
A Prototyping Environment
for Differential Equations

TOUFIC 1. BOUBEZ

Rutgers University

and

ANDY M. FRONCIONI and F{ICHARD L. PESKIN

Rutgers University

A system is presented to allow end users to solve nonlinear differential equations without need

to write computer programs. The system treats nth order space (one dimensional), first order

time systems with initial and/or two point boundary value specification. Users of the system

need only enter the problem in direct mathematical notation, and output is automatically

presented as a solution graph. The system allows the user to alter this equations, in-situ, that is

to computationally steer his model Thus the system is suited for model prototyping. Implemen-

tation is based on an object-oriented paradigm, well established and robust numerical proce-

dures, and distributed computing to supported needed resources for numerically intensive tasks.

Categories and Subject Descriptors: D.2.m [Software Engineering]: Miscellaneous; D. 3.2 [Pro-
gramming Languages]: Language Classifications- Smalltcdk; G. 1.5 [Numerical Analysis]:
Roots of Nonlinear Equations

General Terms: Design, Experimentation, Languages

1. INTRODUCTION

In a general scientific interface environment, an interactive tool to allow

scientists the capability of experimentation with differential equations is a

desirable feature. The need to enhance scientific interfaces for numerical

Editor’s Note: This paper was selected as one of the two best presented at the Second Interna-

tional Conference on Expert Systems for Numerical Computing, held at West Lafayette, Indiana,

April 22-24, 1990. The complete proceedings is published by North-Holland under the title

Intelligent Scientific Software Systems.

This research was supported in pm-t by the Parallel Computing Laboratory of the Center for

Computer Aids For Industrial Productivity (CAIP) and in part by the National Science Founda-

tion NSF grant EET88-14937. CAIF’ is supported by the New Jersey Commission on Science and

Technology, Rutgers—the State University of New Jersey, and the CAIP Industrial Membere.

Authors’ addresses: T. I. Boubez, Department of Biomedical Engineering, and CAIP Parallel

Computing Laboratory, Rutgers University, Piscataway, NJ 08855-1390, email: boubez@caip.

rutgers.edu; A. M. Froncioni ancl R. L. Peskin, Department of Mechanical and Aerospace

Engineering, and CAIP Parallel Computing Laboratory, Rutgers University, Piscataway, NJ

08855-1390.

Permission to copy without fee all cm part of this material is granted provided that the copies are

not made or distributed for direct c,~mmercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1992 ACM 0098-3500/92/0300-0001 $01.50

ACM Transactions on Mathematical Software, Vol. 18, No. 1, March 1992, Pages 1-10.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F128745.128746&domain=pdf&date_stamp=1992-03-01


2. T. 1. Boubez et al.

simulation has been discussed by Peskin et al. [4, 5], where the overall

concepts of our Scientific Computing Environment for Numerical Experimen-

tation (SCENE) environment are described. More specifically, when dealing

with differential equations, there is need for a tool that is capable of handling

a reasonable variety of initial value, final value, and boundary value prob-

lems (including cases where boundary layers and shocks are present). Camp-

bell [1] has built a prototype differential equation tool in Suntools. While this

system has a graphical interface, its model flexibility is limited. Russo [7] has

an extensive knowledge-based system capable of handling a wide class of

problems, but with limited graphical and interactive interface. By construct-

ing a differential equation system in Smalltalk-80TM, we are able to combine

model flexibility and complete graphical interaction capabilities, while tak-

ing full advantage of the distributed processing environment available.

In this paper, we present a differential equation (DE) tool that is designed

to accept user input in the form of a problem statement (string form) of a

single DE or a set of coupled DEs and the corresponding initial and boundary

conditions. The output is a graphical display of the solution. User interaction

with the input allows rapid change of the equations, parameter, boundary

conditions, and any other parameters such as the discretization resolution

and the solution domain; in effect, the user can “steer” the model.

2. NUMERICAL

In general, the

can be reduced

SOLUTIONS

nth-order differential equation

Y ‘n) = f(x, y, y(l), . . . . y(~-1)) (1)

to a set of n first-order equations

Y; =&TL(~>Y1). ..j Yn) i=l >. ..> n (2)

by using some auxiliary functions. For a set of m coupled DEs, the process is

repeated for each equation, resulting in N = n x m first-order equations.

This set of equations can then be solved by using any one of several methods,
including shooting and relaxation. This being a prototyping environment,

emphasis was placed on the robustness of the solution method, and a

relaxation scheme was chosen.

For a relaxation scheme, this set of first-order equations is rewritten as a

set of finite difference equations (FDEs) for each of the interior points in the

discretized domain. Several discretization schemes can be used, including the
forward-differencing one that is used by the tool:

1
Y; = #Yz, k+l – Y,, J

‘M Smalltalk-80 is a registered trademark of Xerox Corp.

ACM Transactions on Mathematical Software. Vol 1S, No 1, March 1992



A Prototyping Environment for Differential Equations . 3

THE MATRIX EQUATION

?~

Nx2N o

Nx2N

NX2N

o
Nx2N

❑ Bo.nday conditions

❑ Differen.inq Block

Figure 1

R Solutim Va.tor

❑ RHs

where y, ~ is the value of the function y, at the point k in the discretized
domain. in vector notation, this results in a set of equations E ~ at each point

in the interior domain. These FDEs are linearized by rewriting them as a set

of linear equations in the highest derivatives, taking the nonlinear terms

from the previous iteration step. The solution to the FDE problem is then

found by successive relaxation of an initial guess. For this purpose, the

equations are expanded in a first-order Taylor series with respect to small

changes A y~ [6]:

Ehojz + Ayk>yk.1 + AYk-1) = Ek(yk,yh-1)
aEk N aEk

+ j: E‘Yn, k-l + ~=l~Ayn,k
72=1 ay+l ~>

By setting the updated value E k( Yk + A yh, y~ _ ~ + A yk _ ~) to be zero at the

solution, an N x 2 N matrix block is contributed by each internal point. A

similar treatment of the boundary conditions results in a complete matrix

equation if the form (Figure 1):

A“x=b (3)

relating all the interior points in the discretized domain and incorporating

the boundary conditions. This equation is more specifically written as:

(4)

and solved in an iteration la,op, using the solution from the previous iteration

(1 - 1) to construct the matrix and solve for the next iteration (1). The

solution is thus relaxed until convergence is reached.

ACM Tr Emsactions on Mathematical Software, Vol 18, No 1, March 1992



4. T. 1. Boubez et al.

Symbolic Processing Steps

Initial Equation

Um+u
2

dy2/dx = -y

Order Reduct~on

ul - aO dy, /dx = y,

al + UO dy2/dx = -y
,

FDE Expansion

(1/DX)*(uaO-usl) - 0.5* (aaO+asl) k (Yl , -y ,-, ) = : (Y,.+yk-,)

(1/DX)*(aaO-asl) + 0.5*(uaO+us1) & (Y, , -Y, ,., ) = -; (Xk +Y, k,)

I.latrix Block

[

-(1/DX) -0.5 (1/DX) -0.5 1[][1Usl-E,

0.5 - (1/DX] 0.5 (1/Dx) .I$l =
-Ez

uaO

aao

Solution

Automatic Script Generation Numerical Program Implementation

Figure 2

3. NUMERICAL SOLUTIONS WITH THE DE TOOL

In standard numerical methods, the equations are usually reduced and

prepared beforehand, and all the algebraic steps described in the previous

section are performed by the user. The computer is only used in the final

solution steps that require number crunching (matrix solutions and relax-

ation iterations). The purpose of using our prototyping environment is to

automate the initial stages as well as the numerical computation steps, so

that an equation is processed from string formtoa solution plot, while still

allowing user interaction during the solution process. The following steps are

shown in Figure 2.

The most important user system interface step is the initial one, that of

problem formulation. The problem equation has to be entered, parsed, and
processed. Subclassing from Smalltalk classes, astrmgexpresslon caneasdy

be converted into an equationby using ascanner and supplyingit with the

necessary token dictionaries. The equation uXX = —u, for example, is entered

as: ‘UXX + u’ and, when scanned, produces a new instance of Equation List, a

subclass of Array, having the value (UXX + u). In the process, a set of higher-

order derivative variables (a, b, c, . . ) are defined such that a = du / ok,

b = da/ dx, etc., and serve as intermediate variables.

The m EquationList instances representing the nth-order equations are

recursively scanned to reduce their order, and the above substitutions are

ACM TransactIons on Mathematical Software, Vol 18, No 1, March 1992



A Prototyping Environment for Differential Equations . 5

DISTRIBUTED STRUCTURE

@@ E:
Figure 3

applied, producing N first-order equations. The FDEs are then produced by

performing the following substitutions from another Smalltalk Dictionary

inst ante:

u + 0.5 *((u at:(p + 1)) + (u at. p))
ux + (1 / deltaX) * ((u at:(p + i)) – (u at: P))

a+ 0.5 *((a at:(p + 1)) + (a at:p))
ax + (1 / deltaX) * ((a at:(p + 1)) – (a at:p))

The resulting set of difference equations is linearized

form given by Eq. 4. To efl”ect this process, the system

and written in the

utilizes an ‘expert’

algebraic manipulation tool, e.g., Maple [2], residing on a remote machine to

expand the resulting equations into their Taylor series and produce the

matrix blocks. A back-end program is then produced and sent to a back-end

machine where it is invoked via distributed computing. The resulting solu-

tion vector is then downloaded back and graphically displayed in the

Smalltalk environment.

Figure 3 shows the logical organization and the distributed structure of the

DE tool. As shown, the control structure resides in the Smalltallk environ-

ment, with communication channels to back-end algebraic and numerical

processors. Other channels can be opened as needed. The Model-View-Con-

troller (MVC) paradigm in Srnalltalk allows the user to open a view on the

computational object (in this case the DE problem) and interact, with the

controller to perform the visualization and steering tasks, using graphical
tools available in the SCENE system [5].

Figure 4 shows the logical organization of an instance of the Smalltalk

CoupledDE class, the main {class used in the DE tool. The instance variables

ACM Transactions on Mathematical Software, Vol 18, No 1, March 1992



6. T. I Boubez et al

The Computational Object Structure

CaupledDE Class I
equatiOnString
bcs -=7-
range

~ problem de fznzt~on

resolution

equationList
jacobian s@Olic and algabralc-
sOlutiOnVect Or * processing

solution * - numerical processing

Pipelines — — distrtiuted process~ng

flaqs

Figure 4

are grouped into five different utility groups. The first set of variables is used

locally for defining the problem. This includes the equation string, the

boundary conditions, the function domain, and the discretization resolution.

The next utility group is used in the symbolic and algebraic processing part

of the process and holds the symbolic equation list and the jacobian and the

symbolic solution vector variables. These variables, along with the numerical

solution variable, are communicated to the back-end machines through the

pipeline and socket variables. Finally, some flag variables are needed for

synchronization.

4. THE PROTOTYPING ENVIRONMENT

The object-oriented Smalltalk environment allows the DE tool to provide the

user with several features for prototyping and for computational steering of

the solution. These are provided as menu options. The user can alter parame-

ters, boundary conditions, and even change the equations during the solution

process. Some of the most important menu options are:

newProb allows the user to delete the current problem, if any,

and to start a completely new problem definition.

changeBCs allows the user to change the number and values of

the boundary conditions. The number of boundary

conditions has to be consistent with the order of the

problem.

changeEquation the whole equation, or any number of parameters can

be changed through this option. This is a very impor-

ACM TransactIons on Mathematical Software, Vol 1S, No 1, March 1992



A Prototyping Environment for Differential Equations . 7

tant feature for computational steering, as previously

mentioned. The user is also given the option of keep-

ing the last solution obtained as an initial guess for

the new problem.

changeDomain allows the user to change the problem domain.

changeResolution allows the user to change the discretizat ion resolu-

tion.

remoteSolve sends the command to solve the numerical problem

on the remote machine. The user is asked to supply a

tolerance for convergence. As a safety check, the user

is informed whenever the number of iterations ex-

ceecls a prespecified number, and a course of action is

requested.

remoteIterate performs a number of iteration steps towards the

solution. This option can be invoked when the prob-

lem statement (resolution, boundary conclitions, pa-

rameters) can cause the solution not to converge. By

performing a limited number of iterations, the tend-

ency for oscillation can be detected, and the problem

stat ement corrected accordingly.

selectSolution will display the selected solution.

showAll will display all the solutions simultaneously.

phasePlot displays a phase plot of any two chosen solutions.

The environment also allows two types of error handling. In the first type,

computational errors are intercepted, and the user is informed with an

appropriate message. Any of the variables can then be examined and the

problem reformulated accordingly. In the second type, a user-controlled cap is

placed on the number of relaxation iterations to be performed. If this number

is reached, as in the case of oscillations or nonconvergence, the user is

informed, and the latest state of the solution is displayed. The solution

process can then be resumed, redirected, or restarted with a revised initial

guess.

5. RESULTS

The DE tool was tested on a number of boundary-, initial- and final-value

problems with good results. The use of a relaxation method IIessens the

problem of Gibbs’ phenomena associated with resolving sharp shock-type

problems. For example, the following singularly perturbed problem:

equation: 0.1 * uxx – (u* ux) + u = O

BC’S: u(–l)=l; u(l)= –1
resolution: 40 points

was tested on the system. The problem was solved and graphical results
presented in approximately 17 seconds (using Pro-Matlab [7] running on an

Ardent Titan I as the back-end processor), using 7 relaxation iterations. As is

evident from Figure 5a, no Gibbs’ oscillation is present in the final solution.

ACM Transactions on Mathematical Software, Vol. 18, No. 1, March 1992.



8. T. I Boubezet al.

newBv P addXgr, d
,,, @rsol”r, on r’amor*lr. ra?e ,a[Log YaxIs addXr, tle
change BC5 keaPLa5rSolumn wrXbyDala addYgnd
en&n QoEq. armn s.arxbwhr addYr<lle

-10 -05 00 05 10

[a)

reset Solurwn remote lIerala >OLLOg Yaxls add X1!tl@
chanae BCs kQap Las TSolutlon sQtxby D&ta a6d Ygm

redraw s.txbyuser add Y1>[le

I
19 J

093

-000?4

-093

\
-49 I I I

-10 -05 00 05 10

(b)

Figure 5

ACM Transactmns on Mathematical Software, Vol 18, No I, March 1992



A Prototyping Environment for Differential Equations . 9

2.9

22

1,5

0.86

0.?9

0.0 250 50,0 75,0 1000

Figure 6

In addition, the shock region is properly represented. As an example of the

use of some of the option, the changeEquation option was used to change

the high-order parameter from 0.1 to 0.05, and a new solution is now

obtained in only 13 seconds and 6 additional iterations, by taking the

previous solution as initial guess for the new problem (Figure 5b).

Another example tried is the predator-prey problem given by

equation set: UX– O.l*U+O.l*U *V= o
VX+O. I* V–O.l*U*V=O

BC’S: u(O) = 0.2; v(O) = 0.7
resolution: 40 points

A plot of the two solutions in given in Figure 6. The problem was solved in

105 seconds, necessitating “18 iterations.

Similarly, good results were obtained for other nonlinear shock- and

smooth-type DEs, giving u~s full confidence in the results obtained during

prototyping.

It is important to note that, although the relaxation method just described

uses a uniform grid on the solution domain, the DE tool includes the

necessary structures for nonuniform gridding. All the functions are instances

of the TwoPointFunction class, which incorporates domain knowledge, such

ACM Transactions on Mathematical Software, Vol. 18, No. 1, March 1992.



10 . T. 1. Boubez et al,

as variable mesh density information. The domain knowledge will be used by

a proposed extension [81, which will provide initial guess and mesh density

data through nonlinear singular perturbation analysis. In addition, the

variable gridding structures will be useful in other adaptive gridding

techniques.

6. CONCLUSIONS

This paper presents a DE solution environment for prototyping and computa-

tional steering. This tool has proved to be robust and correct in solving a

number of difficult DE systems, in particular, a singularly perturbed, nonlin-

ear ordinary differential equation. The tool allows both visualization and

computational steering of solutions for DE problems.

Several extensions to the system are being implemented. As mentioned in

the previous section, an expert system is also being incorporated to imple-

ment domain decomposition and high-order initial estimates for singular

perturbation problems [8]. Since convergence in the vicinity of a root is

quadratic, a good initial guess will result in faster convergence and might

prevent oscillations and inaccurate results [61. A plot of the error will also be

provided, to within the user-provided tolerance value. In addition, the system

has recently been modified to handle first-order time PDEs and will be

upgraded to nth-order time PDEs.

REFERENCES

1. CAMPBELL, J. R., AND MCGAVItAN, L. P. An integrated distributed processing interface for

supercomputers and workstations. Submitted to ASE 89, Apphcatzons of Supercomputers m

Engzneermg (Southampton Umv , UK, Sept 5-7, 1989)

2. CHAR, B W., GEDDES, K. O , GONNET, G H , MONAGAN, M, B , AND WATT, S M MAPLE
Reference Manual. Umv of Waterloo, WATCOM Publications Ltd., Waterloo, Canada, 1988

3. MOLER, C , LITTLE, J., AND BANGERT, S. Pro-Matlab Users’ Guide The MathWorks, Inc ,

1987.

4 PESKIN, R. L., WALTHER, S. S , AND FRONCIONI, A. M Smalltalk–The next generation

scientific computing interface?. Math Comput. Szmul. 31, (1989), 371-381.

5 PESKIN, R, L., WALTHER, S. S,, FRONCIONI, A. M., AND BOUDEZ, T. I Incremental vlsuallza-

tlon as a strategy for computational steering. IBM J. Res. Deu. To be pubhshed, 1992.

6 PRESS, W H., FLANNERY, B P , TEUIiOLSKY, S A , AND VETTERLING, W. T. Numertcal

Recipes Cambridge University Press, 1988.

7. RUSSO, M. F. Automatic generation of parallel programs using nonlinear singular pertur-

bation theory. Ph D Thesm, Rutgers Univ , 1989

8. Russo, M F., AND PESKIN, R. L. Automatically ldentlfymg the asymptotic behavior of

nonlinear singularly-perturbed boundary-value problems J Autom. Reasoning To

appear.

Received March 1990; revised February 1991; accepted July 1991

ACM TransactIons on Mathematical Software, Vol 1S, No 1, March 1992.


