ?L or ?A, we can completely neglect E◦ from the calculation, and
consider only T •.

The situation is quite different in the present imperative setting. In both
E � c : ρ and E � e : T , the command and expression viewed as a process
interacts at E at mutable channels so that the levels of these actions should
also be taken into account. The tampering level at the environment is essential
when formalizing structural security in the present context.

(1) � protect(Ns) = protect(�S�s) = s
� protect(S s⇒ T) = protectE(S) � protect(T)
� protect(refs(S)) = protectE(S) � protect(S), protect(refrs(S)) = protect(S)

and protect(refws(S)) = protectE(S)

(2) � protectE(Ns) = protectE(S ⇒T) = H
� protectE(S s⇒ T) = protectE(refws(S)) = s
� protectE(refrs(S)) = protectE(S)

The tampering level of E, denoted by tamp(E) (cf. Definition 3.4), is defined as:

tamp(E)
def= �{protectE(S) | x : S ∈ E}.

The illustration of the above clauses is best given after we present the embed-
ding of these types into process types, where we show that the above definition
precisely corresponds to those of the tamper level in π LAR. The following result
confirms that the subtyping relation and the protection levels interact coher-
ently.

PROPOSITION 7.3.

(1) T ≤ T ′ implies protect(T) ≤ protect(T ′) and protectE(T ′) ≤ protectE(T); and
(2) E ≤ E ′ implies tamp(E ′) ≤ tamp(E).

PROOF.

(1) By induction of the size of T . We only prove the case T = refrs(S) and
T ′ = refrs′ (S′) for protectE(T ′) ≤ protectE(T). Assume refrs(S) ≤ refrs′ (S′)
with s′ � s and S ≤ S′. Then, by the induction, protectE(S′) ≤ protectE(S).
Since protectE(S) = refrs(S) for any s, we have protectE(refrs′ (S′)) ≤
protectE(refrs(S)), as required.

(2) By induction of the size of E. Without loss of generality we can set: E1 =
{x : T1} and E2 = {x : T2, y : T } and assume E1 ≤ E2 with T1 ≤ T2. Then,
by (1), we know protectE(T2) ≤ protectE(T1). Then, tamp(E2) = protectE(T2)�
protectE(T) � protectE(T1) = tamp(E1), as desired.

Remark 7.4. We can also prove the above result via the translation into
the π LAR. See Propositions 6.2 and 7.13.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:62 • K. Honda and N. Yoshida

Using protection levels, we introduce a basic condition on value types, which
plays a key rôle for harnessing aliases.

Definition 7.5 (Structural Security). The set of structurally secure types
are generated by:

—Ns is structurally secure for any s.

—If S and T are structurally secure, then S s⇒ T is structurally secure.

—If S is structurally secure and s � protect(refs(S)), then refs(S) is struc-
turally secure. Similarly for refrs(S) and refws(S).

—If S is structurally secure, then �S�s is structurally secure for any s.

The condition is directly suggested by structural security of the π LAR-calculus,
see Proposition 7.14 later. When combined with the subtyping relation dis-
cussed in the previous subsection, this condition can ensure secure flow with
flexibility and generality (we suggested this point already in Remark 6.6). The
following remark illustrates this point in some detail.

Remark 7.6 (Structural Security, Subtyping and Imperative Secrecy).
The structural security for imperative secrecy is based on the following two
principles.

P1. The measurement of the level of a received datum is done not when that
datum is read from a reference, but when that datum is actually used.

P2. If the above principle is to be maintained without violating safe information
flow, then a stored datum in a reference should always have a tampering
level higher than the annotating secrecy level of that reference.

In the following, we illustrate how these two principles lead to general secrecy
typing for imperative computation, using two examples.

P1: Under the typing x : refH〈NH〉 and u : refL〈NH〉, consider the following
assignment.

u := !x. (19)

This command reads from a high-level datum from a high-level variable x, and
writes the datum to a low-level variable. Is (19) safe? From P1, we do not regard
!x (reading of x) as reception of information: in fact, since if another principal
wishes to use this datum by reading u, that principal should act at a high-
level, since the datum is typed as NH. Further such lowering is useful when, for

example, it is combined with the following command, with S def= refL〈NH〉. The
typing follows secrecy typing rules presented later.

swap
def= λvS

1 . λvS
2 . new wS #→ !v1 in (v1 := !v2 ; v2 := !w; return 1) (20)

This procedure swaps the content of two low-level references without touching
the high-level data (except generically swapping them), so can act entirely at a
low-level (or as a low-level principal). Note (19) followed by (20) does not incur
any insecure flow, because difference in the high-level value never influences a
low-level behavior.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:63

P2: We now show the principle P2 is not as restrictive as it may first look. If
we are without the structural security, the only way to maintain secrecy may
be, in contrast to P1, to regard the dereference of an imperative variable at
level s is the reception of information. As long as we stick to this discipline, we
can have a type refL〈refH〈NL〉〉 that stores a low-level reference in a high-level
reference. Such a reference can be meaningful since, for example, a high-level
principal can look at the value stored in a shared low-level reference updated
by a low-level principal. For example, assuming x is of this type and u is of type
refL〈NL〉, we may consider a high-level command such as:

x := u ; if !!x then yH := 1 else yH := 0 (21)

which is surely safe. This and other similar examples, however, are always well
typed in the present type discipline, because of the use of subtyping. Observe, in
the alternative method, the principal can only read from a low-level reference,
since it has to clear a high-level reading beforehand. So let us first assign the
following type to x:

refH〈refrH〈NH〉〉 (22)

But noting refrL〈NL〉 ≤ refrH〈NH〉 (by the second rule in the second line of Figure
13) and using the subtyping between a read/write reference type and a write
reference type (the second rule in the third line of Figure 13), we obtain:

refH〈refrH〈NH〉〉 ≤ refwH〈refrL〈NL〉〉 (23)

so that x := u does make sense (and is well typed in the type discipline later).
Whenever a low-level reference is stored in a high-level reference, the latter
should be read-only, so the same argument applies. This observation suggests
that the approach based on structural security is strictly more general than the
alternative approach. The latter would however be more amenable to run-time
monitoring using (possibly dynamically changing) security policy.

7.5 Secrecy Typing

We use the following three kinds of typing judgments, each derived from the
associated typing rules.

(expression) E � e :T (the rules are given in Figure 14)
(command) E � c : cmd τs (the rules are given in Figure 15)
(thread) E � o : cmd τs (the rule is given in Figure 15)

Further, Figure 15 gives weakening and subsumption rules common to expres-
sions and commands (letting p range over their union, and α over the union of
value and command types).

As we shall show later, the system is a conservative extension of the possi-
bilistic part of the system in Smith [2001]. Below we illustrate the typing rules,
concentrating on those points which are new in the present system. One of the
key aspects is the use of read and write reference types for capturing the level
of writing, which is crucial for controlling aliasing effects. In the following, we
illustrate typing rules one by one.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:64 • K. Honda and N. Yoshida

(Expressions)

—Var, Num, Succ. Standard. Constants such as succ and pred are typed just
as in DCCv.

—Lam. The first condition in (†) guarantees that invoking the closure does
not lead to the effects from its body that are lower than the receiving level.
The second condition demands that, when the target type is total, the body
never has free references. This is necessary for ensuring totality, correspond-
ing to a constraint in (In!L) (a basic example that violates this condition is
(x := λyN.(!x) y) ; (!x)3, which diverges). As discussed in Remark 5.2, a re-
fined treatment of totality is possible using a version of the effect typing
[Amtoft et al. 1999].

—App. [App] does not mention secrecy levels since we assume the arguments
are applied after they are evaluated (the case when they do not is taken care
of by [Seq]). As in DCCv, we can derive the following partial version of [App]
from the rules in Figure 14.

[AppP]
E � e : U1⇀

s
⇀U2 E � e′ : U1

E � ee′ : U2

s ! protect(U1) � tamp(E) � protect(U2)

[AppP] is easily justifiable by regarding ee′ as seq x = e′ in ex and using
[Seq], noting U1 can always be written as �S�s for some S and s.

—Lift, Seq. These rules are as in DCCv except [Seq] now respects the level of
writing at the environment, which should be the same as, or higher than, the
level of termination of N , which affects the actions at the environment (note
that having distinct environments allows us to type more terms since Ei ’s
tamper level is higher than E by Proposition 7.3).

—Ret, RetP. The total higher-order procedure [Ret] does not need to consider
secrecy levels. On the other hand, if the command c is partial, then its ter-
mination at level s is transmitted to e, so that information which e emits–its
write effects and its termination–can only be higher than, or the same as, s
of e; hence we need the side condition on secrecy.

(Command and Thread)

—Skip. skip terminates immediately, so it has the ⇓-type.

—Assignment. The rule crucially relies on the structural security (Definition
7.5). For example, x := !u with x and u typed as refL(NL) and (structurally
insecure) refrH(NL), respectively, becomes typable without the structurally
secure condition, which is clearly insecure. The rule records a write effect of
“x” in E.

—Com and If. [Com]’s side condition is equivalent to Smith [2001], which en-
hances Honda et al. [2000] and Smith and Volpano [1998]. If the preceding
command may not terminate, the information of termination (at s1) should
not flow down to c2’s termination (s2) and tampering (tamp(E2)). Note allow-
ing distinct environments in these two commands adds typability since, if
we apply subsumption to Ei so that they coincide with E, the resulting tam-
pering level is in general lower than each tamp(Ei). The condition does not

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:65

Fig. 14. Secrecy typing rules for the extended VS-calculus: Expressions.

Fig. 15. Secrecy typing rules for the extended VS-calculus: Command and thread.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:66 • K. Honda and N. Yoshida

specify the case when the preceding command does terminate, since, if so, no
information would flow down to the subsequent command. [If] is standard,
requiring that the condition cannot influence later behavior at lower levels.

—While. The side condition is due to Smith [2001] who enlarges the typability
of the while command on the basis of Smith and Volpano [1998] and Honda
et al. [2000] (the condition is somewhat simplified, but is equivalent to the
one given in Smith [2001], see Proposition 7.10(2) later). We offer intuitive
illustration following Smith [2001]. The information at s influences whether
this command terminates at s0, hence s � s0. The condition s0 � tamp(E) is
more subtle. Assume e is initially evaluated to be true. Then, we unfold the
while loop into c; while e do c, which shows the termination of c influences
later actions of c at E, leading to the side condition. Later, we shall see these
conditions are precisely what are derivable from the embedding into π LAR.

—Let, Seq In [Let], e is total, so both tampering and secrecy levels are ignored.
[Seq] in commands precisely corresponds to [Seq] in expressions, considering
the tampering of write actions of c in addition.

—Deref. Note that the effect of S in z ’s type refrs(S) is recorded if S is mu-
table (by definition of protectE(refrs(S))), even though z is only read in this
command. To see its necessity, we consider:

let x = !z in x := 3. (24)

Here x looks local, but may be aliased to a free name referred by z. By calcu-
lating the level of z by protectE(refrs(S)) = protectE(S) in the environment,
we can safely capture the level of x.

—New. Similar to [Deref], if v has a mutable type, then it is recorded in E. To
understand its necessity, consider:

new z #→ y in let x = !z in x := 3. (25)

Note y should have a reference type. Hence, when z #→ y is inferred, y has a
write reference type in E, which subsumes the writing at x since x is higher
than y by structural security.

—Par. The collection of threads is typable when each thread is typable. It is
possible and meaningful to have different secrecy levels for different threads,
though we do not explore the possibility in the present study.

—Sub. Standard. This rule correspond to (Sub) and (Weak) in π LAR.

Remark 7.7 (Refinement on Write Effects). The secrecy typing as given
above can be refined if we associate writing effects with each expression and
command (indicating references and closures which are written), so that the
level of the environment needs only be considered for those names (these names
are cleared when we abstract an expression, just as the standard effect disci-
pline [Amtoft et al. 1999]). The refinement should especially be useful when we
have commands that contain abstractions.

We list a few typing examples, using the expressions and commands dis-
cussed in Section 7.2. Below we freely use the partial versions of abstraction
and application rules.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:67

Example 7.8 (Typing Examples in the Extended Smith-Volpano Calculus).
Commands and expressions are from Section 7.2 (some at the end are from
Remark 7.6). We assume x, y , z are high while u, v, w are low unless otherwise
stated.

(1) Let E = u : refL(NH), x : refH(NH), y : refrL(NH). By [Ass] and [Deref]:

E � x := !u : cmd ⇓s and E � u := ! y : cmd ⇓s

(note x := !u in fact stands for let x ′ = !u in x := x ′). By [Seq], we have:

E � u := ! y ; x := !u : cmd ⇓s

We also have E � 0 : NH. Finally by [New],

E/u � new u #→ 0 in (u := ! y ; x := !u) : cmd ⇓s

for arbitrary s (we omit such s from now on). The tampering level of this
command is tamp(E/u) = H.

(2) Let E = w : refrL(refL(NH)). Then we have

E, w0 : refL(NH) � w0 := 3 : cmd ⇓
By [Deref], we obtain:

E � let w0 = !w in w0 := 3 : cmd ⇓ (26)

Note the tampering level of the above command is L since
protectE(refrL(refL(NH))) = protectE(refL(NH)) = L.

(3) Let E ′ = w : refL(refL(NH)), u : refL(NH), v : refL(NH). First we have E ′ �
w : refwL(NH) by [Var] and [Sub]. Then, by [Ass], we obtain:

E ′ � w := u : cmd ⇓ (27)

We now apply [Sub] and [Com] to (26) and (27). Also, by [Var], we have
E ′ � v : refL(NH). Finally we obtain, by applying [New]:

E ′ \ w � new w #→ v in (w := u; let w0 = !w in w0 := 3) : cmd ⇓
The tampering level is protectE(E(u)) ! protectE(E(v)) = L.

(4) Recall c3
def= u :=1; (if z then x :=e1 else x :=e2); z ′ := (!x)0; u :=0, with

e1
def= λy .(!x) y (

def= let w = !x in let k = w0 in z ′ := k)

and e2
def= λy . y . To analyze this command, we note that e1 contains a

mutable variable x, so the use of [Lam] demands the target is partial.
Second, to type if-command, since z is a high variable, x should have
type refH(T). By the structural security, this means T has type T = �S�H.
Hence, by the side condition of [Seq], seq k = w0 in z ′ := k has type
cmd ⇑H, so that if-command and z ′ := (!x)0 should have type cmd ⇑H by
the side condition of [Seq]. To compose z ′ := (!x)0 and u := 0, we need
to satisfy the side condition of [Seq] again, which means u := 0 has type
cmd ⇑H, too. However, it is impossible because by [Ass], we should have
E2 � u : refwL(Ns) for some E2 that implies protectE(E2(u)) = L, violating
the side condition [Seq] such that H � tamp(E2).

(5) Let e3
def= λx. u := x return 0 and E = z : NH, u : refL(NH). We can check

e3 is typable as E � e3 : �NL
H⇒ NH�H. We now analyze the command c4

def=
ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:68 • K. Honda and N. Yoshida

if z then let y = (e3)0 in skip. We observe that the tampering level of the
internal let-command is tamp(E) = L. Thus, the side condition for the if-
command, H � tamp(E), is not satisfied, so c4 as a whole is untypable. Next,

let c′
4

def= if z then let y = (e4)0 in skip, with e4
def= λx. skip return !u,

and E ′ = z : NH, u : refrL(NH). Then, we have:

E ′ � let y = (e4)0 in skip : cmd ⇓
(note that u’s tampering level is H in E ′ since NH immutable). Hence, c′

4 is
typable because H � tamp(E ′) = H.

(6) Similarly we can check c5
def= if z then new v #→ w in let x = (e5)v in skip

with e5
def= λu. !u := 1 return 0 in Section 7.2 is untypable. This is because

the write mode of w is recorded by [New] and its tampering level is L, which
violates the condition for if-command. However, if we change c5 into:

if z then neww #→ 1 in new v #→ w in let x = (e5)v in skip,

then the command is typable since the body of the if-command is a high
level (by the lack of free variables in the if-branch).

(7) Given e6
def= λyH. x := y and e7

def= λwL.if x thenu := 0 elseu := 0, the

command c6
def= new x #→ 0 in ((e6)1 ; (e7)2) is untypable because, when we

type e6, x should be high, while when we type e7, it should be low.

(8) Recall e8
def= λyH.w := 0; return y , e9

def= λyH.w := 1; return y and e10
def=

λz.return !w, as well as c7
def= new w #→ 0 in (a1 :=e8 ; a2 :=e9 ; a3 :=e10) and

c8
def= if xH thena′ := !a1 elsea′ := !a2, c9

def= vL := (!a3)0, the composition

c7; c8; c9 is untypable because the type of e8 is NH
L⇒ NH whose tamper level

is low.

(9) Let E def= x : refH〈NH〉, u : refL〈NH〉, Then, the following assignment (cf. Re-
mark 7.6(1)) is secure.

E �sec u := !x � cmd ⇓L

Note !x is not regarded as disclosure of a high-level datum, even if x is
high.

(10) Let E def= x : refH〈refrH〈NH〉〉, u : refL〈NL〉. Then, the following command is
securely typable (cf. Remark 7.6(2)).

x := u ; if !!x then yH := 1 else yH := 0

The conditional is safe; x := u is typable since, as we illustrated in
Remark 7.6(2), we have refH〈refrH〈NH〉〉 � refH〈refrL〈NL〉〉, so that E � x :
refH〈refrL〈NL〉〉.

Basic syntactic properties of the secrecy typing follow, after a definition.

Definition 7.9. Let E � c : ρ. Then we say c is first-order under E iff:
(1) each type in cod(E) has shape either refs〈Ns〉 or Ns; and (2) c is typed under
E using none of (i) [New] in Figure 15 and (ii) the rules in Figure 14 except for
[Var], [Num] and [Succ].

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:69

We also write E � σ when σ is well typed with respect to E in the obvious
sense. In (2) below, the possibilistic Smith-calculus is the calculus by Smith
[2001] which neglects (Protect) and the conditions on execution steps (since we
also use multi-level secrecy levels, in say (IF) rule in Smith [2001], we first
neglect the steps then replace “high”, the only nontrivial secrecy level in Smith
[2001], with general s).

PROPOSITION 7.10

(1) (SUBJECT REDUCTION). Let E � c : ρ and E � σ . Then, (ν �x)(c, σ) −→
(ν �x ′)(c′, σ ′) implies: (i) if dom(σ ′) = dom(σ) then E � c′ : ρ and E � σ ′ ;
and (ii) if dom(σ ′) = dom(σ) $ {x ′} then E · x ′ : T ′ � c : ρ and E · x ′ : T ′ � σ ′

for some T ′.

(2) (CONSERVATIVITY). Assume L
def= {L, H} and c is first-order under E. Then (i)

if E � c : cmd ⇑s′ in the present calculus, then E � c : s cmd ⇑s′ with
s = tamp(E) in the possibilistic Smith calculus; and (ii) if E � c : s cmd ⇑s′

in the possibilistic Smith calculus then E ′ � c : cmd ⇑s in the present calculus
such that E ′ ≤ E and s � tamp(E ′).

PROOF. For (1) we use the both-way correspondence in typability between
the explicit versions of secure π LAR and the extended Smith–Volpano, as well as
with their implicit versions. For (2), we interpret the sequent E � c : s cmd s′

in Smith [2001] as E ′ � c : cmd ⇑s′ , with E ′ has read-write subtyping version
of E so that tamp(E ′) essentially has the level s or higher, and E � c : s cmdm
(with m a natural number) as E ′ � c : cmd ⇓. The only nontrivial points are the
correspondence between the tampering level in Smith [2001] and tamp(E), as
well as the side conditions in while-rules. See Appendix C.

7.6 Embedding

We first show the embedding of types. Except for the mutable types, the em-
bedding of value types is the same as DCCv.

(value) S• def= (S◦)↑L U • def= (U ◦)↑A
s (protect(U) = s)

N◦
s = ([⊕i∈N]

↑L
s)!L (S s⇒ U)◦ def= (S◦U •)!A

s

�S�◦
s

def= S◦ refs(S)◦ def= refs〈S◦〉
refrs(S)◦ def= rs〈S◦〉 refws(S)◦ def= ws〈S◦〉

(base) (∅)◦ = ∅ (E, x : S)◦ = E◦, x : S◦

(action) ⇓•
s

def= ()↑L ⇑•
s

def= ()
↑A
s

Remark 7.11 (Subtyping in the VS-Calculus Through Process Encoding).
By examining the embedding, the subtyping in command types for converging
commands, cf. Section 7.3, is now given a clear account: the termination chan-
nel has a unary ↑L-type, so its level is insignificant. Similarly, the subtyping
of reference types is elucidated by observing the content type now occurs

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:70 • K. Honda and N. Yoshida

covariantly in the read and contravariantly in the write, hence invariantly in
the reference [Abramsky et al. 1998]. In fact, the subtyping on value types in
Section 7.3 precisely corresponds to the secrecy subtyping in the π LAR-types.

PROPOSITION 7.12 (SUBTYPING). T1 ≤ T2 iff T ◦
1 ≤ T ◦

2 iff T •
1 ≤ T •

2 .

PROOF. See D.1 in Appendix D.

The protection levels in the VS-calculus and the tampering levels in the
π LAR-calculus coincide via encoding. For the proof, see D.2 of Appendix D.

PROPOSITION 7.13 (PROTECTION LEVELS AND TAMPERING LEVELS).

(1) tamp(S•) = tamp(S◦) = tamp(�S�◦
s).

(2) protect(T) = tamp(T •) and protectE(S) = tamp(S◦)
(3) tamp(E) = tamp(E◦)

Using (1) above, we can prove the coincidence with the structural security
on mutable types of the translation.

PROPOSITION 7.14 (STRUCTURAL SECURITY). T is structurally secure iff T ◦ is
structurally secure iff T • is structurally secure.

PROOF. We only prove if T is structurally secure then T ◦ is structurally se-
cure. We prove by the size of T . The only interesting case is either T = refs(S),
refrs(S) or refws(S). Suppose refs(S) is structurally secure. Then, by defini-
tion and Proposition 7.13(1), we have sec(refs(S)◦) = s � protect(refs(S)) =
protect(S) � protectE(S) = tamp(S◦) � tamp(S◦) = tamp(refs(S)◦), as required.
The other cases are just similar.

The encoding of commands and expressions is given in Figure 16. Expres-
sions use call-by-value encoding [Milner 1992a; Honda and Yoshida 1999].
while is translated using tail recursion. We shall later establish the encoding
of each typable expression/command/thread is indeed securely typable under
the encoding of the corresponding type.

7.7 Analysis of Imperative Secrecy via Embedding

The embedding of commands and expressions offers an in-depth analysis of im-
perative secrecy via the fine-grained representation in name passing processes,
both in types and operations. In the following, we present such an analysis us-
ing concrete examples from Section 7.2 and Section 7.5. We also present an
analysis and a derivation of the secrecy conditions for while loop due to Smith
[2001].

(1) (if) if v then c1 else c2 is encoded as, assuming v is a Boolean for simplicity:

(ν x)(〈v〉x | x(c).c(z)z[.[[c1]]e& .[[c2]]e]).

Hence, the secrecy level of z (i.e., s of Ns) should be lower than the tampering
level of [[c1]]e and [[c2]]e by the side condition of (Bra↓L). This corresponds to
the side condition of [If] of the VS-calculus given in Figure 15.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:71

Fig. 16. Encoding of the extended VS-calculus.

(2) (deref) First, we show the encoding of command let w0 = !w in w0 := 3
from (26) in Example 7.8, Section 7.5 (cf. Example 6.7(1)).

�sec w read(e)e(w0).w0 write〈3 f 〉 � w : rL〈rwL〈NH〉〉, f : ()↑L .

Since f (the linear unary output) has no tampering level, the tamper-
ing level of the above command is that of w, that is, tamp(rL〈rwL〈NH〉〉) =
tamp(rwL〈NH〉) = L.

(3) (new) A process representation of new w #→ v in let w0 = !w in w0 := 3
appeared in (25) in Section 7.5, is typed as follows.

�sec (ν w)(Ref〈wv〉 | [[let w0 = !w in w0 :=3]] f) � f : ()↑L , v : rwL〈NH〉.
In the above encoding, we observe that w0 is assigned v; hence, the tam-
pering level of the above command is that of v, that is, L. Note also if we
set the type of v to be rwH〈NL〉, then this command is untypable (and in fact
unsafe), due to a violation of structural security. Similarly, we can analyze
the correspondence between tampering level of c1 and c2 in Section 7.2 and
that of their encodings.

(4) (let and the sequential composition). We analyze the untypability of c3 in

Section 7.2 by its encoding. The middle command z ′ := (!x)0 (
def= let w =

!x in let k = w0 in z ′ :=k) is encoded as follows.

(ν cc′)(x read(e)e(w).w〈0c〉 | c(k).z write〈kc′〉 | c′. f).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:72 • K. Honda and N. Yoshida

First, because of if-statement, x should have the high reference type.
Hence, w and k should have H by structural security. Also the reply at c
may not terminate, hence, for c(k).z write〈kc′〉 | c′. f to be typable, by (In↓A),
z should be H and f has a type ()

↑A

H . Now, the sequential composition is given
as:

(ν f)([[z := (!x)0]] f | f .[[u :=0]] f ′).

To type f .[[u := 0]] f ′ , by (In↓A), it is necessary for H to be lower than the
tampering level of [[u :=0]] f ′ , but we have tamp(u : rwL〈Ns〉) = L, hence, the
command is untypable. Similarly, we can observe the untypability of c4 and
the typability of c′

4 via the tampering level of their encodings.

(5) (while) The side condition for the typability of while commands is due to
Smith [2001]. We show this condition is precisely what can be derived from
the typability of the encoding. We consider a simplified case while !x do c
with x being a Boolean, which easily extends to the general case

(ν e f)(e〈u〉 | ! f (k).e〈k〉 | !e(k).x read(c)c(y). y(z)z[.k&.(ν l)([[c]]l | l . f 〈k〉)]).
Note e and f have mode !A because [[c]]l may as well have (free) mutable
outputs. Since e and f suppresses each other, they should have the same
level, say s′. Assuming that x stores a natural number of level s, that l has
level s0 and that c tampers under E, we can annotate the above process with
secrecy levels as follows. Below, s′

0 is the level of u, that is, the termination
level of the command

(ν e f)(e〈u〉 | ! f s′
(k).es′ 〈ks′

0 〉 | !es′
(k).x read(c)c(y). y(z)zs[.k

s′
0 &.(ν l)([[c]]l | l s0 . f

s′
〈k〉)]).

From this, we can immediately derive the following conditions:
(a) By (In!A) at the e-replications, we require s′ � tamp(E).
(b) By (Bra↓A) at the z-input, we require s � tamp(E) and s � s′

0.
(c) By (In↓A) at the l -input, we require s0 � s′ and s0 � s′

0.

Thus, we reach the following conditions : (i) s0 ! s � s′
0, (ii) s � tamp(E),

and (iii) s0 � tamp(E) (s′, which is a level for hidden names f and e, is
any such that s0 � s′ � tamp(E)). Since s0 can be raised by subsumption
we may set s0 = s′

0 without loss of precision, reaching the stated condition
s � s0 � tamp(E), which is equivalent to the condition by Smith [2001].

7.8 Noninterference via Embedding

We can now prove the noninterference for the extended VS-calculus following
essentially the same technical development as in Section 4. We first introduce
the contextual congruence for the extended VS-calculus, after some preliminar-
ies.

—E � σ if a store σ conforms to E in typing in the obvious sense and, moreover,
dom(σ) covers all reference variables in E.

—E � o : cmd τs is semi-closed if cod(E) contains only reference types. A typed
context C[]E,ρ is semi-closing if the result is semi-closed (C[]E,ρ denotes a
typed context whose resulting thread has type ρ and E).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:73

—(o, σ) ⇓ (ν �x)(o′, σ ′) denotes (o, σ) →→ (ν �x)(o′, σ ′)
−→; (o, σ) ⇓ denotes for
some (ν �x)(o′, σ ′) we have (o, σ) ⇓ (ν �x)(o′, σ ′).

Definition 7.15. We write E � e1
∼=VS

s e2 : T when, for each semi-closing
context C[]E,ρ such that ρ = cmd τs0

, s0 � s, and for each σ such that E � σ ,
we have (C[e1], σ) ⇓ iff (C[e2], σ) ⇓. Similarly we define E � c1

∼=VS

s c2 : ρ and
E � o1

∼=VS

s o2 : ρ. We often write, for example, e1
∼=VS

s e2, omitting the type
information.

Below in (2), let [[σ]]
def= 	iRef〈xivi〉◦ with σ (xi) = vi where we set:

Ref〈xivi〉◦ def=
{

(ν c)(Ref〈xic〉|P) (if 〈vi〉u ≡ u(c)P)
Ref〈xi yi〉 (if 〈vi〉u ≡ u〈 yi〉)

PROPOSITION 7.16

(1) (TYPABILITY).
(a) If E � e : T, then �sec [[e]]u � u : T •, E◦.
(b) If E � c : ρ, then �sec [[c]]u � u : ρ•, E◦.
(c) If E � o : ρ, then �sec [[o]]�u � u1 : ρ•, . . , un : ρ•, E◦.

(2) (COMPUTATIONAL ADEQUACY). Assume E � o :cmd τs is semi-closed and E � σ .
Then (o, σ) ⇓ iff ([[o]]�u | [[σ]]) −→∗ 	iui | R
−→.

(3) (SOUNDNESS).
(a) [[e1]]u ∼=s [[e2]]u implies e1

∼=VS

s e2.
(b) [[c1]]u ∼=s [[c2]]u implies c1

∼=VS

s c2.
(c) [[o1]]�u ∼=s [[o2]]�u implies o1

∼=VS

s o2.

PROOF. (1) is straightforward induction, using Propositions 7.12, 7.13 and
7.14. The while command is treated in Section 7.7. For other cases, see D.3(1) in
Appendix D. (2) uses a both-way correspondence in reduction modulo a strongly
syntactic equivalence, see D.4 in Appendix D. (3) is standard from (1) and (2)
above, noting all contexts in the VS-calculus are realisable by a π -term pre-
serving typability.

Definition 7.17. Given E � σi (i = 1, 2), let E � σ1 ∼s σ2 stand for: σ1(x) =
σ2(x) for each x ∈ dom(E) such that protect(E(x)) � s.

THEOREM 7.18 (NONINTERFERENCE). If E � o : cmd τs and E � σ1 ∼s σ2, then
(o, σ1) ⇓ iff (o, σ2) ⇓.

PROOF. Let � ei : T (i = 1, 2) with protect(T)
� s. Suppose T is not a refer-
ence type. By Propositions 7.13(1) and 7.16(1), we know protect(T) � tamp(T •).
By Proposition 6.10, we know [[x #→ v1]] ∼=s [[x #→ v2]] under x : ref〈T ◦〉. If
vi is a reference type, [[x #→ v1]] ∼=s [[x #→ v2]] immediately holds. Thus, we know:

Claim A. σ1 ∼s σ2 implies [[σ1]] ∼=s [[σ2]].

We also need a process context which translates n affine outputs to a single
affine output. Leaving the construction to D.3(5) in Appendix D, we observe:

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:74 • K. Honda and N. Yoshida

Claim B. For each A def= u1 : ()↑A , . . , un : ()↑A , !L B, there exists a context

C[·]x:()↑A

A such that, for each � P � A, we have P →→ (ui)|R
−→ if and only
if C[P] ⇓x .

(The result does not depend on secrecy typing.) Now assume E � o : cmd τs,
E � σi (i = 1, 2) and E � σ1 ∼s σ2. We now reason as follows. Below, we let
dom(σ) = dom(E) = { �y} and C[] is well typed with x being of type ()

↑A
s .

σ1 ∼s σ2

⇒ [[σ1]] ∼=s [[σ2]] (Claim A)

⇒ ∀C[·]. (C[[[o]]�u] | [[σ1]] ∼=s C[[[o]]�u] | [[σ2]]) (congruency of ∼=s)

⇒ ∀C[·]. (C[[[o]]�u] | [[σ1]] ⇓x ⇔ C[[[o]]�u] | [[σ2]] ⇓x) (Definition 6.9)

⇒ [[o]]�u | [[σ1]] →→ (u j)|R1
−→ ⇔ [[o]]�u | [[σ2]] →→ (u j)|R2
−→ (Claim B)

⇒ (o, σ1) ⇓ ⇔ (o, σ2) ⇓ (Proposition 7.16(2))

hence done.

Theorem 7.18 only mentions convergence, without discussing how the re-
sulting states are related. This is because ∼=s (of the π -calculus) is based on an
output at a linear/affine channel, without relating intermediate states. Below,
we present two limited generalizations of this result that talk about resulting
stores.

A generalized store is a pair of finite (typed) names and a store ritten (ν �x)σ
such that xi ∈ dom(σ) where �x indicates hidden names. (ν �x) binds the free
occurrences of �x in σ . The standard bound name convention applies. We write
E � (ν �x)σ for E · E ′ � σ for some E ′ such that dom(E ′) = �x.

Definition 7.19. ∼=VS

s over well typed generalized stores is given as: E �
(ν �x1)σ1

∼=VS

s (ν �x2)σ2 iff, for any o such that E � o : cmd τs, we have (o, σ1) ⇓ iff
(o, σ2) ⇓.

Above note o does not contain names from �x1,2, by the bound name conven-
tion.

Let us set [[(ν �x)σ]]
def= (ν �x)[[σ]]. By the construction of ∼=VS

s and by Proposition
7.16(3), we immediately know:

PROPOSITION 7.20. Given E � (ν �xi)σi (i = 1, 2), if [[(ν �x1)σ1]] ∼=s [[(ν �x2)σ2]],
then (ν �x1)σ1

∼=VS

s (ν �x2)σ2.

The following result generalises Theorem 7.18 to noninterference in the re-
sulting states, though restricted to the first-order store. Below, assuming E � o
is semi-closed and the codomain of E is (secrecy-enhanced) N-types, we write
(o, σ) ⇓x1:n1,..,xm:nm when (o, σ) ⇓ (ν �x)σ ′ such that σ ′(xi) = ni for each i.

THEOREM 7.21 (NONINTERFERENCE FOR FIRST-ORDER STORE). If E � o : cmd τs,
E � σ1

∼=VS

s σ2 and E(xi) = Nsi for xi ∈ {�x} such that si � s, then (o, σ1) ⇓�x:�n iff
(o, σ2) ⇓�x:�n.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:75

PROOF. See D.6 in Appendix D.

For generalized store, we restrict programs to sequential ones. Below the
sequential VS-calculus is the same imperative language except only a single
thread is allowed (hence, a thread and a command are one and the same thing:
the typing etc. remains identical). ∼=VS

s on commands and stores is defined using
the restricted set of contexts.

THEOREM 7.22 (SEQUENTIAL NONINTERFERENCE FOR GENERALIZED STORE).
In the sequential VS-calculus, if E � c : cmd τs and E � σ1

∼=VS

s σ2, then
(c, σ1) ⇓ (ν �x1)σ ′

1 implies (c, σ2) ⇓ (ν �x2)σ ′
2 such that (ν �x1)σ ′

1
∼=VS

s (ν �x2)σ ′
2.

PROOF. See D.6. in Appendix D.

We believe we can generalise Theorem 7.18 to generalized store (thus, sub-
suming Theorems 7.21 and 7.22); and that, further, a stronger non-interference
property holds in which intermediate states are s-equated (cf. Remark 6.11).
For both, it suffices to have a stronger noninterference in π LAR which respects
the reduction-closure [Honda and Yoshida 1995] of ∼=s. We believe this property
holds, though details need be checked. Regarding Theorem 7.22, by appropri-
ately varying the affine termination level, the stated noninterference property
encompasses both the strong and weak noninterference. For more discussions,
see the next section.

8. DISCUSSIONS

8.1 Further Study on Imperative Secrecy

In Section 7, we studied a new secrecy typing for imperative, higher-order
and concurrent programming, extending Volpano–Smith multi-threaded im-
perative language with higher-order procedures and general references. In this
subsection and the next, we outline how we can directly apply the π LAM-calculus
to extend DCCv in Section 4.5 with those imperative constructs, while still
remaining inside sequential programs. The syntax is extended as:

M ::= . . . | x := V | let x = ! y in M | new x #→ V in M | skip
V ::= x | λx.M | μλz.λy .M | skip,

where V denotes a value (values are variables, natural numbers, skip, abstrac-
tions and recursions). For types, we only extend total types:

S ::= . . . | refs(S) | refrs(S) | refws(S) | S s⇒ U | COM.
Unlike the language in Section 7, we use COM as part of the types for expres-

sions. (T)s, as well as the three forms of tamper levels, protect(T), protectE(T)
and tamp(E), are defined precisely as in Section 7.4. Further, we demand the
structural security on types which is defined by the identical clause as in Def-
inition 7.5. The typing rules are given in Figure 17.5 The rules closely follow

5We do not include the secrecy level enhancement in [App], unlike in Section 4.5 since the corre-

sponding operation was not considered in πLAR. At this point, we leave it open how this operation

can be incorporated into the imperative DCCv.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:76 • K. Honda and N. Yoshida

Fig. 17. Typing rules of imperative call-by-value DCC.

the secrecy typing of commands/expressions of the extended VS-calculus, so
may not need illustration. We can easily encode the imperative DCCv into π LAR

following Figure 9 and Figure 16, based on which the noninterference is proved
following the proofs of the corresponding results in Section 7.

The imperative DCCv is an expressive calculus which can soundly encode
the sequential part of the extended Smith–Volpano language in Section 7. First,
command types are recovered by regarding cmd ⇓s as COM (note s does not mat-
ter for converging commands) and cmd ⇑s as �COM�s. The language constructs
are translated in the standard way: for example, “while e do c” is encoded as
follows (assuming e and c are translated into N and M , respectively, and using
the shorthand “;” for sequencing):

(μz. λy . if N then M ; (z skip) else y) skip.

We can verify that the encoding yields precisely the same side condition as
given in Figure 15.

In the preceding work on the π -calculus-based secrecy analysis [Hennessy
and Riely 2000; Honda et al. 2000; Pottier 2002], a typing sequent records a
secrecy level explicitly (the idea that goes back to Denning and Denning [1977]).
The sequent may be written:

� P � A, s

which means P tampers the environment at a secrecy level at most s during
its run. Since we explicitly record the tampering level of P independently from
A, we may call this approach an explicit approach. In contrast, the approach in
the present paper does not use such s but derive this level from A, which we
may call implicit approach. In principle, π LA and π LAR can adopt both kinds of
approaches, of which the present work has focussed on the implicit one. Since
comparisons between these two approaches offer basic insight on secrecy in

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:77

stateful computation, we outline an explicit approach for the secrecy typing of
π LAR in the following, showing how this secrecy analysis leads to an alternative
formulation of imperative DCCv.

In the explicit approach, the secrecy typing for π LAR takes the shape we men-
tioned already, � P � A, s, where s is called an explicit tampering level. The
approach adds this explicit tampering level to indicate the level of tampering
by writing, including the indirect one through ?-actions. Channel/action types
stay precisely the same (including the structural secrecy). For secrecy typing
rules, the only changes are:

—An explicit tampering s is controlled so that: (1) for each write action at a
reference type of level s, as well as for each ?L-action of form (�ρ)?L

s , we place s
or lower; (2) in parallel composition, we take the meet of two levels; and (3)
in replication, we record the explicit tampering level in the replication type,
and clear that level so that we can start from the high level.

—In the secrecy condition in (In↓A), (Bra↓L) and (Bra↓A), the receiving level of
input should be the same as, or lower than, the explicit level plus the tam-
pering level of free linear/affine actions to be suppressed, instead of using
only implicit tampering. Similarly, in replicated inputs (cf. Figure 11), we
demand a receiving level to be the same as, or lower than, the given explicit
tampering level.

This typing can be shown to guarantee the noninterference as far as se-
quential processes in the sense of Berger et al. [2001] go. The calculus allows
lowering of the explicit tampering level in each sequent, intuitively because the
termination level (if any) is distinct from the explicit tampering level.

From this secrecy typing, we can immediately obtain an alternative secrecy
typing for DCCv, with the identical syntax of programs. The typing sequents
have the forms � � M : α, s and � � V : α (the latter corresponding to a
replication with a cleared tampering level: s is called “pc” in the literature).
The typing rules are given in Figure 18. All altered secrecy conditions directly
come from the explicit secrecy typing for π LAR. Note these two approaches yield
quite close secrecy typing, with a difference in the way to measure the level of
?, one based on interface types and one based on accumulation of the levels of
performed actions.

8.2 Related Work (1)

The general theme in the present study is to use the typed π -calculi as a
language-independent basis for describing, reasoning about, and analyzing di-
verse typed languages and their constructs; and to explore, as a possible appli-
cation, a type-based secrecy analysis of programming languages with distinct
type disciplines and operational behaviors through the secrecy typing of typed
π -calculi. While the present work is only a preliminary experiment to examine
the potential of the π -calculus for this purposes, the case study may demon-
strate one of the concrete starting points towards the overall goal we have set
out at the beginning. In the following, we discuss several related studies and
point out some of the remaining topics.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:78 • K. Honda and N. Yoshida

Fig. 18. Typing rules of imperative call-by-value DCC (with explicit tampering).

8.2.1 Integrated Function Types. The foregoing study of types in program-
ming languages has concentrated on types for functional programming lan-
guages. It is thus no surprise that a few prominent examples of integrated
type disciplines are found among function-based type disciplines, which of-
ten use monads. Examples include pointed types [Howard 1996; Mitchell
1996] and imperative types in Haskell [Hudak et al. 1992]. They offer not
only combination of type structures but also preservation of individual type
structures in the integrated types. The present work explores the same
kind of integration in the π -calculus, and shows its significance in secrecy
analysis.

8.2.2 Security Analyses in Process Calculi. Secrecy and other security is-
sues in processes are widely studied [Abadi 1999; Ryan and Schneider 1999; Fo-
cardi et al. 2000; Hennessy and Riely 2000; Pottier 2002]. Abadi [1999] includes
insightful discussions on secrecy. The existing type-based secrecy analysis in
Hennessy and Riely [2000], Honda et al. [2000], and Pottier [2002] have been
based on the explicit recording of a secrecy level, in contrast to the present im-
plicit approach. Another general difference is that the preceding studies mainly
focus on modelling security concerns in cryptography protocols or distributed
systems, and do not directly pursue integrated secrecy typing for programming
languages. In this context, one of the challenging topics is the integration of the
technologies as experimented in the present paper with secrecy and security
concerns in distributed computing. See also Honda and Yoshida [2005] for fur-
ther comparisons with the control flow analysis of the π -calculus [Bodei et al.
1998; Bodei et al. 1999].

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:79

8.2.3 Type-Based Secrecy Analysis for Programming Languages. The se-
crecy analysis proposed in this article owes much to the preceding work on
type-based secrecy analyzes for functional/imperative languages. Among secure
functional calculi [Ørbæk and Palsberg 1997; Pottier and Conchon 2000; Abadi
et al. 1999; Heintze and Riecke 1998], the dependency core calculus [Abadi et al.
1999] is a powerful functional metalanguage for secrecy, using pointed types
[Howard 1996; Mitchell 1996]. The semantics is given by a denotational uni-
verse based on logical relations (Tse and Zdancewic Tse and Zdancewic [2004]
gives a different semantic analysis of the calculus based on parametricity). The
calculus is effective for analyzing diverse sequential notions of dependency and
secrecy. At the same time, the formalism is difficult to apply to the realm outside
of sequential higher-order functions. The present work offers an alternative tool
which can easily incorporate impure features such as concurrency and state.
Another significant aspect of the π -calculus is its fine-grained nature as a meta-
language, due to which developing analyzes can be based on a clear operational
understanding, especially when there are subtle interplays between language
constructs.

Smith and Volpano studied various aspects of secrecy in imperative lan-
guages [Smith 2001; Smith and Volpano 1998; Volpano et al. 1996]. Sequential
procedures are studied in Volpano et al. [1996]. Multi-threading is studied in
Smith and Volpano [1998], whose typability was enlarged by our work with
Vasconcelos [Honda et al. 2000] using the π -calculus, based on which a further
enhancement was done in Smith [2001]. The work [Smith 2001] also treats
probabilistic noninterference, which is robust with respect to timing attacks
(this becomes significant in concurrency since time it takes to reach an observ-
able action can be considered as part of observation, though the concern is also
relevant in sequential noninterference). As we have seen in Proposition 7.10,
our calculus is a conservative extension of the possibilistic part of the calcu-
lus in Smith [2001], integrating it with higher-order procedures and general
references. One of the interesting aspects is the correspondence between the
two kinds of command types in Smith–Volpano languages on the one hand and
linearity/affinity in π LA on the other. The incorporation of execution steps into
secrecy typing [Smith 2001] into the present framework is one of the remaining
topics. Boudol and Castellani [2002] also studied a language similar to Smith
[2001]. One of the significant features is the use of bisimulation for formulat-
ing and proving noninterference, leading to a stronger property. In this context,
the use of secrecy bisimulation in π LA [Yoshida et al. 2002] for proving similar
results would be worth exploring. Another topic is the incorporation of sched-
uler into the π LAM-calculus to enrich language constructs, following Boudol and
Castellani [2002].

There are two prominent recent work which presented secrecy analysis for
the combination of higher-order procedures and imperative features, one by
Myers [1999] and Zdancewic and Myers [2001] (using Java) and another by
Pottier and Simonet [2003] (using ML). Both of these works are based on the
explicit typing approach (in the sense we discussed in Section 8.1), while the
present work adopted the implicit approach. As discussed in Section 8.1, these
two approaches are complementary, shedding different lights on secrecy as well

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:80 • K. Honda and N. Yoshida

as offering different techniques. Other prominent aspects of these works include
polymorphism and run-time representation of secrecy levels. These aspects will
be further examined in the next two subsections.

8.2.4 Concurrency and Other Topics. Secrecy for concurrent computation
has many aspects, including the countermeasure against timing attack, treat-
ment of nondeterminism, observability of behaviors of other threads/processes,
and varied synchronization constructs. The present work studies secrecy in
concurrency in the most basic setting. Depending on applications, we may con-
sider different kinds of noninterference properties, such as probabilistic nonin-
terference. We believe that the π -calculus may offer a useful setting where the
interplay between secrecy analysis and diverse concurrency constructs can be
studied on a uniform basis.

One aspect of secrecy in programming languages whose study has just
started is secrecy for low-level programming primitives. In this respect, one in-
teresting work by Zdancewic and Myers [2001] presents a typed control calculus
with references, intended as a meta-language for possibly low-level languages
via CPS translation. Its type discipline is adapted to this end, in particular
in its use of linear continuations. As secrecy typing for imperative languages,
Zdancewic and Myers [2001] do not treat multi-threading, and is not (intended
as) an extension of the language in Smith and Volpano [1998] and Smith [2001]
(their subsequent work [Zdancewic and Myers 2003] treats a specific form of
concurrency, starting from deterministic local computation). The incorporation
of the dynamics and types in Zdancewic and Myers [2001] into the π -calculus
is an interesting topic for further study, cf. Honda et al. [2004].

One of the significant aspects of the work by Myers [1999] mentioned above
is run-time representation of secrecy levels. This offers a flexible control of
secrecy, including degradation, and allows interface between language-based
secrecy and OS-level secrecy, as discussed by Bell and La Padula [1973]. In
particular, it enables dynamic change of secrecy levels at run-time, both for
subjects (privilege) and for objects (secrecy). Combination of static and dynamic
analyzes may offer a powerful technique when runtime introspection of secrecy
policy needs be considered.

8.3 Related Work (2)

The presented approach based on the typed π -calculus is intended to distill key
elements of secrecy analyzes for imperative higher-order programs with clear
operational understanding. They include:

(1) A choice in secrecy typing between implicit typing and explicit typing.

(2) The use of distinction between linearity (totality) and affinity (partiality)
for fine-grained secrecy analysis. Relatedly, the treatment of termination
as a distinct observable in addition to writing effects and returned values,
both for implicit and explicit approaches.

(3) The use of structural security (i.e., a reference type should have a lower-
level than its content type) for consistent treatment of general references.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:81

Below we give an analysis of the first two points, referring to the works by
Myers [1999], Zdancewic and Myers [2001], and Pottier and Simonet [2003].

8.3.1 Implicit vs. Explicit. We first illustrate the difference between the
implicit approach and the explicit approach (the latter taken in the work by
Myers [1999], Zdancewic and Myers [2001], and Pottier and Simonet [2003]).
We use the syntax of imperative DCCv, referring to Section 8.1. We write unit
for COM and () for skip for brevity. λ().M stands for λxunit.M with x
∈ fv(M).
First, let:

M def= new uL #→ 0 in λ().(yH = 0 ; λ().u := !u + 1; !u) (28)

which is typed as, using the implicit approach in Figure 17:

�i M : unit
L⇒ (unit

L⇒ NL) (29)

and, in the explicit one in Figure 18:

�e M : unit
H⇒ (unit

L⇒ NL). (30)

The typing of x in (29) says x()() is a low-level behavior. Considering for example,
let x = M in x()(), this is operationally justifiable. This is the same as the
typing of x in (30). However, the typing of x in (29) says that x() is also low;
while the explicit approach says x() is high, giving a better analysis. Note such
a difference only comes out when this expression is partially used.

As another example which shows a difference in a different direction, if we
consider new w #→ 0 in (λyL. y := 1)w, where a name is abstracted/hidden,
an effect is given a better analysis in the implicit approach, since the expres-
sion becomes a high-level expression immediately from its type unit; while, in
the explicit approach, it is a low-level expression. However, if we start from w
and y without secrecy assignment, we may as well infer the level H for these
names so that it in effect becomes a high-level expression even with the explicit
approach.

Overall, the implicit approach seems to offer a cleaner analysis for hiding,
in the sense that a hiding leads to cancellation of the effect of tampering: this
may offer a better integration when we integrate the present framework with
the secrecy analysis for pure functions as we explored in Section 4. At the same
time, as the first example show, the implicit approach can lead to a less accurate
analyzes in measuring the effects to an action in the environment. A promizing
topic is an integration of these two methods into a single framework, taking
the best part from both approaches.

8.3.2 Linearity and Affinity. The origin of the use of the distinction
between totality and partiality in secrecy analysis can be found in both
DCC [Abadi et al. 1999] and imperative secrecy calculi studied by Smith and
Volpano [1998]. The above cited work [Myers 1999; Pottier and Simonet 2003]
do not directly use this distinction in type structures, even though JFlow [Myers
1999] partly uses the distinction (the work by Zdancewic and Myers [2001] stud-
ies linearity in detail, on which we discuss later). By using imperative DCCv,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:82 • K. Honda and N. Yoshida

we can illustrate the significance of linearity clearly. Consider the following
program.

let y = V () in let z = W () in () (31)

where we set V def= λ().xH := 0 and W def= λ().uL := 1. If we replace let with seq,
and stipulate that the assignment should always be considered to be affine, we
cannot lower the level of the assignment xH := 0, hence (regardless of use of
the explicit and implicit approaches) we cannot type (31). The use of linearity
easily analyze the lack of unsafe flow in this example, demonstrating the use
of linearity leads to strictly more general secrecy typing (observe the argument
holds both for the explicit and implicit approaches).

The present framework does not allow linear (total) types to carry references,
cf. Remark 5.2. Enlarging the typability is an interesting future topic: one pos-
sible method would be refinement of type structure with effects [Amtoft et al.
1999].

8.3.3 Strong/Weak Noninterference. The distinction between linearity
and affinity, and the idea to give an explicit secrecy level to the latter, leads
to a comprehensive treatment of both strong and weak noninterference in a
single framework. In brief, they differ in that whether we should take the ter-
mination as an observable for noninterference in sequential programs (note a
single thread of control means no other threads can detect its termination).
In the present framework, if we make the termination level higher than the
termination observable, we can ignore the termination observable, while still
being sensitive to a difference in states when the program terminates (the non-
interference proof is essentially the same as that of Theorem 7.22). This aspect
may not be observed in Myers [1999] and Pottier and Simonet [2003], both of
which considers the level of termination observables.

These discussions suggest potential merits of directly incorporating linear-
ity/totality into the frameworks in Myers [1999] and Pottier and Simonet [2003],
treating, for example, some of the significant instances of the totality of meth-
ods/procedures. Another practical interest is treatment of linearity in the pres-
ence of recursive types, cf. Howard [1996].

8.4 Further Topics

In addition to those that are mentioned through the above comparative discus-
sions, we believe the following topics are worth studying.

(1) Treatment of language constructs such as exceptions and jumps, as well as
a technical framework to coherently integrate such run-time mechanisms
(discussed in the previous subsection) and degradation [Myers 1999] in the
typed π -calculi.

(2) Polymorphic extension of the secrecy typing, cf. Berger et al. [2005]. Simi-
larly incorporation of recursive types while still making the effective use of
linearity.

(3) Embedding results of major programming languages and their secrecy anal-
ysis in securely typed processes, including variants of languages treated
in Myers [1999] and Pottier and Simonet [2003]. As we noted, clean

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:83

incorporation of dynamic notion of secrecy control would be an interesting
technical challenge. Does the process representation offers an additional
insight for dynamic constructs as treated in Myers [1999]?

(4) An integrated type inference that can infer both linearity and secrecy in a
richer class of behaviors, for example, those which are found in real-world
programming languages. Ideally, the analysis would first infer linearity
with little, or no, annotation in programs; then the type inference for se-
crecy is done on its basis. The latter can employ methods cultivated from
the accumulated preceding studies [Smith and Volpano 1998; Smith 2001;
Myers 1999; Pottier and Simonet 2003].

(5) Precise understanding of different notions of safe information flow and their
practical consequences in each class of behaviors, including functional, im-
perative and concurrent ones.

APPENDIXES

A. SUBJECT REDUCTION

Following, we prove the subject reduction for the secrecy typing for π LAR in
Section 6 (subsuming the same property for π LA in Section 2, π LA with the secrecy
typing in Section 3 and π LAR in Section 5).

(subject reduction) Let �sec P � A. Then P →→ P ′ implies �sec P ′ � A.
Note that, if the subject reduction of the secrecy typing for π LAR in Section 6 is
satisfied as above, then the subject reduction of the π LA, π LAR, and π LA’s secrecy
extension are automatically proved. For the proof, we follow the same routine
as given in Appendix A.1 in the long version of Yoshida et al. [2004]. We also
follow the same routine as given in the proof of Proposition 3 in Yoshida [2002]
for references. What corresponds to Lemma A.1 of Yoshida et al. [2004] (well
definedness of operators) is easy. A basic lemma follows, which corresponds to
Lemma A.2 in Yoshida et al. [2004].

LEMMA A.1. Let A1, A2, A3, A and B be action types. Then we have:

(i) (commutativity) Assume A1 � A2. Then we have A2 � A1 and A1 � A2 =
A2 � A1.

(ii) (associativity) Assume A1 � A2 and (A1 � A2) � A3. Then we have: (1)
A1 � A3 and A2 � A3, (2) A1 � (A2 � A3) and (3) (A1 � A2) � A3 =
A1 � (A2 � A3).

(iii) If x : τ ∈ |A| and md(τ) ∈ M!,↓ then there is no y : τ ′ ∈ |A| such that
y : τ ′ → x : τ .

(iv) If A � B with A/�x = A0, xi : τi ∈ |A|, md(τi) ∈ M!,↓∪{�}, and fn(B)∩{�x} = ∅,
then A0 � B and (A � B)/�x = A0 � B.

(v) If A � B with A/�x = A0, xi : τi ∈ |A|, md(τi) ∈ M!,↓, and B/�x = B0, then
A0 � B, A � B0, A0 � B0, and (A � B)/�x = A0 � B0.

(vi) ?B � ?B and B � B = B.
(vii) Suppose A/�x = A0, B/�x = B0 and A0 � B0. Assume also xi : τi ∈ |A|,

xi : τ ′
i ∈ |B| with τi � τ ′

i , and md(τi) ∈ M!,↓. Then, A � B and (A � B)/�x =
A0 � B0.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:84 • K. Honda and N. Yoshida

PROOF. By regarding !R and ?R as !A and ?A, respectively, we can essentially
follow the reasoning given in Berger et al. [2000] and Yoshida et al. [2004].
(i,ii) are immediate from the definitions. (iii) is obvious since there is no edge
to input and � nodes. (iv) is because we can write A = (xi : τi → Ai), A′ by the
side condition (note Ai may be ∅). Then, by A � B, obviously A0 = (Ai, A′) � B.
Hence, we have (A � B)/�x = (A/�x � B/�x) = A0 � B. Similarly, for (v). (vi) is by
τ � τ = τ with md(τ) ∈ M? . (vii) uses (v) and (vi).

LEMMA A.2 (SUBSTITUTION LEMMA)

(1) If �sec P � x : τ, A, md(τ) ∈ M↑ and y
∈ fn(A), then
(a) �sec P{ y/x} � y : τ, A and (b) tamp(x : τ, A) = tamp(y : τ, A).

(2) (CLIENT TYPE) Suppose �sec P � x : τ, A with md(τ) ∈ M? and A(y) = τ .
Then, we have (a) �sec P{ y/x} � A and (b) tamp(x : τ, A) = tamp(A).

PROOF. (b) of (1,2) is by definition. (a) is proved by induction on terms.
The only interesting case is x ∈ fn(P) and either a parallel composition, an

input or a branching input. We prove (1) in the case of (Par) and (3) in the case
of the replicated input. Suppose �sec P1 | P2 � x : τ, A. Since we can always
permute (Weak) and (Sub) with (Par), we only consider the last applied rule is
(Par).

�sec P1 � A1, x : τ �sec P2 � A2

�sec P1 | P2 � A1 � A2, x : τ

In the above, we assume x ∈ fn(P1) (hence x
∈ fn(P2)) and A1 � A2 = A. We
prove

�sec (P1 | P2){ y/x} � A1 � A2, y : τ (32)

By inductive hypothesis, we have �sec P1{ y/x} � A1, y : τ . Since x, y
∈ fn(A2),
we have (A1, y : τ) � A2 and (A1, y : τ) � A2 = A, y : τ . Hence, by
(P1 | P2){ y/x} = (P1{ y/x} | P2), we have (32) as required.

Next suppose �sec !a(�z).Q � A, x : τ with A(y) = τ . Then, the only interesting
case is the last applied rule is (In!A) as follows.

s � tamp(A, x : τ)

�sec Q � �z : �τ , ? A−a, x : τ

�sec !a(�z).Q � a : (�τ)!A
s , A, x : τ

.

Then, we prove

�sec !a(�z).Q{ y/x} � a : (�τ)!A
s , A. (33)

By inductive hypothesis, we have

�sec Q{ y/x} � �z : �τ , A. (34)

By (b), we know s � tamp(A, x : τ) = tamp(A). Hence, by applying (In!A) to the
above again, we conclude (33) as desired.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:85

LEMMA A.3

(i) �sec P � A and P ≡ Q then �sec Q � A.
(ii) �sec x(�y).P | x〈�v〉 � A implies �sec P{�v/ �y} � A. Similarly for selection.

(iii) �sec!x(�y).P | x〈�v〉 � A implies �sec P{�v/ �y} | !x(�y).P � A. Similarly for
selection.

(iv) �sec Ref〈x y〉 | x read〈c〉 � A implies �sec Ref〈x y〉 | c〈 y〉 � A
(v) �sec Ref〈x y〉 | x write〈wc〉 � A implies �sec Ref〈xw〉 | c � A.

PROOF. For (i), we can use the same reasoning as the proof of (i) in Lemma A.3
in Yoshida et al. [2004]; For example, in the structural rule

(ν �y)P | Q ≡ (ν �y)(P | Q) with yi
∈ fn(Q)

yi ’s mode should be M! ∪ {�} because of the definition of (Res). Hence, we can
use (iv) and (v) of Lemma A.1 as in Yoshida et al. [2004]. For (ii) and (iii), we
can directly use (v,vi,vii) of Lemma A.1 together with Substitution Lemma to
prove (ii) and (iii) as in Yoshida et al. [2004]. Hence, we only have to prove (iv)
and (v).

(iv, read): We prove this statement by the rule induction. If the last rule is
(Weak) or (Sub), then it is trivial. So assume

�sec Ref〈x y〉 | x read〈c〉 � x : refs〈τ 〉, y : τ 1, c : (τ2)↑L (35)

and the last rule is (Par). Then, we prove:

�sec Ref〈x y〉 | c〈 y〉 � x : refs〈τ 〉, y : τ 1, c : (τ2)↑L . (36)

Since (35) is inferred by (Par), we have:

�sec Ref〈x y〉 � x : refs〈τ 〉, y : τ 1 and �sec x read〈c〉 � x : rws〈τ 〉, c : (τ2)↑L

with τ ≤ τ 1. The left-hand side read agent is inferred from

�sec x read〈c〉 � c : (τ ′)↑L , x : rs′ 〈τ ′〉
for some s′ � s, τ ′ ≤ τ and τ ′ ≤ τ2. By (Out), we have:

�sec c〈 y〉 � c : (τ ′)↑L , y : τ ′.

Then noting τ ′ ≤ τ and τ ≤ τ 1 implies τ ′ ≤ τ 1, by (Sub), we have:

�sec c〈 y〉 � c : (τ2)↑L , y : τ 1. (37)

By (iv) of Lemma A.1, we know y : τ 1 � y : τ 1 = y : τ 1. An application of (Par)
to Ref〈x y〉 and (37) again obtains (36), as required.

(v, write): Assume

�sec Ref〈x y〉 | x write〈wc〉 � x : refs〈τ 〉, w : τ 1, c : ()↑L , y : τ 2. (38)

We shall prove:

�sec Ref〈xw〉 | c � x : refs〈τ 〉, w : τ 1, c : ()↑L , y : τ 2. (39)

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:86 • K. Honda and N. Yoshida

We assume (38) is inferred by (Par), so we have:

�sec Ref〈x y〉 � x : refs〈τ 〉, y : τ 2 and �sec x write〈wc〉 � x : rws〈τ 〉, w : τ 1, c : ()↑L

with τ ≤ τ 2. The write agent in the right-hand side is inferred from:

�sec x write〈wc〉 � x : ws′ 〈τ ′〉, w : τ ′, c : ()↑L

for some s′ � s and τ ≤ τ ′ and τ ′ ≤ τ 1 (hence τ ≤ τ 1). By (Ref), we have:

�sec Ref〈xw〉 � x : refs〈τ 〉, w : τ .

Noting τ ≤ τ 1, we have:

�sec Ref〈xw〉 � x : refs〈τ 〉, w : τ 1 and �sec c � c : ()↑L . (40)

Now by applying (Par) to above, and then using (Weak) for y , we have (39), as
desired.

B. FURTHER DISCUSSIONS ON DCC

B.1 Illustration of DCC Typing Rules

The presented typing rules for DCC are semantically the same as the original
presentation [Abadi et al. 1999] but are extended for the subject reduction to
hold (see Remark B.2 for the discussion on the violation of subject reduction in
the original DCC). Together with these differences, we give a brief illustration
of each typing rule.

—[V ar] says that if there is a flow from x : T , then it will safely be outputted
at the same or higher level. [Unit] says the constant for the unit type can
have an arbitrary level (since it does not receive information from anywhere).
[Lam] says that if information from � and x : T safely flows via M , then the
same is true with x substituted for any term of type T .

—In the original presentation [Abadi et al. 1999], [App] has the standard shape.
Here we allow the type of the argument to be raised if the answer type
is sufficiently high (see the illustration of [Bind M] below). We note this
application can be semantically representable as bind x = N in M x. The
extension is done for subject reduction.

—[Inl] is standard. Its dual [Case] says: if M emits information at some se-
crecy level, the resulting processes should not reveal this level. The original
presentation [Abadi et al. 1999] uses the least secrecy level for M , which is
semantically enough when combined with [Bind M]. The extension is neces-
sary for subject reduction.

—[UnitM] says that if information never nontrivially flows down to the level
as low as T via M , then the same is true if we raise the level of T . Its
symmetric rule [BindM] says that M can use N at the level higher than
originally ensured to be safe, as far as the resulting datum has a sufficiently
high level. This is the most interesting rule in DCC, so that we illustrate this
rule through examples.

(1) Starting from y : BH, x : BL � case xL of inl().inl() or inr().inr() : BH,
we infer y : BH � bind x = y in case xL of inl().inl() or inr().inr() : BH.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:87

x is originally low, to which a high-level datum y flows down. However,
this is still secure since it is in fact used to produce a high-level datum.

(2) Starting from w : BM ⇒ BH, y : BL ⇒ BM, x : BL, z : BH � w(yx) : BH,
we infer w : BM ⇒ BH, y : BL ⇒ BH, z : BH � bind x = z in w(yx) : BH

(where M is a secrecy level between H and L). Because this term uses a
high-level z to feed y which expects a low-level datum, there is a local
secrecy violation (we can see this clearly by regarding bind as “let” and
considering the result of substitution: then the term becomes w(yz)
where yz is locally insecure). However, even if y does use the argument
(i.e., there is a nontrivial flow from the argument to the result), what
y would produce can only be H-level, from which w will again produce
H-level, so it is safe.

—[Lift] produces a pointed type to which [Rec] can be applied. The distinction
between pointed and non-pointed types thus allows separation of total types
from possibly diverging types. [Seq] waits for a recursion to terminate at a
lifted type of some secrecy level, and uses the resulting datum with a unlifted
type at a higher level. Since N may diverge, T ′ should be partial too.

Remark B.1 ([Seq] and [BindM]). While similar in shape, there is a signif-
icant difference between [Seq] and [BindM]. In the original presentation of
DCC, [Seq] involves cancellation of lift, while [BindM] involves cancellation of
coersion. The coersion is less significant operationally than lift: for example, in
implicit typing systems with subtyping in general, the construct for coercion
is turned into subtyping without a constructor (as we do here). The reduc-
tion rule ηs M −→ M given in Abadi et al. [1999] would be understood in this
spirit.

Remark B.2 (Subject Reduction in DCC). For reference we give instances
of violation of subject reduction in DCC in the original typing rules [Abadi
et al. 1999]. We show examples in both explicitly and implicitly typed systems.
For the explicitly typed system as in the original DCC, a violation comes via the
coercion ηl M : for example, we have x : unit � ηHx : (unit)H and ηH x −→ x, but
x : unit
� x : (unit)H. The same remedy as we presented in Figure 6 can be used
for the explicit typing. In implicitly typed systems, the issue arises indirectly:
for an example, we can take y : BL ⇒BH, z : BH � bind x = z in yx : BH. Then,
we have bind x = z in yx −→ yz. However, y : BL⇒BH, z : BH � yz : BH is not
well typed if we are to use the standard application rule (which does not inflate
the argument type, cf. [App], Figure 6).

Remark B.3 (Redundancy of [UnitM] and [BindM]). In the typing rules in
Figure 6, [UnitM] and [BindM] are redundant in the sense that they are admis-
sible in the system without them (regarding bind x = N in M as (λx.M)N).
The admissibility of [BindM] is immediate. For [UnitM], we simultaneously
establish the following two statements:

(1) If E � M : T then E � M : (T)s for any s.

(2) If E, x : T � M : T ′ with protect(T ′) = s′, we have E, x : (T)s′ � M : T ′.

(1) is the required statement itself: (2) is needed for establishing (1) for [Rec].

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:88 • K. Honda and N. Yoshida

B.2 Subject Reduction in DCC/DCCv

The proof of subject reduction is by the substitution closure of the following
form.

LEMMA B.4.

(1) If � ·x : (T)s � M : T ′, � � N : T and s � protect(T ′), then � � M {N/x} : T ′.
(2) If � · x : T � M : T ′, � � lift(N) : �T�s and T ′ pointed and s � protect(T ′),

then � � M {N/x} : T ′.

PROOF. For (1), we prove the following strengthened property by rule induc-
tion of the extended DCC typing rules.

If � · x : (T)s � M : T ′, � � N : T and s � protect(T ′), then for each
s′ we have � � M {N/x} : (T ′)s′ .

We show the reasoning for [App] and [Seq]. Other cases are easier. Below, for
simplicity we assume (T ′)s′ = T ′ (this loses no generality).

—The last applied rule is [App]. Suppose � · x : T � M1M2 : T ′ is inferred
from � · x : T � M1 : T0 ⇒ T ′ and � · x : T � M2 : T0. Let � � N : (T)s

and s � protect(T ′). By induction hypothesis � � M2{N/x} : (T0)s as well as
� � M1{N/x} : T0 ⇒T ′. By applying [App] we obtain � � (M1M2){N/x} : T ′.

—The last applied rule is [Seq]. Suppose � · x : T � seq y = M1 in M2 : T ′

is inferred from � · x : T · y : T0 � M2 : T ′ and � · x : T � M1 : �T0�s0
with

T ′ pointed and s0 � protect(T ′), and let � � N : (T)s with s � protect(T ′). By
induction hypothesis we have both � � M1{N/x} : �T0�s!s0

and � · y : T0 �
M2{N/x} : T ′. By assumption we have s!s0 � protect(T ′), hence we can apply
[Seq] to conclude � � seq y = M1{N/x} in M2{N/x} : T ′.

Other cases are similar. (2) is easy (note we placed no restriction on s, which
is enough by the shape of the term lift(N)).

The subject reduction of DCC is now easily established using Lemma B.4 by
structural induction. We show two cases that use the strengthened substitution
lemma nontrivially.

—Assume � � λx.M : T ⇒ T ′, � � N : (T)s such that s � protect(T ′) and
(λx.M)N −→ M {N/x}. By assumption, � · x : T � M : T ′. By Lemma B.4,
we have � � M {N/x} : T ′, hence done.

—Assume � � bind x = N in M : T ′ and bind x = N in M −→ M {N/x}. By
assumption, we have � � N : (T)s and �·x : T � M : T ′ where s � protect(T ′).
By Lemma B.4, we are done.

Finally, we briefly discuss the subject reduction in DCCv. The proof does not
differ from DCC, based on the inflated call-by-value substitution lemma. It is
notable that the subject reduction is violated if we introduce [BindM] which
also acts on partial types (in spite of our presentation in Honda and Yoshida

[2002]). As an example, let M def= bind x = � in x with �
def= (μx.λy .x y)0. We

can easily check � M : N. However M −→ � and � : N is not well typed. We

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:89

can amend this by combining [BindM] with [Seq], requiring the partiality of
the whole term.

C. CONSERVATIVITY RESULT FOR THE SMITH CALCULUS

We first observe we have only to use [Var] and [Const] from Figure 14 by the
restriction to the first-order value types in the Smith Calculus. Thus, x := v
always tampers at s whenever E(x) = refs〈Ns〉. By the rule induction, we can
show s in E � c : scmd ⇑s′ in Smith [2001] and tamp(E) in E � c : cmd ⇑s′

coincide (up to the downward subsumption of s) by induction.
For while rules, two side conditions look different, but they are in fact equiv-

alent. From the condition in our rule, we derive:

s � tamp(E) � s0 ∧ s0 � tamp(E),

from which we trivially obtain (1) s � tamp(E) and (2) s0 ! s = s0, the latter
being the termination level of the resulting command in Smith [2001]. On the
other hand, assume given the condition by Smith:

s � tamp(E) ∧ s0 � tamp(E).

Since we can always raise the termination level s0 of the command in the an-

tecedent by subsumption, we let the raised level be s′
0

def= s0 ! s. The condition
is now rewritten for s′

0 as:

s � tamp(E) � s′
0 ∧ s′

0 � tamp(E),

that is, s � s′
0 � tamp(E), with the resulting termination level s′

0, which is
the condition given in this article. The remaining rules are directly mutually
translatable.

D. PROOFS FOR SECTION 7

D.1 Proposition 7.12 (Subtyping)

T ◦
1 ≤ T ◦

2 iff T •
1 ≤ T •

2 is direct by definition. Thus, we only have to show T1 ≤ T2

iff T ◦
1 ≤ T ◦

2 , which is proved by rule induction of T1 ≤ T2 defined in Section 7.3.

Here, we only show the “only if”-direction for the cases of Ti = Si
si⇒ Ui, (i =

1, 2), T1 = refs(S) and T2 = refrs′ (S′) and T1 = refws(S) and T2 = refws′ (S′).
Others are similar.

Case S1
s1⇒ U1 ≤ S2

s2⇒ U2. Assume S2 ≤ S1, U1 ≤ U2 and s2 � s1. Then, by
induction, and S◦

2 ≤ S◦
1 and U •

1 ≤ U •
2 . Note for the input type, the security level

is contravariant, while the carried types are covariant. Since S◦
2 ≤ S◦

1 implies

S◦
1 ≤ S◦

2, we have: (S1
s1⇒ U1)◦ def= (S◦

1U •
1)!A

s1
≤ (S◦

2U •
2)!A

s2

def= (S2
s2⇒ U2)◦, as desired.

Case refs(S) ≤ refrs′ (S′). Assume s′ � s S ≤ S′. Then, by IH, S◦ ≤ S′◦,
which implies S′◦ ≤ S◦. Then rs′ 〈S′◦〉 ≤ rws〈S◦〉. Noting refs(S)◦ = rws〈S◦〉 and
refrs′ (S′)◦ = rs′ 〈S′◦〉, we have refs(S)◦ ≤ refrs′ (S′)◦, as required.

Case refws(S) ≤ refws′ (S′). Assume s′ � s and S′ ≤ S. Then, by IH, S′◦ ≤ S◦,
which implies S◦ ≤ S′◦. Then, ws′ 〈S′◦〉 ≤ ws〈S◦〉, which implies refws(S)◦ ≤
refws′ (S′)◦.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:90 • K. Honda and N. Yoshida

D.2 Proposition 7.13 (Coincidence of Protection/Tampering Levels)

By induction on the size of type T . For (1), we have tamp(S•) = tamp((S◦)↑L) =
tamp(S◦) = tamp(�S�◦

s) (Note �S�◦
s

def= S◦). (2) is by simultaneous induction. We
use (1). we first prove the first part of the statement. Suppose T = Ns. Then
protect(Ns) = s. Also by (1), tamp(T •) = tamp(N◦

s) = tamp([⊕ω]
↑L
s) = s. Similarly,

for the case T = �S�s. Next suppose T = S s⇒ U . Then we have:

protect(S s⇒ U) = protectE(S) � protect(U) (by definition in Section 7.4)

= tamp(S◦) � tamp(U •) (by inductive hypothesis)

= tamp((S◦U •)!A
s) (by Definition 6.1)

= tamp((S s⇒ U)◦) (by definition of ◦)
= tamp((S s⇒ U)•) (by (1)).

The cases T = S ⇒T is similar. If T = refs(S), we have:

protect(refs(S)) = protectE(S) � protect(S) (by definition in Section 7.4)

= tamp(S◦) � tamp(S•) (by inductive hypothesis)

= tamp(S◦) � tamp(S◦) (by (1))

= tamp([(S◦)↑L&S◦()↑L]!R
s) (by definition of ◦)

= tamp(refs(S)◦)
= tamp(refs(S)•) (by (1)).

Similarly for T = refrs(S) and T = refws(S). For the proof the second part of
(2), we only show the case that T is a reference type. The cases of T = refws(S)
and T = refs(S) are obvious since protectE(refs(S)) = protectE(refws(S)) = s =
tamp(rws〈S〉) = tamp(ws〈S〉). Suppose T = refrs(S). Then we have:

protectE(refrs(S)) = protectE(S) (by definition in Section 7.4)

= tamp(S◦) (by inductive hypothesis)

= tamp(rs〈S◦〉) (by definition of the tampering level)

= tamp(refrs(S)◦) (by definition of ◦)

(3) is by (2).

D.3 Proposition 7.16 (1) (Well-Typedness of the Encoding)

The proof is by mechanical induction. We only show [LamM] and [Lam] for
expressions, and [Seq], [Sub] and [Deref] for commands. [While] is discussed in
the main section (Section 7.7). Other cases are similar.

Case [LamM]. Let E · x : S � e : U . By inductive hypothesis, we have
�sec 〈e〉u � E◦, x : S◦, u : U •. By the condition s � tamp(E) = tamp(E◦), we
know s � tamp(E◦), hence by (In!A):

�sec!c(xm).〈e〉m � E◦, c : (S◦U •)!A
s . (41)

Noting (S◦U •)!A
s = ((S◦U •)!A

s)↑L , an application of (Out) obtains:

�sec u(c)!c(xm).〈e〉m � E◦, u : (S s⇒ U)•,

as required.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:91

Case [LamT]. Suppose in this rule, M has a total type T ′. If 〈e〉m contains
mutable free variables except x, then we cannot type !c(xm).〈e〉m because in
(In!L) we only allow ?L A, ?A B and tamp(B) = H appears as free in its body. But
this is guaranteed by the side condition of [LamT], which says that for all y ,
E(y) = S immutable (note then md(E(y)◦) ∈ {?L, ?A} and tamp(E(y)◦) = H).

Case [Seq]. By assumption, we know �sec [[ci]]ui � ui : ()pi , Ai such that Ai =
E◦

i and A1 � A2 = E◦
1 � E◦

2 with pi ∈ {↑L, ↑A}. First assume τ1 = ⇓, so that
p1 = ↑L. We observe we can prefix [[c2]]u by a unary linear input regardless of
its secrecy level, since a unary linear input does not have the constraint on the
secrecy level. Thus, by (In↓L), (Par), and (Res), we infer:

�sec (ν u1)([[c1]]u1
| u1.[[c2]]u2

) � u2 : ()p2
s2

, E◦
1 � E◦

2

Then, by (Sub) and (Weak), we have �sec [[c1; c2]]u � u2 : ()
p2
s2

, E◦, as required.
If, on the other hand, τ =⇑, then pi = ↑A (i = 1, 2). By the side condition and

by noting tamp(E2) = tamp(A2), we have s1 � s2�tamp(E2) = tamp(u2 : ()
↑A
s2

, A2).
This satisfies the constraint of (In↓A). Thus, the following is well typed:

�sec u1.[[c2]]u2
� u2 : ()↑A

s2
, u1 : ()↓A

s1
, A2.

Hence, by (Par), (Sub) and (Res), we are done.
Case [Sub]. We first note that each sequent E � t : α is translated into

� [[t]]u : α•, E◦. Since E◦ only contains types with ?-modes, E ≤ E ′ is directly
proved by (Weak) and (Sub) by Proposition 7.12.

For α• ≤ α′•, the only nontrivial case is when we replace ⇓s with ⇑s. We
show this case by induction. Others are straightforward by (Weak), (Sub) and

Proposition 7.12 for T again. The base cases (c def= skip and c def= x := v) are
trivial. For induction, for [[c1; c2]]u we note [[c1]]e outputs at e linearly), simi-
larly for [[if x then c1 else c2]]u. Other cases are direct from the induction
hypothesis.

Case [Deref]. Assume E � z : refrs(T) and E · x : T � c : cmd τs0
. By

induction hypothesis, we have, with p ∈ {↑L, ↑A},

�sec [[c]]u � E◦, x : T ◦, u : ()p
s0
.

Note refrs(T)◦ = rs〈T ◦〉 and rs〈T ◦〉 ≤ E◦(x). Hence, we have:

�sec z read(c)c(x).[[c]]u � E◦, u : ()p
s0
.

Finally, noting (cmd τs0
)• = ()

p
s0

, we conclude the proof.

D.4 Proposition 7.16 (2) (Computational Adequacy)

We first state the simulation result. For this purpose, we use a syntactic
transformation which extends reduction, written #→, called extended reduction
[Berger et al. 2000; Yoshida et al. 2004, 2002]. The relation is the typed compat-
ible closure of the relation generated by the following rules, taking processes

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:92 • K. Honda and N. Yoshida

modulo ≡.

x(�y).P |C[x〈�z〉] #→ C[P{�z/ �y}]
!x(�y).P |C[x〈�z〉] #→ !x(�y).P |C[P{�z/ �y}]

(ν x)!x(�y).P #→ 0.

Above, we assume the binding condition. For brevity, we only present the unary
case: the branching prefixes are similar treated. By being closed under arbitrary
typed contexts, the extended reduction reduces under the lambda abstraction.
Note the extended reduction does not include reduction involving references.
Below we recall P →→ Q stands for P (−→ ∪ ≡)∗Q , and P ⇓x says P outputs
at a linear/affine channel x after zero or more reductions.

PROPOSITION D.1

(1) (Partial Confluence) If P #→ Q1 and P −→ Q2, then either Q1 ≡ Q2 or for
some R we have Q1 −→ R and Q2 #→ R.

(2) #→ ⊂ ∼=.
(3) If P #→ Q, then P ⇓x iff Q ⇓x. Similarly, if P #→ Q, then P →→
−→ iff

Q →→
−→.

PROOF. (1) and (2) are standard [Berger et al. 2000; Yoshida et al. 2004,
2002]. (3) is immediate from (2).

We can now state the mutual simulation between the encoding and the orig-
inal programs. Below we assume �u = u1..i..n.

PROPOSITION D.2 (OPERATIONAL CORRESPONDENCE)

(1) (a) Suppose (ν �x)(o, σ) −→ (ν �x ′)(o′, σ ′). Then there exists P ′ such that
(ν �x)([[o]]�u|[[σ]]) −→+ P ′ and P ′ #→∗ (ν �x ′)([[o′]]�u|[[σ ′]]).

(b) Suppose (ν �x)(o, σ) →→ (ν �x ′)(o′, σ ′). Then, there exists P ′ such that
(ν �x)([[o]]�u|[[σ]]) →→ P ′ and P ′ #→∗ (ν �x ′)([[o′]]�u|[[σ ′]]).

(2) Suppose (ν �x)([[o]]�u|[[σ]]) −→ P with xi ∈ dom(σ). Then P →→#→∗

(ν �x ′)([[o′]]�u|[[σ ′]]) such that (ν �x)(o, σ) −→ (ν �x ′)(o′, σ ′).

(3) If (ν �x)(o, σ) ⇓ (ν �x ′)σ ′, then (ν �x)([[o]]�u|[[σ]]) →→ 	iui | R such that R #→∗

(ν �x ′)[[σ ′]]. If (ν �x)([[o]]�u|[[σ]]) →→ 	iui | R, then (ν �x)(o, σ) ⇓ (ν �x ′)σ ′ such that
R #→∗ (ν �x ′)[[σ ′]].

PROOF. For (1-a) is by inspecting each rule, observing whenever we have:

(ν �x)(o, σ) −→ (ν �x ′)(o′, σ ′),

there is the corresponding reduction in the encoding:

(ν �x)([[o]]�u|[[σ]]) −→ P

Then, P in turn induces a sequence of extended reductions (which is semanti-
cally innocuous, by Proposition D.1), leading to (ν �x ′)([[o′]]�u|[[σ ′]]). (1-b) is a corol-
lary of (1-a). (2) is similar, showing [[(o, σ)]]�u −→ P implies P −→∗#→+ [[(o′, σ ′)]]�u
for each possible reduction. (3) is from (1) and (2).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:93

D.5 Theorem 7.18, Claim B

For the proof of the claim, we use a synchronizer from �u to z, written S〈�u, z〉,
which signals, via an affine channel z, the arrival of all of �u, given as:

(ν �x y)(iui.z write(Tc)c.0 | 	iRef〈xi F 〉 | Ref〈 y F 〉 | [[while ¬ y do y := ∧ixi]]z)

This agent stores information for each ui as it arrives in separate references,
while polling these stores by busy-waiting. By the behavior of S〈�u, z〉, if we set:

C[·]
def= (ν �u)(S〈�u, z〉|[·])

then it is immediate that C[P] ⇓z iff P →→ 	iui|R
−→, assuming appropriate
typing for P (in π LAR).

D.6 Theorems 7.21 and 7.22

In the following, we show two refinements of Theorem 7.18. For both, we use
the following strengthened version of Proposition 7.16(2) (computational ade-
quacy).

PROPOSITION D.3 (STRENGTHENED COMPUTATIONAL ADEQUACY). Assume E � o :
cmd τs is semi-closed and E � σ . Then, (o, σ) ⇓ (ν �x)σ ′ implies ([[o]]�u | [[σ]]) −→∗

	iui | R such that R #→∗ [[(ν �x)σ ′]]. Conversely, if ([[o]]�u | [[σ]]) −→∗ 	iui | R, then
(o, σ) ⇓ (ν �x)σ ′ such that R #→∗ [[(ν �x)σ ′]].

PROOF. Direct from Proposition D.2 (mutual operational correspon-
dence).

We now show the refinement to the first-order store. We first observe:

PROPOSITION D.4 Assume for each αi ∈ cod(E), the type αi has the shape Nsi .
Assume further E � o :cmd τs is semi-closed, E � σi (i = 1, 2) and [[σ1]] ∼=s [[σ2]].
Then ([[o]]�u | [[σ1]]) −→∗ 	iui | R1 implies ([[o]]�u | [[σ2]]) −→∗ 	iui | R2 such that
R1

∼=s R2.

PROOF. We use a refinement of the synchronizer (cf. the proof of Proposition
on D.2). This refinement is written S′〈�u, R〉 where R acts as a testing process
for the resulting state, assuming R outputs at an affinely typed, fresh z.

(ν �x yw)(iui .z write(Tc)c.0 | 	iRef〈xi F 〉 | Ref〈 y F 〉 | [[while ¬ y do y := ∧i xi]]w) | w.R

The difference of this agent from S〈�u, z〉 is that, after checking all threads
have terminated, this agent invokes the tester R, instead of notifying at z. Now
suppose, under the stated condition,

([[o]]�u | [[σ1]]) −→∗ 	iui | R1.

Since newly generated references are not referred to from free references (which
are typed under E), we can safely view R1 (up to #→∗) as composition of E-typed
references. Let y1.. yn be the references visible from s (i.e., whose levels are s
or below) in the domain of E. Suppose N1..Nn are the content of y1.. yn in R1,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:94 • K. Honda and N. Yoshida

that is, the resulting state observable from s. Now take R to be given as, visible
from s:

R def= if ∧i yi = Ni then z else �.

Then, we have:

[[o]]�u | [[σ1]] | S′〈�u, R〉 ⇓z ,

hence, we should have:

[[o]]�u | [[σ2]] | S′〈�u, R〉 ⇓z .

However, for this to hold, we should have:

([[o]]�u | [[σ2]]) −→∗ 	iui | R2,

such that the references named y1.. yn in R2 have precisely N1..Nn as their
content, that is we should have R1

∼=s R2, as required.

THEOREM 7.21 (NONINTERFERENCE WITH FIRST-ORDER STORE). If E � o :cmd τs,
E � σ1

∼=VS

s σ2 and E(xi) = Nsi for xi ∈ {�x} such that si � s, then (o, σ1) ⇓�x:�n iff
(o, σ2) ⇓�x:�n.

PROOF. By precisely following the arguments in the proof of Theorem 7.18,
using the strengthened computational adequacy. We use the same Claim A
(already proved in the proof of Theorem 7.18):

Claim A. σ1 ∼s σ2 implies [[σ1]] ∼=s [[σ2]].

We now reason, noting the types of references are natural numbers:

σ1 ∼s σ2

⇒ [[σ1]] ∼=s [[σ2]] (Claim A)

⇒ ([[o]]�u | [[σ1]] ∼=s [[o]]�u | [[σ2]]) (congruency)

⇒ [[o]]�u | [[σ1]] →→ (uj)|R1 ⇔ [[o]]�u | [[σ2]] →→ (uj)|R2
∼=s R1 (Proposition D.4)

⇒ (o, σ1) ⇓�x:�n ⇔ (o, σ2) ⇓�x:�n (Proposition D.3)

as required.

We next prove Theorem 7.22, which claims that a program under two dis-
tinct s-equated states does not lead to any difference not only in its termination
behavior, but also in the resulting possibly higher-order store, though we re-
strict our attention to sequential programs. The structure of the proof is close to
the proof of Theorem 7.21 given above. We first prove the following analogue of
Proposition D.4. It gives the equivalence of the resulting states for the encoding,
which is possible by the restriction to sequentiality.

PROPOSITION D.5. Assume E � c :cmd τs is semi-closed, E � σi (i = 1, 2) and
[[σ1]] ∼=s [[σ2]]. Then ([[c]]u | [[σ1]]) −→∗ u | R1 implies ([[c]]u | [[σ2]]) −→∗ u | R2 such
that R1

∼=s R2.

PROOF. We again use the refined synchronizer S′〈�u, R〉. Suppose, under the
stated condition,

([[c]]u | [[σ1]]) −→∗ u | R1.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:95

Now suppose it is not the case for some R2, we have:

([[c]]u | [[σ2]]) −→∗ u | R2 such that R2
∼=s R1.

If the latter diverges, then this immediately contradicts [[σ1]] ∼=s [[σ2]]. So the
latter converges. Since the computation is sequential, we can assume there is
a single such R2 (since if a program is sequential there is only one consequence
of computation semantically: While we do not use it, we can further show such
R1 and R2 are replicated inputs, without any active reduction). Assume R
differentiates these two generalized stores, so that (say)

R1|R ⇓x and ¬(R2|R ⇓x).

However, this contradicts:

([[c]]u | [[σ1]]) | S′〈�u, R〉 ∼=s ([[c]]u | [[σ2]]) | S′〈�u, R〉.

Hence, we have R2
∼=s R1, as required.

We can now prove:

THEOREM 7.22 (SEQUENTIAL NONINTERFERENCE FOR GENERALIZED STORE).
In the sequential VS-calculus, if E � c : cmd τs and E � σ1

∼=VS

s σ2 then
(c, σ1) ⇓ (ν �x1)σ ′

1 implies (c, σ2) ⇓ (ν �x2)σ ′
2 such that (ν �x1)σ ′

1
∼=VS

s (ν �x2)σ ′
2.

PROOF. As before, we use:

Claim A. σ1 ∼s σ2 implies [[σ1]] ∼=s [[σ2]].

We now reason:

σ1
∼=VS

s σ2

⇒ [[σ1]] ∼=s [[σ2]] (Claim A)

⇒ [[c]]u | [[σ1]] ∼=s [[c]]u | [[σ2]] (congruency)

⇒ [[c]]u | [[σ1]] →→ u | R1 ⇒ [[c]]u | [[σ2]] →→ u | R2

such that R2
∼=s R1 (Proposition D.5)

⇒ [[c]]u|[[σ1]] →→ u|[[(ν �x1)σ ′
1]] ⇒ [[c]]u|[[σ2]] →→ u|[[(ν �x2)σ ′

2]]

such that [[(ν �x2)σ ′
2]] ∼=s [[(ν �x1)σ ′

1]] (Proposition D.2)

⇒ (c, σ1) →→ (ν �x1)σ ′
1⇒ (c, σ1) →→ (ν �x2)σ ′

2

such that (ν �x2)σ ′
2

∼=VS

s (ν �x1)σ ′
1 (Proposition D.3)

as required.

Remark D.6. Observe that, in both Theorem 7.21 and Theorem 7.22, the
proofs crucially rely on the ability (in the respective setting) to test the final
state through a tester given in the beginning. Such a tester cannot be deter-
mined in the present “May”-equivalence if there are multiple threads (hence,
nondeterminism) and the final store can be higher order.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:96 • K. Honda and N. Yoshida

Fig. 19. Summary of secrecy subtyping and typing rules for πLAR.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:97

E. SYNTAX, REDUCTION AND SECRECY TYPING RULES FOR THE
FULL CALCULUS

This section summarizes the full calculus for reference.
(Syntax)

P ::= x(�y).P input | P | Q parallel
| !x(�y).P replication | 0 inaction
| x[&i∈I (�yi).Pi] branching | (ν x)P hiding
| !x[&i∈I (�yi).Pi] branching replication | xini〈�z〉 selection
| Ref〈xv〉 reference agent | x〈 �y〉 output

(Structural Rules)

P ≡ Q if P ≡α Q P |0 ≡ P P |Q ≡ Q |P
P |(Q |R) ≡ (P |Q)|R (ν x)0 ≡ 0 (ν x)(ν y)P ≡ (ν y)(ν x)P
(ν x)(P |Q) ≡ ((ν x)P)|Q (x
∈ fn(Q))

(Reduction)

x(�y).P | x〈�v〉 −→ P{�v/ �y} ! x(�y).P | x〈�v〉 −→! x(�y).P |P{�v/ �y}
P −→ P ′ =⇒ P |Q −→ P ′|Q P −→ Q =⇒ (ν x)P −→ (ν x)Q

P ≡ P ′ −→ Q ′ ≡ Q =⇒ P −→ Q

x[& j (�y j).Pj] | xini〈�vi〉 −→ Pi{�vi/ �yi}
! x[& j (�y j).Pj] | xini〈�vi〉 −→! x[& j (�y j).Pi]|Pi{�vi/ �yi}

Ref〈xv〉 | x read〈c〉 −→ Ref〈xv〉 | c〈v〉 Ref〈xv〉 | x write〈v′c〉 −→ Ref〈xv′〉 | c

where read and write means inl and inr, respectively. (see Figure 19.)

ACKNOWLEDGMENTS

We thank Martin Berger for our ongoing collaboration on typed π -calculi and
their applications. Stephan Zdancewic pointed out several mistakes in the con-
ference version for which we are particularly grateful. Discussions with Andrew
Myers, Francois Pottier, Geoffrey Smith and Vincent Simonet deepened our un-
derstanding of secrecy analysis. Discussions with Chris Hankin have broadened
our perspective on the use of the π -calculus for program analyzes, part of which
is reflected in Introduction.

REFERENCES

ABADI, M. 1999. Secrecy in programming-language semantics. Electr. Notes Theor. Comput.
Sci. 20, 1 (Jan.), 1–15.

ABADI, M., BANERJEE, A., HEINTZE, N., AND RIECKE, J. G. 1999. A core calculus of dependency. In

Proceedings of the 26th Annual Symposium on Principles of Programming Languages. ACM,

New York, 147–160.

ABRAMSKY, S., HONDA, K., AND MCCUSKER, G. 1998. Fully abstract game semantics for general

references. In Proceedings of the Conference on Logic in Computer Science. IEEE Computer

Society Press, Los Alamitos, CA, 334–344.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:98 • K. Honda and N. Yoshida

ABRAMSKY, S., JAGADEESAN, R., AND MALACARIA, P. 2000. Full abstraction for PCF. Inf. Comput. 163,

409–470.

AMTOFT, T., NIELSON, F., AND NIELSON, H. R. 1999. Type and Effect Systems: Behaviours for Con-
currency. Imperial College Press.

BELL, D. E. AND LA PADULA, L. 1973. Secure computer systems: Mathematical foundations. Tech.

Rep. MTR-2547, Computer Laboratory, University of Cambridge, Cambridge, MA, March.

BERGER, M., HONDA, K., AND YOSHIDA, N. 2000. Sequentiality and the π -calculus. Full version of

[Berger et al. 2001].

BERGER, M., HONDA, K., AND YOSHIDA, N. 2001. Sequentiality and the π -calculus. In Proceedings
of TLCA’01. Lecture Notes in Computer Science, vol. 2044. Springer-Verlag, New York, 29–45.

BERGER, M., HONDA, K., AND YOSHIDA, N. 2005. Genericity and the π -calculus. Acta Inf. 42, 2-3,

83–141.

BODEI, C., DEGANO, P., NIELSON, F., AND NIELSON, H. R. 1998. Control flow analysis for the pi-

calculus. In CONCUR. Lecture Notes in Computer Science, vol. 1466. Springer-Verlag, New

York, 84–98.

BODEI, C., DEGANO, P., NIELSON, F., AND NIELSON, H. R. 1999. Static analysis of processes for no

read-up and no write-down. In FoSSaCS. Lecture Notes in Computer Science, vol. 1578. Springer-

Verlag, New York, 120–134.

BOUDOL, G. 1992. Asynchrony and the pi-calculus. Tech. Rep. 1702, INRIA.

BOUDOL, G. AND CASTELLANI, I. 2002. Noninterference for concurrent programs and thread sys-

tems. Theoret. Comput. Sci. 281, 1-2, 109–130.

DAMAS, L. 1985. Type assignment in programming languages. Ph.D. dissertation, University of

Edinburgh, Edinburgh, Scotland.

DENNING, D. E. AND DENNING, P. J. 1977. Certification of programs for secure information flow.

Commun. ACM 20, 7, 504–513.

FIORE, M. 1994. Axiomatic domain theory in cagtegory of partial maps. Ph.D. dissertation, Uni-

versity of Edinburgh, Edinburgh, Scotland.

FIORE, M. P. AND HONDA, K. 1998. Recursive types in games: Axiomatics and process represen-

tation. In Proceedings of the Conference on Logic in Computer Science. IEEE Computer Society

Press, Los Alamitos, CA, 345–356.

FOCARDI, R., GORRIERI, R., AND MARTINELLI, F. 2000. Non interference for the analysis of cryp-

tographic protocols. In Proceedings of the International Colloquium on Antomata, Languages
and Programming. Lecture Notes in Computer Science, vol. 1853. Springer-Verlag, New York,

354–372.

GIRARD, J.-Y. 1987. Linear logic. Theoret. Comput. Sci. 50, 1–102.

HEINTZE, N. AND RIECKE, J. G. 1998. The slam calculus: Programming with secrecy and integrity.

In Proceedings of the 25th Annual Symposium on Principles of Programming Languages. ACM,

New York, 365–377.

HENNESSY, M. AND RIELY, J. 2000. Information flow vs. resource access in the asynchronous pi-

calculus. In Proceedings of the International Colloquium on Antomata, Languages and Program-
ming. Lecture Notes in Computer Science, vol. 1853. Springer-Verlag, New York, 415–427.

HONDA, K. 1993. Types for Dyadic Interaction. In CONCUR’93. Lecture Notes in Computer Sci-

ence, vol. 715. Springer-Verlag, New York, 509–523.

HONDA, K. 1996. Composing Processes. In Proceedings of the Symposium on Principles of Pro-
gramming Languages. ACM, New York, 344–357.

HONDA, K. AND TOKORO, M. 1991. An object calculus for asynchronous communication. In Pro-
ceedings of European Conference on Object-Oriented Programming. Lecture Notes in Computer

Science, vol. 512. Springer-Verlag, New York, 133–147.

HONDA, K., VASCONCELOS, V. T., AND KUBO, M. 1998. Language primitives and type disciplines for

structured communication-based programming. In Proceedings of the European Symposium on
Programming. Lecture Notes in Computer Science, vol. 1381. Springer-Verlag, New York, 22–138.

HONDA, K., VASCONCELOS, V. T., AND YOSHIDA, N. 2000. Secure information flow as typed process be-

havior. In Proceedings of the European Symposium on Programming. Lecture Notes in Computer

Science, vol. 1782. Springer-Verlag, New York, 180–199.

HONDA, K. AND YOSHIDA, N. 1995. On reduction-based process semantics. Theoret. Comput.
Sci. 151, 437–486.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

A Uniform Type Structure for Secure Information Flow • 31:99

HONDA, K. AND YOSHIDA, N. 1999. Game-theoretic analysis of call-by-value computation. Theoret.
Comput. Sci. 221, 393–456.

HONDA, K. AND YOSHIDA, N. 2002. A uniform type structure for secure information flow. In Pro-
ceedings of the Symposium on Principles of Programming Languages. ACM, New York, 81–92.

HONDA, K. AND YOSHIDA, N. 2003. Addendum to “Uniform type structure for secure information

flow”: Subject reduction with inflation. Available at http://www.doc.ic.ac.uk/˜yoshida.

HONDA, K. AND YOSHIDA, N. 2005. Noninterference through flow analysis. J. Funct. Program. 15, 2

(Mar.), 293–349.

HONDA, K., YOSHIDA, N., AND BERGER, M. 2004. Control in the π -calculus. In Proceedings of CW’04.

ACM, New York.

HOWARD, B. T. 1996. Inductive, coinductive, and pointed types. In Proceedings of ICFP’96. ACM,

New York, 102–109.

HUDAK, P., JONES, S., AND WADLER, P. 1992. The Haskell home page. http://haskell.org.

HYLAND, J. M. E. AND ONG, C.-H. L. 1995. Pi-calculus, dialogue games and PCF. In Proceedings
of FPCA. ACM Press, 96–107.

HYLAND, J. M. E. AND ONG, C. H. L. 2000. On full abstraction for PCF. Inf. Comput. 163, 285–408.

JONES, C. B. 1983a. Specification and design of (parallel) programs. In IFIP Congress. North-

Holland, Amsterdam, The Netherlands. 321–332.

JONES, C. B. 1983b. Tentative steps toward a development method for interfering programs. ACM
Trans. Program. Lang. Syst. 5, 4, 596–619.

KOBAYASHI, N., PIERCE, B. C., AND TURNER, D. N. 1999. Linearity and the Pi-calculus. ACM Trans.
Program. Lang. Syst. 21, 5 (Sept.), 914–947.

LAMPSON, B. W. 1973. A note on the confinement problem. Commun. ACM 16, 10, 613–615.

LEROY, X. AND WEIS, P. 1991. Polymorphic type inference and assignment. In POPL ’91: Proceed-
ings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

ACM, New York, 291–302.

MILNER, R. 1980. A Calculus of Communicating Systems. Lecture Notes in Computer Science,

vol. 92. Springer, Berlin, Germany.

MILNER, R. 1989. Communication and Concurrency. Prentice-Hall, Englewood Cliffs, NJ.

MILNER, R. 1992a. Functions as processes. Math. Struct. Comput. Sci. 2, 2, 119–141.

MILNER, R. 1992b. The polyadic π -calculus: A tutorial. In Proceedings of the International Sum-
mer School on Logic Algebra of Specification. Marktoberdorf.

MILNER, R., PARROW, J., AND WALKER, D. 1992. A calculus of mobile processes, Parts I and II. Inf.
Comput. 100, 1, 1–77.

MILNER, R., TOFTE, M., AND HARPER, R. W. 1990. The Definition of Standard ML. MIT Press,

Cambridge, MA.

MITCHELL, J. C. 1996. Foundations for Programming Languages. MIT Press, Cambridge, MA.

MOGGI, E. 1991. Notions of computation and monads. Inf. Comput. 93, 1, 55–92.

MYERS, A. C. 1999. Jflow: Practical mostly-static information flow control. In Proceedings of 26th
Symposium on Principles of Programming Languages. ACM, New York, 228–241.

NIELSON, F., NIELSON, H. R., AND HANKIN, C. 1999. Proceedings of the Symposium on Principles of
Program Analysis. Springer-Verlag, New York.

ØRBÆK, P. AND PALSBERG, J. 1997. Trust in the lambda-calculus. J. Funct. Program. 7, 6, 557–591.

PALSBERG, J. 2001. Type-based analysis and applications. In Proceedings of the Workshop on
Progeam Analysis for Software Tools and Engineering. ACM, New York, 20–27.

PIERCE, B. AND SANGIORGI, D. 1996. Typing and subtyping for mobile processes. Math. Struct.
Comput. Sci. 6, 5, 409–454.

PIERCE, B. C. 2002. Types and Programming Languages. MIT Press, Cambridge, MA.

POTTIER, F. 2002. A simple view of type-secure information flow in the π -calculus. In Proceedings
of CSFW. IEEE Computer Society Press, Los Alamitos, CA, 320–330.

POTTIER, F. AND CONCHON, S. 2000. Information flow inference for free. In Proceedings of ICFP’00.

(Montral, Canada). ACM, New York, 46–57.

POTTIER, F. AND SIMONET, V. 2003. Information flow inference for ML. ACM Trans. Program. Lang.
Syst. 25, 1 (Jan.), 117–158.

RYAN, P. Y. A. AND SCHNEIDER, S. A. 1999. Process algebra and non-interference. In Proceedings of
CSFW. IEEE Computer Society Press, Los Alamitos, CA, 214–227.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

31:100 • K. Honda and N. Yoshida

SABELFELD, A. AND SAND, D. 1999. A per model of secure information flow in sequential programs.

In Proceedings of the European Symposium on Programming. Number 1576 in Lecture Notes in

Computer Science, vol. 1576. Springer-Verlag, New York, 40–58.

SMITH, G. 2001. A new type system for secure information flow. In Proceedings of CSFW. IEEE,

New York.

SMITH, G. AND VOLPANO, D. 1998. Secure information flow in a multi-threaded imperative lan-

guage. In POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. ACM, New York, 355–364.

TALPIN, J.-P. AND JOUVELOT, P. 1992. The type and effect discipline. In Proceedings of the Conference
on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 162–173.

TOFTE, M. 1990. Type inference for polymorphic references. Inf. Comput. 89, 1–34.

TSE, S. AND ZDANCEWIC, S. 2004. Translating dependency into parametricity. In Proceedings of
ICFP’04. ACM, New York, 115–125.

VOLPANO, D., IRVINE, C., AND SMITH, G. 1996. A sound type system for secure flow analysis. J. Com-
put. Secur. 4, 2,3, 167–187.

WRIGHT, A. 1994. Typing references by effect inference. In Proceedings of the European Sympo-
sium on Programming. Lecture Notes in Computer Science, vol. 582. Springer-Verlag, New York,

473–491.

YOSHIDA, N. 1996. Graph types for monadic mobile processes. In Proc. FSTTCS’96. Lecture Notes

in Computer Science, vol. 1180. Springer-Verlag, New York, 371–386. (The full version as LFCS

Technical Report, University of Edinburgh, ECS-LFCS-96-350, 1996).

YOSHIDA, N. 2002. Type-based liveness guarantee in the presence of nontermination and

nondeterminism. In PPL ’03, Proc. of JSST Workshop Programming and Program Lan-
guage. JSST, 32–46. MCS Technical Report, 2002-20, University of Leicester. Available at

www.doc.ic.ac.uk/˜yoshida.

YOSHIDA, N., BERGER, M., AND HONDA, K. 2004. Strong Normalization in the π -Calculus. Inf. Com-
put. 191, 145–202.

YOSHIDA, N., HONDA, K., AND BERGER, M. 2002. Linearity and bisimulation. In Proceedings of
FoSSaCs02. Lecture Notes in Computer Science, vol. 2303. Springer-Verlag, New York, 417–433.

(A full version in Journal of Logic and Algebraic Programming.)

ZDANCEWIC, S. AND MYERS, A. C. 2001. Secure information flow and CPS. In Proceedings of the
European Symposium on Programming. Lecture Notes in Computer Science, vol. 2028. Springer-

Verlag, New York, 46–62.

ZDANCEWIC, S. AND MYERS, A. C. 2003. Observational determinism for concurrent program security.

In Proceedings of CSFW. IEEE Computer Society Press, Los Alamitos, CA, 29–45.

Received September 2002; revised September 2004 and December 2005; accepted May 2007

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 31, Publication date: October 2007.

